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Image Boundary Extension with Mean Value for
Cosine-Sine Modulated Lapped/Block Transforms
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Abstract—We present a novel image boundary extension,
mean value extension (MVE), for directional lapped transforms,
particularly cosine-sine modulated lapped transforms (CSMLTs).
Lapped transforms are usually used with an extension technique,
such as periodic extension (PE) or symmetric extension (SE), for
nonexpansive convolution at signal boundaries. When directional
textures (oblique lines and curves) appear at the 2D signal (image)
boundaries, both PE and SE produce directional discontinuities,
which degrade the sparsity of the transformed coefficients, espe-
cially in the case of directional lapped transforms. MVE reduces
the discontinuities for directional textures better than PE or SE
do; it thus improves the efficiency of the sparse representation
based on directional lapped transforms. Moreover, to reduce
computational costs compared with those of directional lapped
transforms, we introduce new directional block transforms, called
cosine-sine modulated block transforms (CSMBTs). These new
transforms are derived from a minimum tile processing (tiling)
of M -band CSMLTs with 2M filter lengths and nonexpansive
convolutions. The resulting directional block transforms, partic-
ularly in the case of the MVE, have richer directional selectivity
and have higher performance compared with a discrete Fourier
transform (DFT) as shown in experiments.

Index Terms—Cosine-sine modulation, directional block trans-
forms, directional lapped transform, mean value extension, non-
expansive convolution.

I. INTRODUCTION

D ISCRETE cosine transforms (DCTs) [1] and discrete
wavelet transforms (DWTs) [2] are widely used for

various types of image processing, e.g., image restoration
(denoising, deblurring, and so on) and in the image/video
coding standard JPEG [3], the H.26x series [4], [5], and
JPEG 2000 [6]). However, since atoms (i.e., elements of
basis/frames) of DWTs are lying only horizontal and vertical
directions (and components mixing ±45 degree directions);
they cannot directly express directional features such as
oblique lines and curves. Thus, they are often referred to as
having poor directional selectivity [7]; i.e., they cannot provide
efficient sparse representations for directional textures.

Directional transforms, which can express rich directional
textures sparsely, have been extensively studied. They are
classified into two classes. The first class, so-called “adap-
tive directional transforms” [8]–[12], typically does not have
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directional atoms except for vertical and horizontal directions
(as in DCT and DWT), but they are applied to images along
predetermined oblique directions (the direction can be changed
at every pixel). However, the applications of adaptive direc-
tional transforms are relatively limited because, for example in
image recovery, it is difficult to determine suitable directions
from a degraded input image contaminated by noise, blur,
pixel missing, and so on. Another one is a class of transforms
of which atoms are lying along various directions. Since
the applications of the directional transforms with directional
atoms cover general applications including signal recovery, we
focus on them and will call them “directional transforms.”
They are further classified into directional lapped transforms
(such as curvelet [13], ridgelet [14], and contourlet [15], and
the multidimensional nonseparable lapped transforms [16]–
[18]) and directional block transforms (such as discrete Fourier
transform (DFT) [19]). Directional lapped transforms are
directional transforms with the atoms of which supports are
lapped each other, while directional block transforms are
directional transforms with the atoms of which supports are
not lapped.

Among them, dual-tree complex wavelet transforms
(DTCWTs) [7] have been paid much attention to because of
their low computational complexity and rich directional selec-
tivity. Their directional functions in the frame are generated
by using two parallel maximally decimated filter banks (FBs)
satisfying the half-sample delay condition [20]. One problem
with DTCWTs is that, since the half-sample delay condition
is difficult to approximate with finite impulse response (FIR)
filtering, the resulting filter performance characteristics, such
as stopband attenuation and coding gain, are often degraded,
especially with short filter lengths. To solve this problem,
cosine-sine modulated lapped transforms (CSMLTs)1 have
been widely studied [21]–[24] as an alternative class of
DTCWTs.2 CSMLTs can be easily designed by modulating
a prototype lowpass filter instead of approximating the half-
sample delay condition, and they work better than DTCWTs
do in image processing, e.g., image denoising [23], [24].

The CSMLTs are lapped transforms which have longer

1Although they are often called cosine-sine modulated FBs (CSMFBs), we
will call them CSMLTs to clearly distinguish them from block transforms.

