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Redefined Block-Lifting-based Filter Banks with
Efficient Reversible Nonexpansive Convolution
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Abstract—This study redefines a block-lifting structure of M -
channel (M ∈ N, M ≥ 2) filter banks and proposes an efficient
reversible nonexpansive convolution at the boundaries for lossy-
to-lossless image coding. The previous studies left two problems.
One is that the conventional lifting-based FBs are restricted to
having equal analysis/synthesis filter lengths. We derive block-
lifting-based FBs (BLFBs) with not only equal analysis/synthesis
filter lengths but also the longer synthesis filter lengths than those
of the analysis banks. The other problem is that the conventional
lifting-based FBs without the linear-phase (LP) property, such as
BLFBs, cannot implement the conventional smooth nonexpansive
convolution at the boundaries because of the rounding error in
each lifting. We solve the boundary problem by using an efficient
reversible nonexpansive convolution derived from a nonexpansive
convolution for nonlinear-phase FBs with paraunitariness. We
show that the redefined BLFBs (ReBLFBs) with the efficient
reversible nonexpansive convolution perform well at lossy-to-
lossless image coding.

Index Terms—Block-lifting structure, filter bank, filter length,
lossy-to-lossless image coding, nonexpansive convolution.

I. INTRODUCTION

IMAGE compression (coding), which is one of the most
useful preprocessing technologies of communications, is

classified into lossy and lossless. Lossy image coding dramat-
ically compacts the data size of natural images taken by digital
cameras and smartphones at the expense of image quality,
whereas lossless image coding losslessly compacts the data
size of medical, satellite, and art images at the expense of
the compression rate; i.e., image quality and compression rate
are in a trade-off. To cover all images in a cross-sectoral
manner, lossy-to-lossless image coding, which has scalability
from lossless to lossy data, has been incorporated in image
coding standards such as JPEG 2000 [1] and JPEG XR [2].1

The lifting structure [5], that maps integer input signals
to integer output signals by performing a rounding operation
before the addition in each lifting step, contributes to achieving
the lossy-to-lossless image coding. The JPEG 2000 uses 5/3-
and 9/7-tap discrete wavelet transforms (DWTs), and their
various related works have been presented [6–9]. However,
since DWTs, which are considered as two-channel filter banks
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1This study focuses on “lossy-to-lossless image coding.” Although there are
the newer image coding methods with machine learning and neural networks
as in [3], [4], which may outperform the traditional transform coding as in
this study, they are specialized for only lossy image coding and cannot be
applied to lossless image coding.

(FBs), may be limited to design the better transforms because
of a few free parameters, many M -channel (M ∈ N, M ≥ 2,
M is even) lifting-based FBs have been presented in the
literature [10–19]. In [11], Tran et al. introduced time-domain
lapped transforms (TDLTs), which can be directly applied to
the JPEG framework. In [14], Tu et al. introduced a 4 × 8
lifting-based hierarchical lapped transform (HLT) for the JPEG
XR by extending TDLTs. However, since FBs with linear-
phase (LP) property such as TDLT and HLT may be also
limited to design the better transforms, several nonlinear-phase
FBs have been studied for more efficient image coding. In
[17], Iwamura et al. presented nonlinear-phase FBs based on
a block-lifting structure that reduces the rounding error by
merging many rounding operations, called block-lifting-based
FBs (BLFBs), because the rounding error reduces the coding
efficiency. In [18], we generalized the BLFBs; i.e., we allowed
the McMillan degree rk to be 1 ≤ rk < M and allowed
both even and odd block size. In [19], we presented their 2-D
nonseparable structures.2

On the other hand, it is known that the analysis banks
basis functions (or impulse response) should be short to
avoid ringing artifacts around regions with high-frequency
components, whereas the synthesis banks should be long and
their coefficients should decay to zero smoothly at both ends
to avoid blocking artifacts around regions with low-frequency
components [23]. Nevertheless, the conventional lifting-based
FBs are restricted to having equal analysis/synthesis filter
lengths. Moreover, although our previous work [24] allows
the traditional smooth nonexpansive convolution, a symmetric
extension [25], at the boundaries in lifting-based FBs with a
LP property, it does not allow any conventional nonexpan-
sive convolution to be used in M -channel nonlinear-phase
cases [24–27] because of the rounding error. In particular,
the M -channel nonlinear-phase cases except for M = 2 must
have a common periodic extension, whose discontinuity at the
boundaries yields the annoying artifacts.

This study redefines a block-lifting structure of M -channel
FBs for lossy-to-lossless image coding. The redefined BLFBs
(ReBLFBs) can derive not only equal analysis/synthesis fil-
ter lengths but also the longer synthesis filter lengths than
the analysis ones. Also, we produce an efficient reversible
nonexpansive convolution unrestricted by the LP property.

2This study focuses on “transforms for general natural images,” i.e., they
are basic technologies that can be customized if necessary and widely
used. Although there are some newer studies for lossy-to-lossless image
coding [20–22], they have proposed more efficient uses of the traditional
transforms such as DWTs and the methods for specified images such as
medical and hyperspectral image.
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A preliminary work of the nonexpansive convolution will
be presented in [28], where we discussed only FBs with
paraunitariness and equal analysis/synthesis filter lengths. This
paper describes the unrestricted case for the characteristics. We
show that the ReBLFBs with the nonexpansive convolution
perform well at lossy-to-lossless image coding.

