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Wavelet-based Spectral-Spatial Transforms for
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Abstract—Spectral-spatial transforms (SSTs) change a raw
camera image captured using a color filter array (CFA-sampled
image) from an RGB color space composed of red, green,
and blue components into a decorrelated color space such as
YDgCbCr or YDgCoCg color space composed of luma, difference
green, and two chroma components. This paper describes three
types of wavelet-based SST (WSST) obtained by reorganizing all
of the existing SSTs covered in this paper. First, we introduce
three types of macropixel SST (MSST) implemented within each
2 × 2 macropixel. Next, we focus on 2-channel Haar wavelet
transforms, which are simple wavelet transforms, and 3-channel
Haar-like wavelet transforms in each MSST and replace the
Haar and Haar-like wavelet transforms with Cohen-Daubechies-
Feauveau (CDF) 5/3 and 9/7 wavelet transforms, which are
customized on the basis of the original pixel positions in two-
dimensional (2D) space. Although the test data set is not big,
in lossless CFA-sampled image compression based on JPEG
2000, the WSSTs improve the bitrates by about 1.67 to 3.17
% compared with not using a transform and the WSSTs that
use 5/3 wavelet transforms improve the bitrates by about 0.31
to 0.71 % compared with the best existing SST. Moreover, in
lossy CFA-sampled image compression based on JPEG 2000, the
WSSTs show about 2.25 to 4.40 dB and 26.04 to 49.35 % in
the Bjøntegaard metrics (BD-PSNRs and BD-rates) compared
with not using a transform and the WSSTs that use 9/7 wavelet
transforms improve the metrics by about 0.13 to 0.40 dB and
2.27 to 4.80 % compared with the best existing SST.

Index Terms—Color filter array, color transforms, raw cam-
era image, spectral-spatial transforms, wavelet transforms,
YDgCbCr, YDgCoCg.

I. I NTRODUCTION

COLOR transforms, which change a full-color image from
an RGB color space composed of red (R), green (G),

and blue (B) components into a decorrelated color space
expressed by one luma and two chroma components, are
commonly used in image (video) preprocessing. Since there is
not much correlation between the resulting luma and chroma
components, the color transforms greatly contribute to the ef-
fectiveness of image-processing implementations. Traditional
compression standards, such as JPEG [1], JPEG 2000 [2],
and MPEG-2 [3], employ irreversible and reversible color
transforms (ICT and RCT) from RGB color space into YCbCr
color space (YCbCr-ICT and YCbCr-RCT), whereY , Cb, and
Cr mean luma, blue-difference chroma, and red-difference
chroma components, respectively. Newer compression stan-
dards, such as JPEG extended range (XR) [4], advanced
video coding (AVC) [5], and high efficiency video coding
(HEVC) [6] use an RCT from RGB color space into YCoCg
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Fig. 1: Bayer pattern of a particular area ofParrot in Kodak
images [12] (each2 × 2 pixel square is a macropixel): (left)
RGB full-color image and (right) simulated CFA-sampled
image with corresponding diagram.

color space (YCoCg-RCT) [7], whereY , Co, andCg mean
luma, orange chroma, and green chroma components, respec-
tively. The YCoCg-RCT is composed of two calculations of
the mean and difference between each color component. It
decorrelates signals to a greater extent than the YCbCr-RCT
does, but this inferior-to-superior relationship may be reversed
depending on the image. Moreover, some studies [8–11] have
discussed a family of RCTs different from the YCbCr-RCT
and YCoCg-RCT.

Raw camera images captured using a color filter array
(CFA), such as a Bayer pattern (shown in Fig. 1) (CFA-
sampled images), are usually compressed after they have
been processed with demosaicing, denoising, deblurring, tone-
mapping, and so on. On the other hand, many studies [13–20]
have chosen to compress CFA-sampled images before process-
ing, because professional photographers and designers tend
to prefer to work with them directly. This paper focuses on
the transforms in [17–20], which are called spectral-spatial
transforms (SSTs) in this paper.1 In [17], Zhang and Wu
discussed a lossless CFA-sampled image compression using
Mallat wavelet packets-based SSTs, which are composed
of one-dimensional (1D) Cohen-Daubechies-Feauveau (CDF)
wavelet transforms [21], such as the 5/3 and 9/7 wavelet
transforms used in JPEG 2000, implemented horizontally and
vertically. In [18], Malvar and Sullivan proposed a macropixel
SST (YDgCoCg-MSST2) that is implemented within each
2 × 2 macropixel and changes a CFA-sampled image from
RGB color space into YDgCoCg color space for compression;
here,Dg is the difference green component. The YDgCoCg-
MSST is obtained by adding calculations of the mean and
difference between the green components (G1 andG2) in each

1Although SST refers to all transforms that change a CFA-sampled image
from an RGB color space into a decorrelated color space such as YDgCbCr
or YDgCoCg color space, the conventional SSTs in [17–20] are reorganized
into the proposed WSSTs in this paper.

2Although it is simply called MSST in [18], in this paper it is called
YDgCoCg-MSST to distinguish it from other transforms.
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macropixel to the YCoCg-RCT; i.e., it comprises only three
calculations of the mean and difference between each color
component. In [19], Herńandez-Cabronero et al. presented a
lossless CFA-sampled image compression pipeline to JPEG
2000. Although the SST is not explicitly stated in [19], by
analyzing it carefully, we can see that the YDgCbCr-MSST
described later can potentially be used. In [20], Lee et al.
analyzed the relationship between the HL and LH subbands3

generated in [17] and decorrelated them more with simple
calculations.