2Modulated complex lapped transform (MCLT) in [25] is essentially the
same transform as the CSMLTs because they are also designed by the mod-
ulation of a prototype filter (the definition in the cosine and sine modulation
terms is slightly different). However, the MCLT has been introduced as a 1D
complex-valued transform for effective audio processing in [25]. On the other
hand, the CSMLTs has been firstly introduced as a directional selective 2D
real-valued transform for effective image processing in [21].
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filter lengths L than the number of bands (or band count)
M (M,L ∈ N, L > M ) and require extra signals for
perfect reconstruction (PR) at boundaries. Nonexpansive con-
volution, e.g., periodic extension (PE) and symmetric exten-
sion (SE) [26], is one of the simplest approaches to solv-
ing the boundary problem. PE often causes discontinuities
at boundaries, whereas SE typically extends the boundaries
more smoothly. There are also other smooth nonexpansive
convolutions for various FBs [27]–[29]. However, when the
conventional nonexpansive convolution methods are applied
to images involving directional textures at boundaries, “di-
rectional” lapped transforms such as CSMLTs cannot provide
efficient sparse representations at image boundaries. Thus, in
image restoration for example, this often results in annoying
artifacts near the boundaries.

Here, we present a nonexpansive convolution, called mean
value extension (MVE), that can simply reduce discontinuities
at boundaries by extending with the mean value of the pixels
located near the boundaries. Unlike PE and SE, this extension
requires a lattice structure implementation of FBs for its exe-
cution. Since, as will be illustrated in this paper, the CSMLTs
can be designed with a lattice structure implementation [30],
MVE can be incorporated with them.

We further introduce new directional block transforms,
called cosine-sine modulated block transforms (CSMBTs),
derived from a minimum tile processing (tiling) of CSMLTs
with 2M filter lengths and nonexpansive convolutions. Block
transforms with a filter length L equal to the number of
bands M (L = M ) generally have lower computational
costs than lapped transforms do, and their computations for
every block in an input image can be fully parallelized. The
DCT and discrete sine transform (DST) [1] are efficient block
transforms, and they are used in many applications, such as
JPEG and the H.26x series. However, they cannot analyze
various directions because, like DWTs, their basis suffers from
poor directional selectivity. On the other hand, the DFT is
the most-used “directional” block transform. One problem
with the DFT is that some atoms in its basis have the same
directions. Thus, the number of directions is limited. Since
the new CSMBTs, especially in the case of MVE, have richer
directional selectivity, they are expected to work better than
the DFT in various image processing applications.

A preliminary version of this paper was presented in [31],
where we discussed only the MVE for M -band CSMLTs with
a filter length of 2M . This paper describes the general case of a
filter length L longer than the number of bands M . Moreover,
it discusses how the MVE is used in the design of CSMBTs.

The remainder of the paper is organized as follows. Sec-
tion II reviews the traditional directional block transforms
and CSMLTs. Section III presents MVE and derives the
CSMBTs. Section IV compares the resulting transforms with
the conventional methods. Section V concludes this paper.

Notation: Boldface lower- and upper-case letters represent
vectors and matrices, respectively. The number of bands M is
technically constrained to an even number. The set of M ×N
real-valued matrices is denoted as RM×N . For A ∈ RM×M ,

[A]× ∈ RM
2 ×M

2 (× = α, β, γ, orδ) is the submatrix,

A =

[
[A]α [A]β
[A]γ [A]δ

]
. (1)

A⊤ is the transpose of the matrix A. diag(a0, · · · , aM−1)
and diag(A0, · · · ,AM−1) are M × M diagonal and block
diagonal matrices whose diagonal elements are a0, · · · , aM−1

and A0, · · · ,AM−1, respectively. I, J, and O indicate the
identity matrix, the reversal identity matrix, and the zero
matrix, respectively. A diagonal matrix D is defined as D =
diag(1,−1, · · · , 1,−1). j is the unit complex number

√
−1.

c is the conjugate of c ∈ C. H(z) and H̃(z) are defined as
H(z) =

∑
n h(n)z

−n and H̃(z) =
∑

n h(n)z
n, respectively.

H(ω) = H(ejω). An M × L transform is a transform with
number of bands M and filter length L.