The remaining part of this paper is organized as follows.
Section II reviews the BLFBs. Section III redefines the BLFBs
for a structure embodying the conventional block-lifting struc-
ture and proposes an efficient reversible boundary processing.
Section IV presents the filter design and the experimental
results. Section V concludes this paper.

Notations: I, J, O, det(·), superscript ⊤, and subscript [m]
(m ∈ N) denote an identity matrix, reversal matrix, zero
matrix, determinant of a matrix, transpose of a vector/matrix,
and m×m matrix, respectively. The subscript [m] is omitted
if its size is clear.

II. REVIEW AND DEFINITION

A. Filter Banks

The polyphase matrix of causal M -channel maximally dec-
imated (K−1)th order (M ×MK, K ∈ N) FBs is factorized
as follows [29]:

E(z) = EK−1(z)EK−2(z) · · ·E1(z)X0, (1)

where the initial block X0 is an M ×M nonsingular matrix,
and Ek(z) (1 ≤ k ≤ K − 1) can be factorized into

Ek(z) = I[M ] − UkV⊤
k + z−1UkV⊤

k , (2)

where the M × rk parameter matrices Uk and Vk satisfy

V⊤
k Uk =


1 × · · · ×

0 1
. . .

...
...

. . . . . . ×
0 · · · 0 1


[rk]

≜ Wk (3)

for some integer 1 ≤ rk < M , where × indicates possibly
nonzero elements. Let Uk and Vk be

Uk =

[
uk0

uk1

]
(4)

Vk =

[
vk0

vk1

]
, (5)

where uk0 and vk0 are qk × rk (qk = M − rk) matrices and
uk1 and vk1 are rk×rk square matrices, respectively, for later
discussion. The synthesis polyphase matrix R(z) is given by

R(z) = X−1
0 E−1

1 (z) · · ·E−1
K−1(z),

which is anticausal as a result of (3) and satisfies R(z)E(z) =
I for perfect reconstruction [30]. Since the rank of Wk in (3)
is rk, the McMillan degree of Ek(z), as in (2), is rk and the
matrix Ek(z) is a degree-rk building block. If rk = M

2 (M
is even), ⌈M

2 ⌉ (M and k are odd), or ⌊M
2 ⌋ (M is odd and k

is even) [31], the Ek(z) is an order-1 building block. K must
be odd when M is odd.

Almost all studies impose the restriction Wk = I[rk] that
guarantees equal filter lengths in analysis/synthesis banks. In

addition, when Vk = Uk, the FBs are paraunitary filter
banks (PUFBs) and the others are biorthogonal FBs (BOFBs).
This study eases the restriction on the filter lengths and
paraunitariness, i.e., Wk ̸= I[rk], and produces FBs with
longer synthesis filter lengths than those of the analysis banks.

B. Block-Lifting-based Filter Banks

The lifting structure [5] is a cascade of elementary matrices,
which are identity matrices with one single nonzero off-
diagonal element. It preserves reversibility if the rounding
operation is performed before the addition in each lifting step.
The block-lifting structure [17–19], which is a special class of
lifting structure, achieves good lossy-to-lossless image coding
because it reduces the rounding error, which adversely affects
coding efficiency, by merging many rounding operations.
Through the restriction Wk = I[rk], the block-lifting-based
building block Ek(z) is expressed as

Ek(z) = L−1
k UkΛk(z)U

−1
k Lk, (6)

where

Lk =

[
I[qk] O

v−⊤
k1 v⊤

k0 I[rk]

]
(7)

Uk =

[
I[qk] uk0v

⊤
k1

O I[rk]

]
. (8)

The inverse building block E−1
k (z) is obtained as follows:

E−1
k (z) = L−1

k UkΛ
−1
k (z)U−1

k Lk. (9)

Note that the initial block X0 is restricted to | det(X0)| = d
(d ∈ N) for the purpose of making a lifting factorization. It can
be factorized into non block-lifting structures, e.g., the single-
row elementary reversible matrices (SERMs) presented in [10].
In addition, lifting-based FBs without the LP property, such
as BLFBs, cannot directly use the conventional smooth non-
expansive convolution [24–27] at the boundaries because of
the rounding error. A periodic extension, which is commonly
used for boundary processing in the M -channel nonlinear-
phase cases except for M = 2, causes annoying boundary
artifacts in low-bit compression because of the discontinuity.

III. REDEFINED BLOCK-LIFTING-BASED FILTER BANKS
WITH REVERSIBLE NONEXPANSIVE CONVOLUTION

A. Redefined Block-Lifting Structure for Filter Banks

Theorem: By not setting the restriction Wk = I[rk] that
is used in [18], we can redefine a building block Ek(z) as a
more generalized block-lifting structure as follows (Fig. 1):

Ek(z) = L−1
k Wk(z)UkΛk(z)U

−1
k Lk, (10)

where

Wk(z) =

[
I[qk] O

O W̃k

] [I[qk] O

O I[rk] + z
(
W̃

−1

k − I[rk]

)]
(11)

W̃k = v−⊤
k1 Wkv

⊤
k1. (12)
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Fig. 1. Building block of ReBLFB (areas enclosed by dashed lines mean the new part, and arrows mean M
2

× M
2

signals, respectively): (left) analysis bank,
(right) synthesis bank.