This paper describes three types of wavelet-based SST
(WSST) that change a CFA-sampled image from RGB color
space into YDgCbCr or YDgCoCg color space. First, we
extend the YCbCr-RCT to YDgCbCr-MSST, which changes
a CFA-sampled image from RGB color space into YDgCbCr
color space, by adding calculations of the mean and difference
between theG1 and G2 components in each macropixel
in accordance with the YDgCoCg-MSST described in [18].
This YDgCbCr-MSST has potentially been used in [19].
We focus on 2-channel Haar wavelet transforms, which are
simple wavelet transforms, and 3-channel Haar-like wavelet
transforms in the YDgCbCr-MSST. Since other wavelet trans-
forms such as the 5/3 and 9/7 wavelet transforms can more
accurately predict pixels of interest in the predict steps and
decorrelate signals to a greater extent than the Haar wavelet
transforms can, we replace the Haar and Haar-like wavelet
transforms in the YDgCbCr-MSST with the 5/3 and 9/7
wavelet transforms, which are customized on the basis of
the original pixel positions in two-dimensional (2D) space
(2D-customized wavelet transforms). Second, we extend the
existing YDgCoCg-MSST in [18] with 2D-customized wavelet
transforms in accordance with the extension of the YDgCbCr-
MSST. Third, we find that the MSST derived from [20] gener-
ates components similar to those generated by the YDgCoCg-
MSST. From this finding, we reconfigure the existing SST in
[20] with 2D-customized wavelet transforms. We call the three
WSSTs YDgCbCr-, YDgCoCg-, and YDgCoCg2-WSSTs. As
a result, we can consider that all existing SSTs covered
in this paper are particular classes of the proposed WSSTs
because the transforms are obtained by constraining part of
the wavelet transforms in the WSSTs to index matrices and
Haar wavelet transforms. In lossless and lossy CFA-sampled
image compression based on JPEG 2000, the WSSTs that
use 5/3 and 9/7 wavelet transforms improve the bitrates and
the Bjøntegaard metrics (BD-PSNRs and BD-rates) compared
with the existing methods.

A preliminary version of this paper was presented in [22],
where we discussed only the YDgCoCg-WSSTs for lossless
CFA-sampled image compression. This paper further presents
the YDgCbCr-WSSTs and YDgCoCg2-WSSTs and reconfig-
ures the derivations for lossy and lossless CFA-sampled image
compression.

The remainder of the paper is organized as follows.
Section II reviews the CDF wavelet transforms, the tra-

3The “HL subband” means the high-frequency (H) subband in the horizontal
direction and the low-frequency (L) subband in the vertical direction after
wavelet transforms have been performed on the image; the “LH subband”
means vice versa.

TABLE I: Coefficients of 5/3 and 9/7 wavelet transforms.

5/3 9/7
p0 −1/2 −1.58613434205992
u0 1/4 −0.05298011857295
p1 0 0.882911075530940
u1 0 0.443506852043967

ditional YCbCr-RCT and YCoCg-RCT, and the existing
SSTs. Section III derives three types of WSST with 2D-
customized wavelet transforms, i.e., YDgCbCr-, YDgCoCg-,
and YDgCoCg2-WSSTs. Section IV compares the resulting
WSSTs with the existing methods in JPEG 2000 for CFA-
sampled image compression. Section V concludes this paper.

Notation: Boldface letters represent matrices.I, J, O,
and superscript·⊤ denote a2 × 2 identity matrix, 2 × 2
reversal matrix, zero matrix, and transpose of a matrix/vector,
respectively. In addition, the size and dynamic range of the
images in the figures have been adjusted for display.

II. REVIEW AND DEFINITIONS

A. Cohen-Daubechies-Feauveau Wavelet Transforms

CDF wavelet transforms [21] are common transforms used
for image processing. In practice, the 2-channel 1D wavelet
transformsW2(z) often consist of lifting steps with predict
and update steps as follows [23]:

W2(z) =

0∏
k=N−1

[
1 Uk(z)
0 1

]
︸ ︷︷ ︸

update step

[
1 0

Pk(z) 1

]
︸ ︷︷ ︸

predict step

, (1)

wherez is a delay element,N is the number of iterations of the
two lifting steps depending on the type of wavelet transforms,
andPk(z) andUk(z) are polynomials with coefficientspk and
uk:

Pk(z) = (1 + z−1)pk and Uk(z) = (1 + z)uk, (2)

respectively. Although the original wavelet transforms have
scaling coefficients, we will omit them for simplicity in this
study. The coefficientspk anduk in the 5/3 wavelet transforms
(N = 1) and 9/7 wavelet transforms (N = 2) are shown in
Table I. Because the 5/3 and 9/7 wavelet transforms can more
accurately predict pixels of interest in the predict steps than
the Haar wavelet transforms can, they decorrelate signals more
as well. The (2-channel) Haar wavelet transforms have simple
predict and update steps:

H2 =

[
1/2 1/2
−1 1

]
=

[
1 1/2
0 1

]
︸ ︷︷ ︸

update step

[
1 0
−1 1

]
︸ ︷︷ ︸
predict step

. (3)

The above means that the calculation simply consists of
calculating the mean and difference between the two input
signals.

B. Reversible Color Transforms to YCbCr or YCoCg Color
Space for RGB Full-color Images

The YCbCr color transform changes a full-color image from
RGB color space into YCbCr color space [2]. Although the
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Fig. 2: Lifting structures of RCTs (white circles represent
rounding operators): (top) YCbCr-RCT and (bottom) YCoCg-
RCT.

transforms are classified into irreversible and reversible ver-
sions, this paper uses the reversible version with lifting-based
low-complexity calculations (YCbCr-RCT). The YCbCr-RCT
Tbr is expressed as (see the top of Fig. 2) [9][

Y,Cb, Cr
]⊤

= Tbr

[
G,B,R

]⊤
, (4)

where

Tbr =

1/2 1/4 1/4
−1 1 0
−1 0 1

 =

1 1/4 1/4
0 1 0
0 0 1

 1 0 0
−1 1 0
−1 0 1

 .