II. REVIEW AND DEFINITIONS

A. Directional Block Transforms

The DFT [19] is expressed for an M -sample finite discrete
signal x(n) as

X(m) =
1√
M

M−1∑
n=0

x(n)e−j 2πmn
M for 0 ≤ m ≤M − 1.

(2)

This transform can be equivalently expressed as x̂ = Fx,
where x and x̂ are M×1 input and output signals, respectively,
and the (m,n)th-element of the M -band DFT matrix F is
defined as

[F ]m,n =
1√
M
e−j 2πmn

M . (3)

The DCT and DST [1] come in various types. The (m,n)th-
elements of the M -band type-II DCT (DCT-II) matrix CII ,
which is used in JPEG and the H.26x series, type-II DST
(DST-II) matrix SII , type-IV DCT (DCT-IV) matrix CIV , and
type-IV DST (DST-IV) matrix SIV are respectively defined as

[CII ]m,n =

√
2

M
sm cos

πm(n+ 1/2)

M
(4)

[SII ]m,n =

√
2

M
s′m sin

π(m+ 1)(n+ 1/2)

M
(5)

[CIV ]m,n =

√
2

M
cos

π(m+ 1/2)(n+ 1/2)

M
(6)

[SIV ]m,n =

√
2

M
sin

π(m+ 1/2)(n+ 1/2)

M
, (7)

where

sm =

{
1√
2

(m = 0)

1 (m ̸= 0)

s′m =

{
1√
2

(m =M − 1)

1 (m ̸=M − 1)
.

The separable 2D DCT and DST do not exhibit directional
orientation. For example, each 2D DCT-II atom C

(m1,m2)
n1,n2

forms

C(m1,m2)
n1,n2

= sm1sm2

2

M
cosϑm1,n1 cosϑm2,n2 , (8)
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(a) (b)

Fig. 1: Atoms in basis (M = 4): (a) DCT-II, (b) DFT (real
part).

Fig. 2: M -band CSMLTs.

where m1 and n1 denote vertical subband/spatial indices, m2

and n2 denote horizontal ones (m1,m2, n1, n2 ∈ {0, · · · ,M−
1}), and

ϑm,n =
πm(n+ 1/2)

M
.

Fig. 1(a) shows examples of DCT atoms.3 Clearly, they are not
directionally oriented and cannot express various directional
components. On the other hand, each 2D DFT atom F

(m1,m2)
n1,n2

forms

F (m1,m2)
n1,n2

=
1

M
ej(φm1,n1+φm2,n2), (9)

where

φm,n =
2πmn

M
.

As shown in Fig. 1(b), the basis contains directionally oriented
atoms. One problem with the 2D DFT is that its basis
contains duplicate atoms and it cannot provide rich directional
selectivity, as shown in Fig. 1(b). This follows from the fact
that

ej(φm1,n1+φm2,n2) = ej(φM−m1,n1+φM−m2,n2). (10)

Hence, when used in image analysis and processing, DFTs
often degrade the efficiency of image analysis and processing.

B. Cosine-Sine Modulated Lapped Transforms (CSMLTs)

CSMLTs are an alternative class of DTCWTs with rich di-
rectional selectivity. Unlike DTCWTs, they do not require the

3In Fig. 1, each atom is enlarged for visualization.

Fig. 3: Time-series processing of lattice structure of M -band
CMLT (arrows indicate M/2 signals).

half-sample delay condition. Instead, they are constructed from
two M -band parallel FBs, which are designed by performing
cosine and sine modulations on a prototype filter p(n), i.e., by
applying cosine and sine modulated lapped transforms (CMLT
and SMLT).

1) CMLT and SMLT: The CMLT and SMLT are shown in
Fig. 2 [32]. The filter coefficients of Hm(z), Fm(z), H ′

m(z),
and F ′

m(z) (0 ≤ m ≤M − 1) are expressed as follows [21]:

hm(n) = 2p(n) cos (ϕm,n + ψm) (11)
fm(n) = 2p(n) cos (ϕm,n − ψm) (12)
h′m(n) = 2p(n) sin (ϕm,n + ψm) (13)
f ′m(n) = 2p(n) sin (ϕm,n − ψm) , (14)

where

ϕm,n =

(
m+

1

2

)
π

M

(
n− L− 1

2

)
ψm = (−1)m

π

4

and L is the length of the prototype filter p(n). The condition
on the prototype filter p(n) for PR is [32]

G̃ℓ(z)Gℓ(z) + G̃M+ℓ(z)GM+ℓ(z) =
1

2M(
0 ≤ ℓ ≤ M

2
− 1

)
,

(15)

where Gℓ(z) (0 ≤ ℓ ≤ 2M−1) are the polyphase components
of the prototype filter P (z), i.e.,

P (z) =

2M−1∑
ℓ=0

Gℓ(z
2M )z−ℓ,

where

Gℓ(z) =
∑
n

p(2Mn+ ℓ)z−n.