Wk(z) is the new part of the block-lifting structure. The
W̃k in the first term diag(I[qk],W̃k) in (11) can be easily
factorized into a variety of lifting structures because

det(W̃k) = det(v−⊤
k1 ) · det(Wk) · det(v⊤

k1) = 1, (13)

where

det(Wk) = 1 and det(v−⊤
k1 ) · det(v⊤

k1) = 1, (14)

which is a sufficient condition for the purpose of making
a lifting factorization. The second term diag(I[qk], I[rk] +

z(W̃
−1

k − I[rk])) in (11) can already be considered a lifting

structure with a lifting coefficient z(W̃
−1

k −I[rk]). The inverse
building block E−1

k (z) is obtained as follows:

E−1
k (z) = L−1

k UkΛ
−1
k (z)U−1

k W−1
k (z)Lk, (15)

where

W−1
k (z) =

[
I[qk] O

O I[rk] − z
(
W̃

−1

k − I[rk]

)][I[qk] O

O W̃
−1

k

]
.

(16)

When Wk = I[rk], i.e., Wk(z) = I[M ], (10) and (15)
are completely equivalent to the conventional building block
Ek(z) and the inverse E−1

k (z) in [18].
Proof: In accordance with [18], Ek(z) in (2)-(5) is

rewritten as

Ek(z)

=

[
I[qk] +

(
z−1 − 1

)
uk0v

⊤
k0

(
z−1 − 1

)
uk0v

⊤
k1(

z−1 − 1
)
uk1v

⊤
k0 I[rk] +

(
z−1 − 1

)
uk1v

⊤
k1

]
.

(17)

The lower block-lifting matrix Lk expressed as (7) and its
inverse L−1

k are respectively multiplied from the left and right
sides of Ek(z) as follows:

LkEk(z)L
−1
k =

[
I[qk]

(
z−1 − 1

)
uk0v

⊤
k1

O I[rk] +
(
z−1 − 1

)
W̃k

]
. (18)

By using the upper block-lifting matrix Uk expressed as (8),
its inverse U−1

k , and Λk(z), (18) can be further factorized as

LkEk(z)L
−1
k = WkUkΛk(z)U

−1
k ≜ Ẽk(z). (19)

Consequently, Ek(z) can be factorized into the lifting matrices
as in (10) because

Ek(z) = L−1
k Ẽk(z)Lk = L−1

k Wk(z)UkΛk(z)U
−1
k Lk.

(20)

B. Reversible Nonexpansive Convolution for Lifting-based Fil-
ter Banks

This subsection uses the following FB:

E(z) = XK−1ΛK−1(z) · · ·X1Λ1(z)X0, (21)

where Xk is a nonsingular matrix, M is even, and rk = M
2 for

simplicity. The top images of Figs. 2 and 3 show the upper
boundary processing of the FBs when K = 2 and 3. They
mean that L = (K−1)M

2 extra signals have to be extended at
each boundary. To obtain smooth signals, the extra signals are
commonly extended by using an L× L extension matrix:

E [L] = J[L]; (22)

i.e., it is a symmetric extension [25]. We derive an efficient re-
versible nonexpansive convolution for lifting-based FBs from
a nonexpansive convolution for PUFBs [26] as follows:
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Fig. 2. Upper boundary processing of M × 2M FBs (dashed lines and arrows indicate the upper boundary and M
2

× M
2

signals, respectively): (top) simple
signal extension; (right) nonexpansive convolution.

Fig. 3. Upper boundary processing of M × 3M FBs (dashed lines and arrows indicate the upper boundary and M
2

× M
2

signals, respectively): (top) simple
signal extension; (right) nonexpansive convolution.

1) Remove the paraunitariness restriction.
2) Use an arbitrary extension matrix E [L], not a symmetric

extension matrix J[L].
3) Restrict the determinant of the resulting boundary matrix

Fk to | det(Fk)| = d (d ∈ N) for the purpose of making
a lifting factorization [10].

Here, we have a nonexpansive problem because the signals
transmitted to the synthesis bank should only be the output
yn (n ∈ N). This subsection presents a reconstruction method
at the synthesis bank without any extra signal; i.e., the input
signal xn is reconstructed from only the output signal yn. To
facilitate the discussion, let an M ×M matrix M be

M =

[
[M]α [M]β
[M]γ [M]δ

]
, (23)

where each submatrix is M
2 ×M

2 in size. Hereafter, we consider
only the upper boundary processing. The signals at the lower
boundary processing can be reconstructed in the same way as
in the upper boundary processing.

1) Case of K = 2: From the top of Fig. 2, the middle
signal a0 is expressed as

a0 =
[
[X0]α [X0]β

] [E [M2 ] O

O I[M2 ]

][
x0

x0

]
= F0x0, (24)

where

F0 = [X0]α E [M2 ] + [X0]β s.t. | det(F0)| = d. (25)

The problem in the synthesis banks is to reconstruct the input
signal x0 from the middle signal a0, which is transmitted to
the synthesis bank. The input signal x0 is represented as

x0 = F−1
0 a0. (26)

The nonexpansive convolution of the FBs in case of K = 2
is shown at the bottom of Fig. 2.