(5)

On the other hand, the YCoCg-RCTTog, which changes
a full-color image from RGB color space into YCoCg color
space with low-complexity lifting-based calculations, is ex-
pressed as (see the bottom of Fig. 2) [7][

Y,Co,Cg
]⊤

= Tog

[
G,B,R

]⊤
, (6)

where

Tog =

1/2 1/4 1/4
0 1 −1
1 −1/2 −1/2


=

0 1 0
0 0 1
1 0 0

 1 0 0
1/2 1 0
0 0 1

1 −1 0
0 1 0
0 0 1


·

1 0 0
0 1 1/2
0 0 1

1 0 0
0 1 0
0 −1 1

 . (7)

C. Existing Spectral-Spatial Transforms for CFA-Sampled Im-
ages

Malvar and Sullivan proposed YDgCoCg-MSST, which is
implemented within each2×2 macropixel and changes a CFA-
sampled image from RGB color space into YDgCoCg color
space for CFA-sampled image compression (see the middle of
Fig. 3) [18]:[

Y,Dg,Co,Cg
]⊤

= T og

[
G1, G2, B,R

]⊤
, (8)

Fig. 3: Lifting structures of MSSTs (white circles repre-
sent rounding operators): (top) YDgCbCr-MSST, (middle)
YDgCoCg-MSST, and (bottom) YDgCoCg2-MSST.

where

T og =


1/4 1/4 1/4 1/4
−1 1 0 0
0 0 −1 1
1/2 1/2 −1/2 −1/2



=


0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0




1 0 0 0
0 1 0 0
1/2 0 1 0
0 0 0 1



1 0 −1 0
0 1 0 0
0 0 1 0
0 0 0 1



·


1 1/2 0 0
0 1 0 0
0 0 1 1/2
0 0 0 1




1 0 0 0
−1 1 0 0
0 0 1 0
0 0 −1 1

 . (9)

The sets ofG1, G2, B, andR are in macropixels of a CFA-
sampled image, as shown in Fig. 1. Hence, the transform is
obtained by adding calculations of the mean and difference
between theG1 andG2 components to the YCoCg-RCT. It is
implemented as shown at the top of Fig. 7.

Herńandez-Cabronero et al. presented a lossless CFA-
sampled image compression pipeline to JPEG 2000 [19].
However, the Haar wavelet transforms were only used as
preprocessing, and no SST was explicitly mentioned.

On the other hand, Zhang and Wu found that Mallat wavelet
packets are suitable for decorrelating CFA-sampled images and
used them for lossless CFA-sampled image compression; i.e.,
1D wavelet transforms were directly applied to CFA-images
like wavelet transforms are to RGB full-color images [17].
In addition, Lee et al. found a redundancy in the HL and
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LH subbands generated in [17] and decorrelated them more
by calculating the mean and difference between the compo-
nents [20]. However, the transforms in [17] and [20] were not
expressed as matrices.

III. WAVELET-BASED SPECTRAL-SPATIAL TRANSFORMS

FOR CFA-SAMPLED IMAGES

A. Preparation

This paper derives three types of WSST: YDgCbCr-WSST,
YDgCoCg-WSST, and YDgCoCg2-WSST. To derive them, we
prepare 3-channel 1D wavelet transforms, 2 and 3-channel 2D-
customized wavelet transforms including 3-channel Haar-like
transforms, and six permutation matrices.

First, letW3(z) be 3-channel 1D wavelet transforms, i.e.,
extended versions of the 2-channel 1D wavelet transforms
W2(z) in (1):

W3(z) =
0∏

k=N−1

1 Uk(z)/2 Uk(z)/2
0 1 0
0 0 1


︸ ︷︷ ︸

update step

 1 0 0
Pk(z) 1 0
Pk(z) 0 1


︸ ︷︷ ︸

predict step

.

(10)

Next, let W2(z1, z2) andW3(z1, z2) be 2 and 3-channel
2D wavelet transforms obtained by customizing the 2 and 3-
channel 1D wavelet transformsW2(z) in (1) andW3(z) in
(10) as follows:

W2(z1, z2) =

0∏
k=N−1

[
1 Uk(z1, z2)
0 1

]
︸ ︷︷ ︸

update step

[
1 0

Pk(z1, z2) 1

]
︸ ︷︷ ︸

predict step

(11)

W3(z1, z2) =
0∏

k=N−1

1 Uk(z1)/2 Uk(z2)/2
0 1 0
0 0 1


︸ ︷︷ ︸

update step

·

 1 0 0
Pk(z1) 1 0
Pk(z2) 0 1


︸ ︷︷ ︸

predict step

, (12)

wherePk(z1, z2) andUk(z1, z2) are polynomials,

Pk(z1, z2) =
1

2
(1 + z−1

1 + z−1
2 + z−1

1 z−1
2 )pk (13)

Uk(z1, z2) =
1

2
(1 + z1 + z2 + z1z2)uk, (14)

and z1 and z2 are horizontal and vertical delay elements. In
the proposed transforms described below, the suitable delay
elements are determined by taking into account the original
pixel positions in 2D space. Also, letH3 be 3-channel Haar-
like wavelet transforms, which are completely equivalent to the
YCbCr-RCTTbr in (5), obtained by extending the 2-channel

Haar wavelet transformsH2 in (3):

H3 =

1/2 1/4 1/4
−1 1 0
−1 0 1

 =

1 1/4 1/4
0 1 0
0 0 1


︸ ︷︷ ︸

update step

 1 0 0
−1 1 0
−1 0 1


︸ ︷︷ ︸

predict step

.

(15)

The 3-channel Haar-like wavelet transformsH3 in (15) can be
considered to be simpler versions of the 3-channel 1D wavelet
transformsW3(z1, z2) in (12).