The CMLT and SMLT with the prototype filter p(n) can be
represented as the following lattice structure of the polyphase
matrices by using the symmetry of cosine/sine modulation
terms cos(ϕm,n±ψm) and sin(ϕm,n±ψm) in (11)-(14) and the
PR condition in (15). Let EC(z) and ES(z) be the polyphase
matrices of an M × 2KM (K ∈ N) CMLT and SMLT,
respectively. The relationship between two polyphase matrices
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is ES(z) = z−ℓDẼC(z), ℓ ∈ Z. If the CMLT satisfies the PR
condition, the SMLT also satisfies it. The polyphase matrix
EC(z) based on DCT-IV CIV can be expressed as a lattice
structure (see Fig. 3) [30]:

EC(z) = CIV WΛ(z)Θ0

(
K−1∏
k=1

Λ
(
z2
)
Θk

)
J, (16)

where

Θi =

[
−Ci SiJ
JSi JCiJ

]
, W =

[
O I
I O

]
, Λ(z) =

[
z−1I O
O I

]
Ci = diag

(
cos θi,0, . . . , cos θi,M/2−1

)
Si = diag

(
sin θi,0, . . . , sin θi,M/2−1

)
and θi is a free parameter for 0 ≤ i ≤ K − 1. Let

ΞK−1 ≜ ΘK−1J (17)

for later discussion. Another polyphase matrix ES(z) based
on DST-IV SIV is

ES(z) = SIV WΛ(z)Θ′
0

(
K−1∏
k=1

Λ
(
z2
)
Θ′

k

)
J, (18)

where

Θ′
i =

[
Ci SiJ
JSi −JCiJ

]
=

[
I O
O −I

]
Θi

[
−I O
O I

]
.

2) CSMLTs as 2D Directional Lapped Transform: The
directional selectivity arising from CSMLTs can be explained
as follows. Let Um(ω) and Vm(ω) be a complex combination
of spectra between Hm(ω) and H ′

m(ω),

Um(ω) = Hm(ω) + jH ′
m(ω)

= ejηk

L−1∑
n=0

p(n)e−j(ω−(m+ 1
2 )

π
M )n

= ejηkP

(
ω −

(
m+

1

2

)
π

M

)
, (19)

Vm(ω) =
1

j
(Hm(ω)− jH ′

m(ω))

= e−jηkP

(
ω +

(
m+

1

2

)
π

M

)
, (20)

where

ηk = −
(
m+

1

2

)
π

M

L− 1

2
+ (−1)m

π

4
.

Since Um(ω) and Vm(ω) are the modulations of a prototype
lowpass filter P (ω), each frequency response is one-sided
in the positive or negative frequency domain. The frequency
responses of Um(ω) and Vm(ω) in the case of

p(n) = − sin

(
π

2M

(
n+

1

2

))
(21)

for 0 ≤ n ≤ 2M − 1, which satisfies the PR condition in
(15) and generates a lapped transform with maximum DC

(a)

(b)

Fig. 4: Frequency responses of 4 × 8 CSMLTs
([0, 2π]): (a) Hm(ω) + jH ′

m(ω) and Hm(ω) − jH ′
m(ω),

(b) Um1
(ω1)Um2

(ω2) + Vm1
(ω1)Vm2

(ω2) and
Um1(ω1)Vm2(ω2) + Vm1(ω1)Um2(ω2), where
m,m1,m2 ∈ {0, 1, 2, 3}.

concentration [33], are shown in Fig. 4(a). From (19) and (20),
we can derive the following 2D frequency spectra:

Um1(ω1)Um2(ω2) + Vm1(ω1)Vm2(ω2)