2) Case of K = 3: From the top of Fig. 3, the middle
signals b−1, b0, and b1 are expressed as

b−1 =
[
[X0]α [X0]β

]
E [M ]

[
x0

x1

]
(27)[

b1

b0

]
= X0

[
x0

x1

]
. (28)



5

By substituting [
x0

x1

]
= X−1

0

[
b1

b0

]
, (29)

which is obtained from (28), into (27), the middle signal b−1

is represented as

b−1 =
[
[X0]α [X0]β

]
E [M ]X

−1
0

[
b1

b0

]
= Fb0 + Gb1,

(30)

where

F =
(
[X0]α

[
E [M ]

]
α
+ [X0]β

[
E [M ]

]
γ

) [
X−1

0

]
β

+
(
[X0]α

[
E [M ]

]
β
+ [X0]β

[
E [M ]

]
δ

) [
X−1

0

]
δ

(31)

G =
(
[X0]α

[
E [M ]

]
α
+ [X0]β

[
E [M ]

]
γ

) [
X−1

0

]
α

+
(
[X0]α

[
E [M ]

]
β
+ [X0]β

[
E [M ]

]
δ

) [
X−1

0

]
γ
. (32)

Also, the middle signal a0 is expressed as

a0 =
[
[X1]α [X1]β

] [b−1

b0

]
= [X1]α b−1 + [X1]β b0.

(33)

Substituting (30) into (33) yields

a0 = F1b0 +G1b1, (34)

where

F1 = [X1]α F + [X1]β s.t. | det(F1)| = d (35)

G1 = [X1]α G. (36)

Unlike the determinant of F1, that of G1 is not restricted to
a natural number because the processing including G1 can
already be considered a lifting structure. The problem in the
synthesis banks is to reconstruct the middle signal b0 from the
middle signals a0 and b1, which is transmitted to the synthesis
bank. The middle signal b0 is represented as

b0 = F−1
1 (a0 −G1b1) . (37)

The nonexpansive convolution in the case of K = 3 is shown
at the bottom of Fig. 3. For any K, the signals can be
reconstructed as the solution of a simultaneous matrix equation
with (K − 1) unknowns.

The new nonexpansive convolution can be used by all
lifting-based FBs (not only ReBLFBs) having a lattice struc-
ture. In addition, the new part Wk(z) of the ReBLFBs with
longer synthesis filters than the analysis ones is skipped at the
boundaries for simplicity.

C. Regularity for Redefined Block-Lifting-based Filter Banks

FB theory indicates that regularity, especially one degree of
regularity (one-regularity), is an important property to prevent
the DC leakage for image compression [29]. One-regularity in

the ReBLFBs can be structurally imposed in the same way as
in [27], because [29]E(z)


1

z−1

...
z−M



∣∣∣∣∣∣∣∣∣
z=1

= E0


1
1
...
1

 =


c
0
...
0

 , (38)

where [1, 1, · · · , 1]⊤ are DC components, c is a nonzero
constant, and any building block Ek(z) in the ReBLFB E(z)
is skipped as follows:

Ek(z)|z=1 =
(
L−1

k Wk(z)UkΛk(z)U
−1
k Lk

)∣∣
z=1

= L−1
k I[M ]UkI[M ]U

−1
k Lk = I[M ]. (39)

Moreover, we must consider regularity in the proposed
boundary processing. If the resulting ReBLFBs achieve struc-
tural one-regularity, we can also achieve it at the boundaries
by preserving the DC components in the input signals; i.e.,
the extension matrix E [L] should be structurally restricted to

E [L]


1
1
...
1

 =


1
1
...
1

 . (40)

E.g., the extension matrix E [L] can be set as

E [L] =


e0,0 · · · e0,L−2 1−

∑L−2
j=0 e0,j

...
. . .

...
...

eL−2,0 · · · eL−2,L−2 1−
∑L−2

j=0 eL−2,j

eL−1,0 · · · eL−1,L−2 1−
∑L−2

j=0 eL−1,j

 ,

(41)

where ei,j (i = 0, 1, · · · , L − 1, j = 0, 1, · · · , L − 2) is an
arbitrary parameter.

D. Specific Filter Design

We specifically designed 4 × 8, 4 × 8/4 × 12, and 4 × 12
ReBLFBs, which had rk = 2 and structural one-regularity. The
structures of 4× 8 and 4× 12 ReBLFBs are completely same
as the conventional structures in [18]. We used the following
cost function ϕ, which is a weighted linear combination of the
coding gain [32], the determinant control of matrices, and the
smoothness of the extension matrix E [L]:

ϕ = −w0Ccg + w1Cdet + w2Csmooth, (42)

where

Ccg = 10 log10

1
M

∑M−1
i=0 σ2

i(∏M−1
i=0 σ2

i f
2
i

) 1
N

(43)

Cdet =
(∣∣∣det(F↑

k

)∣∣∣− d
)2

+
(∣∣∣det(F↓

k

)∣∣∣− d
)2

(44)

Csmooth =
L−1∑
i=0

L−1∑
j=0

{([
E↑
[L]

]
ij
−
[
S [L]

]
ij

)2

+

([
E↓
[L]

]
ij
−
[
S [L]

]
ij

)2
}
, (45)
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TABLE I
CODING GAINS [DB].