Finally, let Pl (l = 0, 1, · · · , 5) be the4 × 4 permutation
matrices,

P0 =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , P1 =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1



P2 =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 , P3 =


0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

 (16)

P4 =


0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

 , P5 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 .

B. Wavelet-based Spectral-Spatial Transforms to YDgCbCr
Color Space

Theorem-1:The YDgCbCr-WSSTsTbr are expressed as
(see the top of Fig. 4)

[
Y,Dg,Cb, Cr

]⊤
= Tbr

[
G1, G2, B,R

]⊤
, (17)

where

Tbr = P0

[
1 O
O W3(z

−1
1 , z2)

]
P0

[
W2(z

−1
1 , z2) O
O I

]
.

(18)

Note that the delay patterns in (18) are for a Bayer pattern, as
shown in Fig. 1, and they depend on the original CFA pattern.
The YDgCbCr-WSSTsTbr are implemented as shown at the
bottom of Fig. 5.

Proof-1: As in the case of YDgCoCg-MSST in [18], we
will extend the YCbCr-RCT to CFA-sampled images (see the
top of Fig. 3),

[
Y,Dg,Cb, Cr

]⊤
= T br

[
G1, G2, B,R

]⊤
, (19)
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Fig. 5: Implementations of YDgCbCr-WSSTs: (top) Haar case and (bottom) 5/3 and 9/7 cases.

Fig. 4: Lifting structures of WSSTs: (top) YDgCbCr-WSSTs,
(middle) YDgCoCg-WSSTs, and (bottom) YDgCoCg2-
WSSTs.

where

T br =


1/4 1/4 1/4 1/4
−1 1 0 0

−1/2 −1/2 1 0
−1/2 −1/2 0 1



=


1 0 1/4 1/4
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
−1 0 1 0
−1 0 0 1



·


1 1/2 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1

 , (20)

by adding calculations of the mean and difference between the

TABLE II: Number of lifting steps in WSSTs.

Haar 5/3 9/7
YDgCbCr-WSSTs 6 16 32
YDgCoCg-WSSTs 6 20 40
YDgCoCg2-WSSTs 10 44 48

G1 andG2 components to the YCbCr-RCT. The YDgCbCr-
MSST T br is implemented as shown at the top of Fig. 5.
By using 2-channel Haar wavelet transformsH2 in (3) and
3-channel Haar-like wavelet transformsH3 in (15), we can
redefine the YDgCbCr-MSSTT br in (20) as (see the top of
Fig. 6)

T br = P0

[
1 O
O H3

]
P0

[
H2 O
O I

]
. (21)

To improve the transform’s performance, we can also use other
wavelet transforms, such as 5/3 and 9/7 wavelet transforms,
which can more accurately predict pixels of interest in the
predict steps, instead of the Haar and Haar-like wavelet
transforms in the YDgCbCr-MSST:

T̂ br = P0

[
1 O
O W3(z)

]
P0

[
W2(z) O

O I

]
. (22)

Moreover, we can obtain the YDgCbCr-WSSTsTbr in (18)
by replacing the 1D wavelet transformsW2(z) andW3(z)
with 2D wavelet transformsW2(z

−1
1 , z2) andW3(z

−1
1 , z2),

to take into account the original pixel positions in 2D space.
Remark-1: Because the predict and update steps of the

YDgCbCr-WSSTs that use 5/3 and 9/7 wavelet transforms are
implemented with more pixels around the pixels of interest
than those that use Haar and Haar-like wavelet transforms,
which are predicted and updated with only an adjacent pixel,
the compression performance of the YDgCbCr-WSSTs that
use 5/3 and 9/7 wavelet transforms is expected to be better than
that of the transform that uses Haar wavelet transforms. We can
see that the pipeline system in [19], that uses the Haar wavelet
transforms betweenG1 and G2 components before YCbCr-
RCT in JPEG 2000, potentially uses the YDgCbCr-MSST
(YDgCbCr-WSST that uses Haar wavelet transforms) in the
system. Moreover, compared with other WSSTs introduced
later, the YDgCbCr-WSSTs are composed of fewer lifting
steps, as shown in Table II.
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Fig. 6: Lifting structures of the redefined MSSTs (white
circles represent rounding operators): (top) YDgCbCr-MSST,
(middle) YDgCoCg-MSST, and (bottom) YDgCoCg2-MSST.

C. Wavelet-based Spectral-Spatial Transforms to YDgCoCg
Color Space

Theorem-2:The YDgCoCg-WSSTsTog are expressed as
(see the middle of Fig. 4)[

Y,Dg,Co,Cg
]⊤

= Tog

[
G1, G2, B,R

]⊤
, (23)

where

Tog = P2

[
W2(z

−1
2 ) O

O I

]
P1

·
[
W2(z

−1
1 , z2) O
O W2(z

−1
1 , z−1

2 )

]
. (24)

Note that the delay patterns in (24) are for a Bayer pattern, as
shown in Fig. 1, and they depend on the original CFA pattern.
The YDgCoCg-WSSTsTog are implemented as shown at the
bottom of Fig. 7.

Proof-2: The YDgCoCg-WSSTs are derived from the
YDgCoCg-MSST in [18]. By using 2-channel Haar wavelet
transformsH2 in (3), we can redefine the YDgCoCg-MSST
T og in (9) as (see the middle of Fig. 6)

T og = P2

[
H2 O
O I

]
P1

[
H2 O
O H2

]
. (25)

To improve the transform’s performance, we can use other
wavelet transforms, such as 5/3 and 9/7 wavelet transforms,
instead of the Haar wavelet transforms in the YDgCoCg-
MSST:

T̂ og = P2

[
W2(z) O

O I

]
P1

[
W2(z) O

O W2(z)

]
. (26)

Moreover, we can obtain the YDgCoCg-WSSTsTog in
(24) by replacing the 1D wavelet transformsW2(z) with
2D wavelet transformsW2(z

−1
1 , z2), W2(z

−1
1 , z−1

2 ), and
W2(z

−1
2 ), to take into account the original pixel positions

in 2D space.