= Hm1(ω1)Hm2(ω2)−H ′
m1

(ω1)H
′
m2

(ω2) (22)
Um(ω1)Vm(ω2) + Vm(ω1)Um(ω2)

= Hm1(ω1)Hm2(ω2) +H ′
m1

(ω1)H
′
m2

(ω2). (23)

This indicates that directional spectra of the (1,3)-quadrant
and (2,4)-quadrant can be generated by performing additions
and subtractions between the transform coefficients obtained
by the separable 2D CMLT and SMLT, as shown in Fig.
4(b). The construction of the 2D directional CSMLTs and
its corresponding 2D directional basis functions after the
operation are shown in Fig. 5. Although the scaling coefficient
1/

√
2 has been omitted in the equations, it is actually required

for 2D directional CSMLTs to be a tight frame, i.e., energy
preserving transform.

III. NONEXPANSIVE CONVOLUTION FOR CSMLTS AND
CSMBTS

When a lapped transform is applied to an image, a non-
expansive convolution should be used at the boundaries not
to increase the number of samples. In particular, SE is often
used to avoid discontinuities at the boundaries. However, when
SE is used on directional lapped transforms such as CSMLTs,
directional discontinuities appear and the boundaries are dis-
torted by annoying boundary artifacts in image restoration.

Here, we derive an efficient nonexpansive convolution for
CSMLTs. Tanaka et al. devised a SE for nonlinear-phase
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Fig. 5: Construction of M×2KM CSMLTs and corresponding
2D directional basis functions of 4× 8 CSMLTs.

paraunitary FBs (NLPPUFBs); they used a boundary filtering
technique [27]. We will extend this idea to our nonexpansive
convolution. Moreover, we propose new directional block
transforms, called CSMBTs, derived from M × 2M CSMLTs
with the nonexpansive convolutions.

A. Nonexpansive Convolution for CSMLTs

Here, we develop a nonexpansive convolution by boundary
filtering for CMLT in accordance with [27]. The derivation for
SMLT is omitted because it can be verified in the same way.

Fig. 6 shows the upper boundary processing in the case of
K = 1 and 2. The boundary signals are generated by using
a boundary extension matrix E M

2
, e.g., E M

2
= JM

2
in the

case of SE. Given an arbitrary K, the upper and lower input
signals require (2K − 1)M extra signals because of the filter
length L = 2KM for CSMLTs. We will show derivations for
two cases, i.e., K = 1 and 2; we can easily handle the cases
of K ≥ 3 in a similar way by solving simultaneous matrix
equations.

1) Case of K = 1: Signal reconstruction in the case of
K = 1 is achieved with M extra signals in total. We consider
the case of the boundary processing when reconstructing x0

from a0 at the top-right of Fig. 6. At the top-left of Fig. 6,
the signal a0 is calculated as

a0 =
[
[Ξ0]γ E [Ξ0]δ

] [x0

x0

]
, (24)

where Ξ0 is in (17) and E is an arbitrary M
2 × M

2 boundary
extension matrix. We solve for x0 as follows:

x0 = U−1
0 a0, (25)

where

U0 = [Ξ0]γ E + [Ξ0]δ .

In design of the CSMLTs, the coefficients in Ξ0 are heuris-
tically chosen such that det(U0) ̸= 0. The lower boundaries
can be calculated in the same way as the upper boundaries.

2) Case of K = 2: Signal reconstruction in the case of
K = 2 is achieved with 3M extra signals in total. Since the
delay elements of CSMLTs in K ≥ 2 are z−2 unlike z−1 in
NLPPUFBs, we have to recalculate the boundary processing

in K ≥ 2. At the bottom-right of Fig. 6, we reconstruct x0,
x1, and x2. x1 and x2 are reconstructed from b0 and b5 as[

x1

x2

]
= Ξ⊤

1

[
b0

b5

]
, (26)

where Ξ1 is in (17). Although b0 is not directly available at
the inverse transform side, we can compensate it as follows.
At the forward transform side, b1 is calculated by

b1 =
[
[Ξ1]γ E [Ξ1]δ E

] [x2

x1

]
. (27)

Accordingly, we substitute (26) in (27), from which (27) is
calculated as

b1 =
[
[Ξ1]δ E [Ξ1]γ E

]
Ξ⊤

1

[
b0

b5

]
. (28)