HLT ReBLFBs
4× 8 4× 8 4× 8/4× 12 4× 12
[14] same as [18] new same as [18]

Ccg[dB] 8.45 8.64 8.66 8.79

and fminunc.m in the Optimization ToolBox of
MATLAB. σ2

i is the variance of the ith subband, and f2
i is

the L2 norm of the ith synthesis filter. When the transform
has paraunitariness, the synthesis scaling f2

i drops out of the
coding gain equation. The input signal is assumed to be an
AR(1) model with autocorrelation coefficient ρ = 0.95 in
common use. The super scripts ↑ and ↓ respectively mean
the matrices at the upper and lower boundary processings of
the FBs. [·]ij means the (i, j)th element of a matrix. Since it is
difficult to make | det(Fk)| = d exactly by using only the cost
function Cdet, which brings | det(Fk)| as close as possible to
d, we used Fdet

k , which is forcibly controlled,

Fdet
k =

(
d

|det (Fk)|

) 2
M

Fk (46)

instead of Fk, where we set d = 1 for simplicity. The
cost function Cdet should be imposed because the boundary
processing cannot be implemented smoothly when |det(Fk)|
is substantially different from d, i.e., Fdet

k is substantially
different from Fk. For example, | det(F↑

k)| in the resulting
4× 8/4× 12 ReBLFB was 0.92 ≈ 1. In addition, we set the
smoothness condition as a symmetric extension S [L] = J[L].
The weights wk (k = 0, 1, 2) are heuristically determined
because the resulting filter coefficients may lead to a local
minimum, and this is due to depense of the solution on the
initial values and the weights.

IV. EXPERIMENTAL RESULTS

A. Coding Gain and Frequency/Impulse Responses

Table I shows the coding gains Ccg of the HLT [14] in JPEG
XR and the resulting ReBLFBs. We can see that the ReBLFBs
have higher coding gains than that of the HLT restricted by
the LP property and the ReBLFBs with longer filter lengths
have higher coding gains than those with shorter filter lengths.

Fig. 4 shows frequency and impulse responses of the
resulting ReBLFBs. Those of 4×8/4×12 ReBLFB resembles
those of 4×8 ReBLFB in appearance because the difference in
structure is trivial; i.e., W1 = I[M2 ] or W1 ̸= I[M2 ]. However,
it is clear that unlike the others, the 4×8/4×12 ReBLFB has
longer synthesis filter lengths than the analysis filter lengths.

B. Lossy-to-Lossless Image Coding

The resulting ReBLFBs were implemented with a rounding
operation at each lifting step and compared in terms of the
lossless bitrate (LBR) [bpp]:

LBR [bpp] =
Total number of bits [bit]

Total number of pixels [pixel]

TABLE II
LOSSLESS IMAGE CODING RESULTS (LBR [BPP]; () IS IN A PERIODIC

EXTENSION).

Test HLT ReBLFBs
Images 4× 8 4× 8 4× 8/4× 12 4× 12

[14] same as [18] new same as [18]
Bike 5.26 5.18 (5.19) 5.16 (5.17) 5.16 (5.17)

Building 4.17 4.17 (4.18) 4.12 (4.13) 4.14 (4.15)
Cafe 6.09 6.04 (6.05) 6.03 (6.04) 6.02 (6.03)
Car 4.10 4.10 (4.11) 4.07 (4.08) 4.11 (4.13)
Falls 4.18 4.17 (4.19) 4.12 (4.14) 4.14 (4.15)

Flower 4.44 4.40 (4.41) 4.39 (4.40) 4.42 (4.42)
Girl 4.37 4.39 (4.40) 4.34 (4.35) 4.36 (4.37)

House 4.94 4.93 (4.94) 4.87 (4.88) 4.88 (4.90)
Sakura 4.48 4.41 (4.42) 4.39 (4.40) 4.42 (4.43)
Woman 4.86 4.83 (4.85) 4.81 (4.83) 4.83 (4.84)

r0ebb0bb4t 4.64 4.58 (4.58) 4.55 (4.56) 4.56 (4.56)
r0ed019a4t 3.27 3.33 (3.34) 3.24 (3.24) 3.27 (3.28)
r0f24ca4dt 4.65 4.58 (4.59) 4.53 (4.53) 4.52 (4.53)
r0fb0a690t 4.35 4.30 (4.30) 4.26 (4.27) 4.28 (4.28)
r02d732f8t 3.83 3.85 (3.85) 3.78 (3.79) 3.80 (3.80)
r03b0c944t 4.70 4.61 (4.61) 4.58 (4.58) 4.59 (4.59)
r08f2d4c6t 3.92 3.94 (3.95) 3.90 (3.91) 3.92 (3.92)
r069e346et 3.70 3.73 (3.73) 3.68 (3.69) 3.71 (3.72)
r0773471dt 5.11 5.02 (5.02) 5.00 (5.00) 4.99 (4.99)
r01170470t 3.96 3.96 (3.97) 3.86 (3.87) 3.87 (3.88)

mLBR 4.06 4.01 (4.02) 3.96 (3.97) 3.99 (3.99)
SD 0.71 0.70 (0.70) 0.71 (0.71) 0.70 (0.70)

in lossless image coding and in terms of the peak signal-to-
noise ratio (PSNR) [dB]:

PSNR [dB] = 10 log10

((
2BIT − 1

)2
MSE

)
,

where BIT and MSE are the number of bits of the image and
the mean squared error, and multi-scale structural similarity
(MS-SSIM) [35], which is an image quality assessment based
on human visual characteristics unlike PSNR, in lossy image
coding. To evaluate the transform performance fairly, we em-
ployed three-level decompositions on all filters. The image set
included 1024× 1024 and 2048× 2048 clipped 8-bit standard
grayscale images in [33], [34] (see Fig. 5). Also, in addition to
the results of images in Fig. 5, the mean LBR (mLBR), mean
PSNR (mPSNR), mean MS-SSIM (mMS-SSIM), and standard
deviation (SD) of the other 100 images in [34] are shown. A
quadtree-based embedded image coder [36], which is more
suited to block transforms than are the popular zerotree-based
coders [37], [38], was used to encode the transformed images.

Tables II-IV and Fig. 6 show the results of lossless and
lossy image coding. Although the HLT, 4 × 8 ReBLFB, and
4× 12 ReBLFB sometimes performed the best, the 4× 8/4×
12 ReBLFB basically outperformed the others. In addition,
the 4 × 8/4 × 12 ReBLFB avoided ringing artifacts around
regions with high-frequency components as well as blocking
artifacts around regions with low-frequency components and
the proposed nonexpansive convolution helped to inhibit the
boundary artifacts.

V. CONCLUSION

This study redefined a block-lifting structure of M -channel
FBs and proposed an efficient reversible nonexpansive con-
volution for lossy-to-lossless image coding. We solved two
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Fig. 4. Frequency and impulse responses of the ReBLFBs: (top) analysis bank, (bottom) synthesis bank, (left) 4 × 8, (middle) 4 × 8/4 × 12, and (right)
4× 12.

problems, i.e., the restriction of equal analysis/synthesis fil-
ter lengths and lack of an efficient reversible nonexpansive
convolution, left by our previous work. We showed that the
ReBLFBs with the nonexpansive convolution performed well
at lossy-to-lossless image coding.
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[22] S. Álvarez-Cortès, N. Amrani, M. Hernández-Cabronero, and J. Serra-
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Poznań, Poland, Sep. 2007, pp. 55–59.

[24] T. Suzuki and M. Ikehara, “Reversible symmetric non-expansive convo-
lution: An effective image boundary processing for M -channel lifting-
based linear-phase filter banks,” IEEE Trans. Image Process., vol. 23,
no. 6, pp. 2744–2749, June 2014.

[25] M. J. T. Smith and S. L. Eddins, “Analysis/synthesis techniques for
subband image coding,” IEEE Trans. Signal Process., vol. 38, no. 8, pp.

1446–1456, Aug. 1990.
[26] Y. Tanaka, A. Ochi, and M. Ikehara, “A non-expansive convolution for

nonlinear-phase paraunitary filter banks and its application to image
coding,” in Proc. of ACSSC’05, Pacific Grove, CA, Oct. 2005, pp. 54–58.

[27] T. Uto, T. Oka, and M. Ikehara, “M -channel nonlinear phase filter banks
in image compression: Structure, design, and signal extension,” IEEE
Trans. Signal Process., vol. 55, no. 4, pp. 1339–1351, Apr. 2007.

[28] T. Suzuki, N. Tanaka, and H. Kudo, “Pseudo reversible symmetric
extension for lifting-based nonlinear-phase paraunitary filter banks,” in
Proc. of ICIP’17, Beijing, China, Sep. 2017, pp. 3265–3269.

[29] Y. J. Chen, S. Oraintara, and K. S. Amaratunga, “Theory and factoriza-
tion for a class of structurally regular biorthogonal filter banks,” IEEE
Trans. Signal Process., vol. 54, no. 2, pp. 691–700, Feb. 2006.

[30] P. P. Vaidyanathan and T. Chen, “Role of anticausal inverses in multirate
filter-banks–part II: The FIR case, factorizations, and biorthogonal
lapped transforms,” IEEE Trans. Signal Process., vol. 43, no. 5, pp.
1103–1115, May 1995.

[31] Y. Tanaka, M. Ikehara, and T. Q. Nguyen, “A lattice structure of
biorthogonal linear-phase filter banks with higher order feasible building
blocks,” IEEE Trans. Circuits Syst. I, vol. 55, no. 8, pp. 2322–2331, Sep.



9

TABLE III
LOSSY IMAGE CODING RESULTS (PSNR [DB]; () IS IN A PERIODIC

EXTENSION).