Remark-2: For the same reason as in the case of
the YDgCbCr-WSSTs, the compression performance of the
YDgCoCg-WSSTs that use 5/3 and 9/7 wavelet transforms is
expected to be better than that of the transform that uses Haar
wavelet transforms. Because the YDgCoCg-WSSTs, in which
all wavelet transforms in (24) are Haar wavelet transforms,
are clearly equivalent to the existing YDgCoCg-MSST in [18],
we consider that the existing YDgCoCg-MSST is a particular
class of YDgCoCg-WSST. In addition, the YDgCoCg-WSSTs
have more lifting steps than in the YDgCbCr-WSSTs and
fewer lifting steps than in the YDgCoCg2-WSSTs described
in the next subsection, as shown in Table II.

D. Wavelet-based Spectral-Spatial Transforms to YDgCoCg-
Like Color Space

Theorem-3:The YDgCoCg2-WSSTsTog2 are expressed as
(see the bottom of Fig. 4)

[
Y,Dg,Co,Cg

]⊤
= Tog2

[
G1, G2, B,R

]⊤
, (27)

where

Tog2 = P5

[
W2(z

−1
1 , z2) O
O I

]
P4

[
W2(z1) O

O W2(z1)

]
P3

·
[
W2(z2) O

O W2(z2)

]
P2. (28)

Note that the delay patterns in (28) are for a Bayer pattern, as
shown in Fig. 1, and they depend on the original CFA pattern.
The YDgCoCg2-WSSTsTog2 are implemented as shown at
the bottom of Fig. 8.

Proof-3:The YDgCoCg2-WSSTs are derived from the SSTs
in [20]. First, let us consider the MSST derived from [20],
in which 2-channel Haar wavelet transforms are used for
simplicity.4 The MSSTT og2 is represented as (see the bottom

4In [20], the SSTs are composed of 5/3 and 9/7 wavelet transforms, not
Haar wavelet transforms, which adds calculations of the mean and difference
between the HL and LH subbands.
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Fig. 7: Implementations of YDgCoCg-WSSTs: (top) Haar case and (bottom) 5/3 and 9/7 cases.

Fig. 8: Implementations of YDgCoCg2-WSSTs: (top) Haar case and (bottom) 5/3 and 9/7 cases.

of Fig. 3)

T og2 =


1/4 1/4 1/4 1/4
−1 1 0 0
0 0 1/2 −1/2
−1 −1 1 1



= P5


1 1/2 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1



·


1 0 0 0
0 1 1/2 0
0 0 1 0

1/2 0 0 1



1 0 0 −1
0 1 0 0
0 −1 1 0
0 0 0 1



·


1 0 1/2 0
0 1 0 0
0 0 1 0
0 1/2 0 1




1 0 0 0
0 1 0 −1
−1 0 1 0
0 0 0 1

 . (29)

It is implemented as shown at the top of Fig. 8. We can see that
they generate components similar to those generated by the
YDgCoCg-MSSTT og in (9) because the relationship between
T og andT og2 in the case of MSSTs is expressed by

T og2 = diag

{
1, 1,−1

2
,−2

}
T og. (30)

We characterize the color space generated byT og2 as a
YDgCoCg-like (YDgCoCg2) color space. By using 2-channel
Haar wavelet transformsH2 in (3), we can redefine the

YDgCoCg2-MSSTT og2 in (29) as (see the bottom of Fig. 6)

T og2 = P5

[
H2 O
O I

]
P4

[
H2 O
O H2

]
P3

[
H2 O
O H2

]
P2.

(31)

To improve the transform’s performance, we can use other
wavelet transforms, such as 5/3 and 9/7 wavelet transforms,
instead of the Haar wavelet transforms in the YDgCoCg2-
MSST:

T̂ og2 = P5

[
W2(z) O

O I

]
P4

[
W2(z) O

O W2(z)

]
P3

·
[
W2(z) O

O W2(z)

]
P2. (32)

Moreover, we can obtain the YDgCoCg2-WSSTsTog2 in
(28) by replacing the 1D wavelet transformsW2(z) with 2D
wavelet transformsW2(z2), W2(z1), andW2(z

−1
1 , z2), to

take into account the original pixel positions in 2D space.
Remark-3:For the same reason as with the other WSSTs,

the compression performance of the YDgCoCg2-WSSTs that
use 5/3 and 9/7 wavelet transforms is expected to be better
than that of the transform that uses Haar wavelet transforms.
Because the YDgCoCg2-WSSTs, in which the last wavelet
transformsW2(z

−1
1 , z2) in (28) are index matrices or Haar

wavelet transforms, are clearly equivalent to the existing SSTs
in [17] or [20], we consider that the existing SSTs are
particular classes of YDgCoCg-WSST. In addition, compared
with the other WSSTs, the YDgCoCg2-WSSTs are composed
of more lifting steps, as shown in Table II.
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Fig. 9: Test images: (top and middle) images in [24] and (bottom) images in [25].

TABLE IV: LBRs [bpp] in lossless CFA-sampled image compression using JPEG 2000 lossless mode.