On the other hand, a0 at the forward transform side is
calculated as

a0 =
[
[Θ0]γ [Θ0]δ

] [b0

b1

]
. (29)

Therefore, at the inverse transform side, b0 can be calculated
by solving the simultaneous matrix equation with (28) and
(29). We obtain

b0 = V−1
0 (a0 −W0b5) , (30)

where

V0 = [Θ0]δ

(
[Ξ1]δ E [Ξ1]

⊤
α + [Ξ1]γ E [Ξ1]

⊤
β

)
+ [Θ0]γ ,

W0 = [Θ0]δ

(
[Ξ1]δ E [Ξ1]

⊤
γ + [Ξ1]γ E [Ξ1]

⊤
δ

)
.

As for x0, we can reconstruct from the same discussion
explained in the case of K = 1:

x0 = U−1
1 b3, (31)

where

U1 = [Ξ1]γ E + [Ξ1]δ .

Similar to the case of K = 1, the coefficients are heuristically
chosen in design such that det(U1) ̸= 0 and det(V0) ̸= 0.
The lower boundaries can be calculated in the same way as
the upper boundaries.

B. Mean Value Extension (MVE)

Before introducing MVE, we should confirm that the con-
ventional extension methods are inefficient for directional
textures. Figs. 7(b) and (c) show the results of PE and SE for
the input image in Fig. 7(a). Since PE extends the directional
textures at the boundaries along different directions, severe
discontinuities appear. Although SE can extend them smoothly
in terms of 1D signals, reflected (inverse) directional textures
appear at the boundaries.

To reduce the directional discontinuities, we propose a
more appropriate boundary extension matrix E for CSMLTs.
Because of the separable implementation, not all of the di-
rectional textures can be extended smoothly. Because of that,



6

Fig. 6: Upper boundary processing of M -band CMLTs (each arrow indicates M/2 input signals): (top) K = 1; (bottom)
K = 2.

(a) (b) (c) (d)

Fig. 7: Boundary extensions: (a) original image (zero exten-
sion), (b) PE, (c) SE, and (d) MVE.

Fig. 8: Minimum tiling of CMLT: (top) without a nonexpansive
convolution; (bottom) with a nonexpansive convolution.

we use the mean values of signals at the boundaries; i.e., the
MVE matrix E is given by

E =
2

M
1M

2 ×M
2
, (32)

where 1M
2 ×M

2
is an M

2 × M
2 matrix with 1s in every element.

As shown in Fig. 7(d), MVE can extend the lines at each
boundary more smoothly so that severe directional disconti-
nuities do not appear.

C. Cosine-Sine Modulated Block Transforms (CSMBTs)

Block transforms are used more than lapped transforms in
small-scale embedded systems to keep down computational
costs and gain benefit from parallel computation, e.g., they
are used in image and video coding standards such as JPEG
and the H.26x series. Here, we present new M×M directional

block transforms, called CSMBTs. They can be derived from a
minimum tiling of M ×2M CSMLTs, i.e., the case of K = 1
in Section III-A1, and the nonexpansive convolutions. Note
that the CSMBTs cannot be obtained when K ≥ 2 because
the minimum tile size is always bigger than M .

The CMLT with the nonexpansive convolution when K = 1
for input signals longer than M is expressed as

diag (CIV ,CIV , · · · ,CIV )

× diag (JC0E + JS0J,Ξ0,Ξ0, · · · ,Ξ0,−C0JE + S0) .
(33)

When the size of input signals is M , i.e., the minimum tiling,
(33) takes the following form (see the bottom of Fig. 8):

BC = CIV

[
JC0E + JS0J O

O −C0JE + S0

]
. (34)

It is clear that BC is an M×M block transform; we thus term
it the cosine modulated block transform (CMBT). An M ×M
sine modulated block transform (SMBT) based on M × 2M
SMLT is similarly obtained as

BS = SIV

[
−JC0E + JS0J O

O C0JE + S0

]
. (35)

Finally, the 2D directional CSMBTs are constructed by using
the CMBT and SMBT instead of the CMLT and SMLT in
Fig. 5. The Appendix shows a concrete numerical example of
the relationship between 4 × 8 CSMLTs and 4 × 4 CSMBTs
with MVE.