Bitrate HLT ReBLFBs
[bpp] 4× 8 4× 8 4× 8/4× 12 4× 12

[14] same as [18] new same as [18]
Bike

0.25 24.52 24.26 (24.19) 24.48 (24.44) 24.35 (24.37)
0.50 28.16 28.16 (28.10) 28.35 (28.28) 28.20 (28.21)
1.00 33.22 33.50 (33.49) 33.73 (33.72) 33.57 (33.56)

Cafe
0.25 20.16 20.32 (20.31) 20.45 (20.45) 20.16 (20.19)
0.50 23.02 23.20 (23.18) 23.39 (23.39) 22.93 (22.94)
1.00 26.97 27.19 (27.15) 27.41 (27.38) 27.09 (27.07)

Falls
0.25 31.30 31.34 (30.91) 31.39 (30.98) 31.03 (30.79)
0.50 34.66 34.93 (34.56) 35.12 (34.70) 34.42 (34.26)
1.00 38.85 39.03 (38.97) 39.42 (39.35) 39.29 (39.22)

Girl
0.25 33.75 34.11 (33.94) 34.27 (34.12) 34.17 (33.97)
0.50 36.30 36.51 (36.41) 36.74 (36.63) 36.59 (36.48)
1.00 39.23 39.07 (39.02) 39.46 (39.40) 39.23 (39.17)

Sakura
0.25 28.05 28.84 (28.79) 29.03 (28.98) 29.12 (29.12)
0.50 31.75 32.64 (32.62) 32.89 (32.85) 32.89 (32.90)
1.00 37.00 37.25 (37.12) 37.55 (37.43) 37.22 (37.18)

r0ebb0bb4t
0.25 28.54 28.77 (28.72) 28.88 (28.82) 28.91 (28.86)
0.50 31.63 32.05 (32.04) 32.25 (32.24) 32.33 (32.29)
1.00 35.38 35.92 (35.92) 36.23 (36.23) 36.28 (36.26)

r0f24ca4dt
0.25 27.36 27.47 (27.42) 27.65 (27.60) 27.63 (27.57)
0.50 30.63 30.95 (30.93) 31.22 (31.18) 31.14 (31.11)
1.00 34.71 35.29 (35.25) 35.60 (35.59) 35.52 (35.49)

r02d732f8t
0.25 33.05 33.33 (33.32) 33.58 (33.53) 33.51 (33.43)
0.50 37.07 37.50 (37.53) 37.83 (37.85) 37.72 (37.67)
1.00 41.22 41.13 (41.14) 41.55 (41.56) 41.49 (41.48)

r08f2d4c6t
0.25 34.07 34.40 (34.33) 34.60 (34.53) 34.49 (34.45)
0.50 37.40 37.72 (37.71) 37.96 (37.94) 37.90 (37.87)
1.00 40.95 40.85 (40.84) 41.29 (41.29) 41.26 (41.24)

r0773471dt
0.25 27.24 27.17 (27.15) 27.27 (27.25) 27.27 (27.25)
0.50 30.10 29.99 (29.97) 30.12 (30.11) 30.17 (30.16)
1.00 33.46 33.53 (33.53) 33.85 (33.84) 33.82 (33.83)

mPSNR
0.25 32.95 32.92 (32.87) 33.10 (33.04) 33.02 (32.95)
0.50 35.93 35.89 (35.85) 36.16 (36.12) 36.05 (36.00)
1.00 39.24 39.09 (39.07) 39.62 (39.60) 39.44 (39.41)

SD
0.25 5.69 5.59 (5.60) 5.62 (5.63) 5.66 (5.65)
0.50 5.16 4.91 (4.93) 5.03 (5.05) 5.08 (5.08)
1.00 4.42 3.85 (3.86) 4.09 (4.10) 4.14 (4.14)

2008.
[32] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood

Cliffs, NJ: Prentice Hall, 1992.
[33] “JPEG core experiment for the evaluation of JPEG XR image cod-

ing,” EPFL, Multimedia Signal Processing Group [Online], Available:
http://mmspg.epfl.ch/iqa.

[34] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato, “RAISE -
a raw images dataset for digital image forensics,” in Proc. of MMSys’15,
Portland, OR, Mar. 2015, pp. 219–224.

[35] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale structural
similarity for image quality assessment,” in Proc. of ACSSC’03, Pacific
Grove, CA, Nov. 2003, pp. 1–5.

[36] Z. Liu and L. J. Karam, “An efficient embedded zerotree wavelet image
codec based on intraband partitioning,” in Proc. of ICIP’00, Vancouver,
British Columbia, Canada, Sep. 2000, pp. 162–165.

[37] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3445–

TABLE IV
LOSSY IMAGE CODING RESULTS (MS-SSIM; () IS IN A PERIODIC

EXTENSION).

Bitrate HLT ReBLFBs
[bpp] 4× 8 4× 8 4× 8/4× 12 4× 12

[14] same as [18] new same as [18]
Bike

0.25 0.892 0.910 (0.910) 0.914 (0.913) 0.901 (0.901)
0.50 0.944 0.953 (0.953) 0.955 (0.955) 0.951 (0.951)
1.00 0.977 0.981 (0.981) 0.982 (0.982) 0.980 (0.980)

Cafe
0.25 0.869 0.880 (0.879) 0.884 (0.884) 0.862 (0.861)
0.50 0.923 0.934 (0.934) 0.937 (0.936) 0.924 (0.922)
1.00 0.962 0.969 (0.969) 0.970 (0.970) 0.966 (0.965)

Falls
0.25 0.945 0.951 (0.945) 0.951 (0.947) 0.944 (0.942)
0.50 0.977 0.980 (0.978) 0.981 (0.978) 0.975 (0.974)
1.00 0.991 0.992 (0.992) 0.993 (0.993) 0.992 (0.992)