Direct ReRGB YDgCbCr-WSSTs YDgCoCg-WSSTs YDgCoCg2-WSSTs
Test Images Haar [19] 5/3 Haar [18] 5/3 Haar 5/3&Haar [20] 5/3

In [24], #0250 9.48 9.52 9.41 9.31 9.38 9.30 9.38 9.28 9.26
#0500 9.06 8.83 8.94 8.81 8.96 8.85 8.97 8.98 8.90
#0750 10.35 10.64 10.39 10.17 10.39 10.25 10.39 10.16 10.14
#1000 9.45 9.18 9.21 9.09 9.22 9.11 9.22 9.25 9.17
#1250 9.51 9.21 9.10 9.00 9.09 9.00 9.09 9.06 9.01
#1500 10.02 9.87 9.77 9.69 9.77 9.71 9.77 9.81 9.74
#1750 10.03 9.89 9.86 9.75 9.86 9.80 9.86 9.90 9.84
#2000 9.79 9.83 9.62 9.48 9.61 9.52 9.61 9.52 9.43
#2250 10.34 10.76 10.36 10.16 10.34 10.21 10.34 10.17 10.05
#2500 10.17 10.11 10.03 9.95 10.02 9.96 10.02 9.99 9.91
#2750 9.44 9.63 9.41 9.28 9.43 9.32 9.43 9.38 9.33
#3000 11.25 10.95 11.10 11.05 11.12 11.00 11.13 11.15 11.12
#3250 10.39 10.76 10.44 10.20 10.41 10.27 10.41 10.13 10.05
#3500 9.13 8.69 8.49 8.37 8.48 8.36 8.48 8.36 8.34
#3750 9.42 9.25 9.17 9.00 9.20 9.09 9.20 9.11 9.03
#4000 11.78 11.67 11.71 11.60 11.74 11.74 11.74 11.77 11.72
#4250 10.02 10.27 10.02 9.89 10.01 9.97 10.01 9.84 9.82
#4500 10.35 10.88 10.60 10.43 10.55 10.50 10.55 10.33 10.28
#4750 8.77 9.08 8.88 8.77 8.85 8.79 8.85 8.72 8.72
#5000 11.11 11.37 11.13 10.95 11.13 11.06 11.13 10.91 10.90

In [25], Akademie 11.20 11.10 10.91 10.68 10.94 10.74 10.94 10.73 10.65
Arri 10.49 10.50 10.23 9.97 10.23 10.02 10.23 10.01 9.95

Church 9.81 10.10 9.77 9.54 9.76 9.54 9.76 9.58 9.50
Color Test Chart 9.58 8.65 8.94 8.83 8.99 8.89 9.00 9.05 8.97

Face 9.15 9.00 8.91 8.79 8.90 8.80 8.90 8.94 8.84
Lake Locked 10.15 10.05 9.88 9.71 9.89 9.72 9.89 9.81 9.74

Lake Pan 11.31 11.63 11.29 11.03 11.30 11.06 11.30 11.04 10.99
Night at Odeonplatz 10.22 9.68 9.69 9.60 9.69 9.60 9.69 9.72 9.62

Swimming Pool 10.62 10.66 10.40 10.23 10.41 10.27 10.41 10.29 10.24
Night at Siegestor 10.05 9.66 9.70 9.59 9.72 9.59 9.72 9.79 9.68

Average LBR 10.08 10.05 9.91 9.76 9.91 9.80 9.91 9.83 9.76

TABLE III: MSE of Dg components of all images.

Haar 5/3 9/7
Exist. SSTs [18] 292554.87 — —
Exist. SSTs [19] 292554.87 — —
Exist. SSTs [20] 292560.78 149287.56 142492.36

YDgCbCr-WSSTs same as [19] 89934.13 66916.36
YDgCoCg-WSSTs same as [18] 89934.13 66916.36
YDgCoCg2-WSSTs same as [20] 80473.37 70006.71

IV. CFA-SAMPLED IMAGE COMPRESSION

We compared the YDgCbCr-, YDgCoCg-, and YDgCoCg2-
WSSTs that use Haar, 5/3, and 9/7 wavelet transforms with
Direct, which directly compressed a CFA-sampled image,
rearranged RGB (ReRGB), which merely rearranges com-
ponents from a CFA-sampled image as shown at the top

left of Fig. 10, and the existing SST in [18]5, [19]6, and
[20]7 in terms of the lossless bitrate (LBR) [bpp] with the
existing codecs designed for non CFA-sampled images, JPEG
2000, by usingimwrite.m in MATLAB. We used 5/3 and
9/7 wavelet transforms for lossless and lossy compression,
respectively, and a commonly used symmetric extension [26]
at the image boundaries. The “wavelet packets” as in [20] were
approximated by combining the SSTs with JPEG 2000, which
uses 5/3 and 9/7 wavelet transforms. As with the test images,
we used RGB full-color images of various sizes (about 3K

5The YDgCoCg-MSST in [18] is equivalent to the YDgCoCg-WSST that
uses Haar wavelet transforms (Section III-C).

6The pipeline system in [19] potentially used the YDgCbCr-WSST that
uses Haar wavelet transforms (YDgCbCr-MSST) (Section III-B).

7The SSTs in [20] are equivalent to the YDgCoCg2-WSSTs, in which the
last wavelet transformsW2(z

−1
1 , z2) in (28) are Haar wavelet transforms

(Section III-D).
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Fig. 10: Subband images ofColor Test Chart(clockwise from the top left:R/Y , G1/Dg, B/Cr/Cg, andG2/Cb/Co components):
(1st row) ReRGB and YDgCoCg2-WSSTs that used 5/3&Haar and 9/7&Haar wavelet transforms [20], (2nd row) YDgCbCr-
WSSTs that used Haar [19], 5/3, and 9/7 wavelet transforms, (3rd row) YDgCoCg-WSSTs that used Haar [18], 5/3, and 9/7
wavelet transforms, and (4th row) YDgCoCg2-WSSTs that used Haar, 5/3, and 9/7 wavelet transforms.

to 5K) with a 16-bit dynamic range in each color component
from [24] and [25], as shown in Fig. 9. To simulate the CFA-
sampled images, we subsampled the test images in accordance
with the Bayer pattern in Fig. 1 and reduced their dynamic
range from16 to 14 bits because the actual sensor data often
had only about10 to 14-bit resolution at most. Since the
YDgCbCr and YDgCoCg color spaces have both positive and
negative values and the JPEG 2000 codec does not allow input
signals with negative values, we transmitted the transformed
coefficients, which have15-bit positive values, by adding214

to them on the encoder side and reconstructed the images after
subtracting214 on the decoder side.