Remark: When the boundary extension matrix E is a
centrosymmetric matrix that satisfies EJ = JE , such as SE
and MVE matrices, SMBT BS has a simple relationship with
CMBT BC :

BS = DCIV J

[
J∆1J O
O J∆0J

]
= DCIV

[
∆0 O
O ∆1

]
J

= DBCJ, (36)
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(a)

(b)

(c)

Fig. 9: Frequency responses of 8 × 8 CSMBTs ([0, 2π]): (a)
PE, (b) SE, and (c) MVE: (left) Hm(ω) + jH ′

m(ω); (right)
Hm(ω)− jH ′

m(ω), where m ∈ {0, 1, · · · , 7}.

where

∆0 = JC0E + JS0J

∆1 = −C0JE + S0.

This relationship is the same as that holds between DCT-IV
and DST-IV, SIV = DCIV J.

IV. EXPERIMENTAL RESULTS

This section evaluates the CSMLTs and CSMBTs with PE,
SE, and MVE. The resulting transforms were compared in
terms of the peak signal-to-noise ratio (PSNR) [dB]:

PSNR[dB] = 10 log10

((
2BIT − 1

)2
MSE

)
,

where BIT and MSE are the image’s bit-depth and mean
squared error, respectively. The image set included 512× 512
8-bit standard grayscale images in [34] such as Barbara,
Goldhill, and Lena.

A. Filter Design

We designed 8 × 16 and 8 × 32 CSMLTs by using the
cost function, which is a weighted linear combination of
the coding gain and the DC leakage [35], and fminunc.m

(a) (b)

(c) (d)

Fig. 10: 2D directional basis functions of 8 × 8 block trans-
forms: (a) DFT, (b) CSMBTs-PE, (c) CSMBTs-SE, and (d)
CSMBTs-MVE.

in Optimization ToolBox of MATLAB. Moreover, we
derived 8 × 8 CSMBTs from 8 × 16 CSMLTs with nonex-
pansive convolutions, which are PE, SE, and MVE. In this
section, the CSMLTs and CSMBTs with PE, SE, and MVE are
labeled CSMLTs-PE, CSMLTs-SE, CSMLTs-MVE, CSMBTs-
PE, CSMBTs-SE, and CSMBTs-MVE.

The complex combinations of the frequency responses and
2D directional basis functions of the 8 × 8 directional block
transforms are shown in Figs. 9 and 10, respectively. Although
the spectra based on CSMBTs-PE in Fig. 9(a) are one-
sided in the positive or negative domain, as are the CSMLTs
in Fig. 4(a), some spectra are completely duplicated. Thus,
the resulting atoms from the CSMBTs-PE contain duplicate
directional ones, as shown in Fig. 10(b). On the other hand,
whereas none of the spectra based on CSMBTs-SE (Fig. 9(b))
are duplicated, they do not sufficiently attenuate in each
stopband. Therefore, as shown in Fig. 10(c), each atom cannot
distinguish the corresponding direction accurately. By contrast,
the spectra from the CSMBTs-MVE are not duplicated and
sufficiently attenuate in each stopband; the resulting atoms
have richer directional selectivity than the others.

B. Non-linear Approximation (NLA)

We applied the CSMLTs, CSMBTs, and DFT to the non-
linear approximation (NLA) [36], which is often used as a
criterion for efficiency of sparse representation. Fig. 11 shows
the rate-distortion (R-D) curves of NLA. The CSMLTs-MVE
and CSMBTs-MVE achieved the best performance in every
case. The top images of Figs. 12 and 13 show particular
areas of Barbara and Lena in NLA (coefficient = 4000).
The PE/SE-based directional transforms generated annoying
artifacts, such as boundary artifacts, directional block artifacts,
and black/white block artifacts, whereas CSMLTs-MVE and
CSMBTs-MVE did not generate any.

C. Image Denoising

We also compared the CSMLTs, CSMBTs, and DFT by
applying them to image denoising. Noisy images were made
by adding Gaussian random noise with a standard deviation
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(a) (b) (c)

(d) (e) (f)

Fig. 11: R-D curves of NLA: (a-c) CSMLTs, (d-f) CSMBTs, (a,d) Barbara, (b,e) Goldhill, and (c,f) Lena.