Girl
0.25 0.961 0.966 (0.965) 0.968 (0.966) 0.963 (0.962)
0.50 0.979 0.982 (0.981) 0.983 (0.982) 0.980 (0.979)
1.00 0.990 0.990 (0.990) 0.991 (0.991) 0.990 (0.990)

Sakura
0.25 0.954 0.965 (0.964) 0.966 (0.966) 0.964 (0.964)
0.50 0.980 0.985 (0.985) 0.986 (0.986) 0.985 (0.985)
1.00 0.994 0.994 (0.994) 0.995 (0.995) 0.994 (0.994)

r0ebb0bb4t
0.25 0.937 0.947 (0.946) 0.948 (0.947) 0.938 (0.938)
0.50 0.969 0.975 (0.975) 0.977 (0.976) 0.974 (0.973)
1.00 0.987 0.989 (0.989) 0.990 (0.990) 0.989 (0.989)

r0f24ca4dt
0.25 0.932 0.939 (0.938) 0.940 (0.939) 0.930 (0.930)
0.50 0.969 0.973 (0.973) 0.974 (0.974) 0.969 (0.969)
1.00 0.987 0.990 (0.990) 0.991 (0.991) 0.990 (0.989)

r02d732f8t
0.25 0.981 0.982 (0.982) 0.983 (0.982) 0.981 (0.980)
0.50 0.990 0.991 (0.991) 0.991 (0.991) 0.991 (0.991)
1.00 0.994 0.994 (0.994) 0.995 (0.995) 0.995 (0.995)

r08f2d4c6t
0.25 0.968 0.972 (0.972) 0.973 (0.973) 0.969 (0.968)
0.50 0.985 0.987 (0.987) 0.988 (0.988) 0.986 (0.986)
1.00 0.993 0.993 (0.993) 0.994 (0.994) 0.994 (0.994)

r0773471dt
0.25 0.890 0.899 (0.899) 0.902 (0.902) 0.884 (0.884)
0.50 0.953 0.953 (0.953) 0.955 (0.954) 0.945 (0.945)
1.00 0.981 0.983 (0.983) 0.984 (0.984) 0.981 (0.980)

mMS-SSIM
0.25 0.958 0.961 (0.960) 0.962 (0.962) 0.956 (0.956)
0.50 0.980 0.981 (0.981) 0.982 (0.982) 0.979 (0.979)
1.00 0.991 0.991 (0.991) 0.993 (0.992) 0.991 (0.991)

SD
0.25 0.028 0.026 (0.026) 0.025 (0.025) 0.030 (0.030)
0.50 0.014 0.013 (0.013) 0.012 (0.012) 0.015 (0.015)
1.00 0.006 0.005 (0.005) 0.005 (0.005) 0.006 (0.006)

3462, Dec. 1993.
[38] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec

based on set partitioning in hierarchical trees,” IEEE Trans. Circuits
Syst. Video Technol., vol. 6, no. 3, pp. 243–250, June 1996.



10

Taizo Suzuki (S’08-M’11-SM’17) received the
B.E., M.E., and Ph.D. degrees in electrical engi-
neering from Keio University, Japan, in 2004, 2006
and 2010, respectively. From 2006 to 2008, he was
with Toppan Printing Co., Ltd., Japan. From 2008
to 2011, he was a Research Associate of the Global
Center of Excellence (G-COE) at Keio University,
Japan. From 2010 to 2011, he was a Research
Fellow of the Japan Society for the Promotion of
Science (JSPS) and a Visiting Scholar at the Video
Processing Group, the University of California, San

Diego, CA. From 2011 to 2012, he was an Assistant Professor in the
Department of Electrical and Electronic Engineering, College of Engineering,
Nihon University, Japan. Since 2012, he has been an Assistant Professor
in the Faculty of Engineering, Information and Systems, University of
Tsukuba, Japan. His current research interests are image and video processing,
source coding, and multidimensional transforms. Since 2017, he has been an
Associate Editor of IEICE Trans. Fundamentals.

Naoki Tanaka received the B.E. and M.E. degrees
from the University of Tsukuba, Japan, in 2015 and
2017, respectively. In 2017, he joined Sony LSI
Design Inc., Japan. His research interests are sig-
nal/image processing and integrated circuit design.

Hiroyuki Kudo (M’88) received the B.Sc. degree
from the Department of Electrical Communications,
Tohoku University, Japan, in 1985, and the Ph.D.
degree from the Graduate School of Engineering,
Tohoku University, in 1990. In 1992, he joined the
University of Tsukuba, Japan, as an Assistant Pro-
fessor. He is currently a Professor with the Division
of Information Engineering, Faculty of Engineering,
Information and Systems, University of Tsukuba,
Japan. He is involved in tomographic image recon-
struction for X-ray CT, PET, SPECT, and electron

tomography. His research areas include medical imaging, image processing,
and inverse problems. He is a member of the Japanese Society of Medical
Imaging Technology and IEICE, Japan. He received the best paper award
several times from various domestic and international academic societies. In
particular, his papers on interior tomography published in 2008 were selected
as High Lights of the two journals, Physics in Medicine and Biology and
Inverse Problems. Since 2011, he has been an Editor-in-Chief of the Journal
of Medical Imaging Technology at MIT.