Figure 10 shows the subband images of theColor Test Chart
transformed by the WSSTs. The WSSTs that used the 5/3
and 9/7 wavelet transforms decorrelated each color component
more thoroughly than the transforms that used Haar wavelet
transforms (see especially theDg components in Fig. 10).
In addition, Table III shows the mean square error (MSE)
of the Dg components of all the images. Note that theDg
components in the YDgCbCr-WSSTs and YDgCoCg-WSSTs
that used the same wavelet transforms were completely equiva-

lent because the components could be obtained from the same
calculations. In addition, we observed relationships between
the YDgCoCg-WSSTs and YDgCoCg2-WSSTs similar to
those described in Section III-D; they were not completely
equivalent because of the rounding error. Table IV shows the
LBRs [bpp] in lossless CFA-sampled image compression using
the lossless mode of JPEG 2000. Fig. 11 and Tables V and
VI show the rate-distortion (R-D) curves with the bitrates
[bpp] and the peak signal-to-noise ratios (PSNRs) [dB] and
the Bjøntegaard metrics (BD-PSNRs [dB] and BD-rates [%])
between about 0.0625-2 bpp in comparison with Direct in
lossy CFA-sampled image compression using the lossy mode
of JPEG 2000. Furthermore, Fig. 12 shows the particular
areas of reconstructedG1 components with about0.5 bpp.
In lossless CFA-sampled image compression based on JPEG
2000, the WSSTs improved the bitrates by about 0.17 to 0.32
bpp (1.67 to 3.17 %) compared with not using a transform
and the WSSTs that used 5/3 wavelet transforms improved the
bitrates by about 0.03 to 0.07 bpp (0.31 to 0.71 %) compared
with the best existing SST in [20]. Moreover, in lossy CFA-
sampled image compression based on JPEG 2000, the WSSTs
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TABLE V: BD-PSNRs [dB] in lossy CFA-sampled image compression using JPEG 2000 lossy mode.

ReRGB YDgCbCr-WSSTs YDgCoCg-WSSTs YDgCoCg2-WSSTs
Test Images Haar [19] 9/7 Haar [18] 9/7 Haar 9/7&Haar [20] 9/7

In [24], #0250 1.88 2.50 3.78 2.51 4.09 2.14 3.98 4.24
#0500 3.43 2.86 4.00 2.79 4.18 2.27 3.55 4.01
#0750 -0.30 0.71 2.58 0.51 2.72 0.16 2.81 3.08
#1000 3.61 2.73 3.43 2.65 3.56 2.10 2.86 3.28
#1250 4.78 5.19 6.27 5.17 6.62 4.70 6.19 6.51
#1500 3.86 4.03 4.96 3.96 5.25 3.43 4.68 5.09
#1750 1.00 0.97 2.19 0.92 2.40 0.39 1.91 2.38
#2000 0.91 1.82 3.20 1.73 3.53 1.53 3.18 3.66
#2250 -0.10 1.68 3.03 1.52 3.44 1.40 3.14 3.64
#2500 4.55 4.15 4.81 4.11 5.06 3.63 4.52 5.05
#2750 -0.21 1.26 2.91 1.11 3.23 0.82 2.76 3.25
#3000 4.90 4.08 4.90 3.96 5.06 3.46 4.54 4.90
#3250 -0.74 0.68 2.72 0.64 3.06 0.57 3.13 3.57
#3500 5.00 6.11 7.76 6.03 8.07 5.69 7.66 8.01
#3750 3.94 3.87 5.19 3.71 5.19 3.33 4.82 5.26
#4000 1.14 0.39 1.00 0.24 0.63 -0.24 0.28 0.62
#4250 0.76 1.55 2.93 1.50 3.07 1.28 3.07 3.49
#4500 -0.63 0.20 2.20 0.24 2.32 0.18 2.47 2.97
#4750 0.32 0.90 2.42 0.96 2.85 0.70 2.75 3.08
#5000 0.92 1.49 3.42 1.37 3.39 1.13 3.49 3.85

In [25], Akademie 3.55 4.14 6.05 3.80 5.94 3.51 5.60 5.94
Arri 1.25 2.59 5.05 2.46 5.25 2.35 5.05 5.41

Church 0.73 2.61 4.82 2.46 5.23 2.35 4.75 5.07
Color Test Chart 6.43 5.64 6.50 5.48 6.61 4.90 5.88 6.34

Face 1.34 1.65 2.95 1.63 3.21 1.11 2.76 3.20
Lake Locked 3.34 4.06 5.72 3.90 5.97 3.61 5.61 5.99

Lake Pan 0.27 1.94 4.10 1.78 4.43 1.75 4.50 4.77
Night at Odeonplatz 5.51 4.98 6.08 4.95 6.34 4.41 5.75 6.33

Swimming Pool 1.12 2.47 4.25 2.25 4.38 2.02 4.19 4.53
Night at Siegestor 4.47 3.65 4.61 3.50 4.72 2.94 4.00 4.54
Average BD-PSNR 2.23 2.70 4.13 2.59 4.33 2.25 4.00 4.40

Fig. 11: R-D curves in lossy CFA-sampled image compression using JPEG 2000 lossy mode: (left)#0250, (middle) #5000,
and (right)Night at Siegestor.

showed about 2.25 to 4.40 dB and 26.04 to 49.35 % in the
Bjøntegaard metrics compared with not using a transform and
the WSSTs that used 9/7 wavelet transforms improved the
metrics by about 0.13 to 0.40 dB and 2.27 to 4.80 % compared
with the best existing SST in [20]. However, the inferior-to-
superior relationship between the SSTs reversed depending on
the image. It may be better to apply adaptive selection of
several SSTs to each divided local area, as was done in [9],
to design more effective wavelet transforms in the WSSTs
for CFA-sampled images, and/or to design the transforms by
considering the rounding error as in [27] and [28].