Fig. 12: Particular areas (left sides are boundaries) of Barbara
in NLA (coefficients = 4000) and image denoising (σ = 30)
by CSMLTs: (top) NLA, (bottom) image denoising, (left-
to-right) original/noisy images, 8 × 16 CSMLTs-PE, 8 × 16
CSMLTs-SE, 8×16 CSMLTs-MVE, 8×32 CSMLTs-PE, 8×32
CSMLTs-SE, and 8× 32 CSMLTs-MVE.

σ to the original images. The images were denoised by
applying a universal threshold σ

√
2 logN [37], where N is

the number of pixels, after the transforms had been performed.
Fig. 14 shows the R-D curves of image denoising. CSMLTs-
MVE and CSMBTs-MVE performed the best in almost all
cases. Moreover, the bottom images of Figs. 12 and 13 show
particular areas of Barbara and Lena in image denoising
(σ = 30 and 10). Similar to the case of NLA, the PE/SE-
based directional transforms generated annoying artifacts, but
CSMLTs-MVE and CSMBTs-MVE did not generate any.

Fig. 13: Particular areas of Lena in NLA (coefficients = 4000)
and image denoising (σ = 10) by 8 × 8 directional block
transforms: (top) NLA, (bottom) image denoising, (left-to-
right) DFT, CSMBTs-PE, CSMBTs-SE, and CSMBTs-MVE.

V. CONCLUSION

We proposed a new nonexpansive convolution, MVE, for
CSMLTs. The conventional boundary extension methods, PE
and SE, often produce directional discontinuities at bound-
aries, which degrade the efficiency of a sparse representation
created by using a directional lapped transform. MVE reduces
directional discontinuities by using the mean value of the pix-
els near the boundaries. We also devised new directional block
transforms, called CSMBTs, derived from the minimum tiling
of the CSMLTs with a 2M filter length and the nonexpansive
convolutions. The resulting CSMBTs-MVE not only have rich
directional selectivity at a low cost but also better mitigate
annoying artifacts in NLA and image denoising compared with
the DFT.



9

(a) (b) (c)

(d) (e) (f)

Fig. 14: R-D curves of image denoising: (a-c) CSMLTs, (d-f) CSMBTs, (a,d) Barbara, (b,e) Goldhill, and (c,f) Lena.

APPENDIX
A CONCRETE NUMERICAL EXAMPLE OF RELATIONSHIP

BETWEEN CSMLTS AND CSMBTS WITH MVE

This Appendix shows a concrete numerical example of
relationship between 4 × 8 CSMLTs and 4 × 4 CSMBTs
with MVE. The resulting transforms are shown in Table I.
We consider a pseudo-random 4× 4 input block x as

x =


3 1 4 1
5 9 2 6
5 3 5 8
9 7 9 3

 (37)

and the 8× 8 MVE-based extended block x′ as

x′ =



4.5 4.5 4 5 3 3.5 3.25 3.25
4.5 4.5 4 5 3 3.5 3.25 3.25
2 2 3 1 4 1 2.5 2.5
7 7 5 9 2 6 4 4
4 4 5 3 5 8 6.5 6.5
8 8 9 7 9 3 6 6
6 6 7 5 7 5.5 6.25 6.25
6 6 7 5 7 5.5 6.25 6.25


. (38)

When 4 × 8 CSMLTs and 4 × 4 CSMBTs are applied to x′

and x, we obtain the 2D transformed coefficients as[
EC0 EC1

]
x′ [EC0 EC1

]⊤
= BCxB

⊤
C

=


17.2762 0.8656 −0.5848 −1.4899
−3.5692 −0.0174 −0.6653 1.2170
−1.5671 −0.7004 1.3007 4.5910
−5.3497 −1.2981 2.7250 −0.0447

 ≜ yC (39)

[
ES0 ES1

]
x′ [ES0 ES1

]⊤
= BSxB

⊤
S

=


23.2061 0.3670 −0.1711 1.4449
−2.6012 −1.0096 2.2133 −3.1325
−1.9793 2.9281 −2.0320 0.8948
−1.6648 −2.3473 −1.3771 4.0055

 ≜ yS ,

(40)

respectively. They mean that the CSMBTs with MVE are ex-
actly the same as a minimum tiling of the CSMLTs with MVE.
Note that the resulting output signals in the 2D directional
transforms are (yC + yS)/

√
2 and (yC − yS)/

√
2.
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