V. CONCLUSION

This paper described three types of WSST that change a
CFA-sampled image from RGB color space into YDgCbCr

or YDgCoCg color space. First, we extended the YCbCr-
RCT to YDgCbCr-MSST by adding calculations of the mean
and difference between theG1 and G2 components to the
existing YDgCoCg-MSST. We focused on 2-channel Haar
and 3-channel Haar-like wavelet transforms in the YDgCbCr-
MSST, and replaced the Haar and Haar-like wavelet transforms
in the YDgCbCr-MSST with 2D-customized wavelet trans-
forms. Second, we extended the existing YDgCoCg-MSST
with 2D-customized wavelet transforms in the manner of
extending the YDgCbCr-MSST. Third, from the finding that
other existing SST implemented within a macropixel generate
components similar to those generated by the YDgCoCg-
MSST, we reconfigured the existing SST with 2D-customized
wavelet transforms. As a result, we can consider that all of
the existing SSTs covered in this paper are particular classes
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TABLE VI: BD-rates [%] in lossy CFA-sampled image compression using JPEG 2000 lossy mode.

ReRGB YDgCbCr-WSSTs YDgCoCg-WSSTs YDgCoCg2-WSSTs
Test Images Haar [19] 9/7 Haar [18] 9/7 Haar 9/7&Haar [20] 9/7

In [24], #0250 -31.09 -39.96 -51.05 -39.65 -53.52 -33.28 -52.63 -55.14
#0500 -38.83 -29.16 -40.79 -28.66 -41.96 -21.09 -31.47 -39.10
#0750 5.56 -11.72 -36.81 -8.59 -38.15 -3.08 -39.47 -42.37
#1000 -47.35 -34.29 -44.31 -33.46 -45.91 -28.22 -37.12 -42.76
#1250 -54.05 -54.19 -63.94 -54.20 -66.31 -48.73 -62.34 -65.37
#1500 -52.24 -51.42 -59.08 -50.80 -61.62 -44.05 -55.03 -59.55
#1750 -18.38 -18.05 -36.12 -17.05 -39.04 -7.96 -30.77 -38.41
#2000 -16.68 -27.05 -44.82 -26.20 -48.15 -22.68 -43.57 -49.54
#2250 2.81 -25.62 -41.29 -23.20 -45.41 -22.05 -42.06 -47.28
#2500 -41.59 -32.35 -40.86 -34.07 -47.00 -22.93 -35.39 -47.40
#2750 2.53 -19.81 -39.29 -17.66 -42.52 -14.00 -37.85 -42.86
#3000 -58.52 -50.36 -54.69 -50.36 -57.49 -46.06 -50.19 -54.15
#3250 13.98 -9.53 -34.45 -9.28 -37.94 -8.13 -38.70 -42.99
#3500 -52.17 -60.55 -70.51 -60.03 -71.99 -57.46 -70.11 -71.78
#3750 -47.69 -43.27 -55.39 -42.12 -54.93 -37.50 -50.35 -55.31
#4000 -24.26 -6.69 -22.36 -4.23 -20.30 2.71 -8.89 -17.43
#4250 -12.09 -23.38 -39.68 -23.02 -40.88 -20.06 -40.99 -45.89
#4500 12.20 -1.42 -24.35 -2.74 -25.38 -1.93 -26.30 -32.96
#4750 -3.22 -11.28 -29.74 -12.29 -34.67 -7.58 -32.97 -36.67
#5000 -12.23 -19.43 -40.61 -18.13 -39.82 -15.03 -41.14 -45.62

In [25], Akademie -37.40 -39.86 -57.79 -37.16 -56.78 -34.85 -54.12 -56.85
Arri -14.93 -27.67 -49.89 -26.97 -51.30 -25.60 -49.72 -52.65

Church -8.91 -32.63 -53.23 -31.50 -56.54 -31.04 -52.47 -55.24
Color Test Chart -62.89 -53.26 -59.27 -52.04 -59.59 -45.97 -52.28 -56.90

Face -23.55 -27.20 -44.16 -27.31 -46.81 -17.86 -40.89 -46.41
Lake Locked -37.91 -40.53 -55.38 -39.14 -56.82 -35.57 -53.50 -57.10

Lake Pan -2.26 -24.43 -47.60 -23.47 -50.21 -21.81 -51.23 -53.51
Night at Odeonplatz -61.59 -57.06 -65.01 -56.89 -66.45 -50.62 -62.24 -66.21

Swimming Pool -15.15 -32.36 -50.34 -30.31 -51.14 -27.74 -49.61 -52.69
Night at Siegestor -52.22 -41.34 -51.76 -39.53 -52.83 -31.00 -43.06 -50.33
Average BD-rate -26.34 -31.53 -46.82 -30.67 -48.72 -26.04 -44.55 -49.35

Fig. 12: Particular areas of reconstructedG1 components in lossy CFA-sampled image compression using JPEG 2000 lossy
mode with about0.5 bpp: (top)#0250, (middle)#5000, (bottom)Night at Siegestor, and (left-to-right) original image, Direct,
ReRGB, YDgCbCr-WSSTs that used Haar [19] and 9/7 wavelet transforms, YDgCoCg-WSSTs that used Haar [18] and 9/7
wavelet transforms, and YDgCoCg2-WSSTs that used Haar, 9/7&Haar [20], and 9/7 wavelet transforms.

of the WSSTs. In lossless and lossy CFA-sampled image
compression based on JPEG 2000, the WSSTs that used 5/3
and 9/7 wavelet transforms improved the bitrates and the
Bjøntegaard metrics compared with the existing methods.
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