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SUMMARY We propose the cube-based perceptual encryption (C-PE),
which consists of cube scrambling, cube rotation, cube negative/positive
transformation, and cube color component shuffling, and describe its appli-
cation to the encryption-then-compression (ETC) system of Motion JPEG
(MJPEG). Especially, cube rotation replaces the blocks in the original
frames with ones in not only the other frames but also the depth-wise cube
sides (spatiotemporal sides) unlike conventional block-based perceptual en-
cryption (B-PE). Since it makes intra-block observation more difficult and
prevents unauthorized decryption from only a single frame, it is more robust
than B-PE against attack methods without any decryption key. However,
because the encrypted frames including the blocks from the spatiotemporal
sides affect the MJPEG compression performance slightly, we also devise
a version of C-PE with no spatiotemporal sides (NSS-C-PE) that hardly af-
fects compression performance. C-PE makes the encrypted video sequence
robust against the only single frame-based algorithmic brute force (ABF)
attack with only 21 cubes. The experimental results show the compres-
sion efficiency and encryption robustness of the C-PE/NSS-C-PE-based
ETC system. C-PE-based ETC system shows mixed results depending on
videos, whereas NSS-C-PE-based ETC system shows that the BD-PSNR
can be suppressed to about −0.03 dB not depending on videos.
key words: cube-based perceptual encryption, encryption-then-
compression system, Motion JPEG

1. Introduction

These days, large amounts of multimedia contents are com-
pressed before being sent over bandwidth-constrained chan-
nels of communications networks. Contents posted in social
networking services (SNSs) can be viewed by users with-
out requiring any authorization other than signing in to the
service; some such content, however, should be protected in
view of privacy. One way of doing so is to encrypt the con-
tent before or after compressing it with the corresponding
encryption key. In particular, the JPEG committee, which
has studied the issue through its activity called JPEG Privacy
and Security [1], has identified three kinds of JPEG-related
encryption frameworks described below.

The compression-then-encryption (CTE) system [2]–
[5] encrypts the content after compressing it (Fig. 1(a)).
The sender Alice encrypts the content after compressing
it, and the receiver Bob decrypts the content before decom-
pressing it. The CTE system can also encrypt previously
compressed content. It employs either mathematical or per-
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ceptual encryption. The mathematical encryption converts
the input data into irregular number sequences, as in AES,
RSA, and DES [6], [7]. The perceptual encryption is a
format-compliant method that encrypts the content visibly.
However, whichever encryption is selected, the CTE system
cannot cope with SNSs that support re-encoding because the
encrypted signal may not be decompressed without decryp-
tion.

The joint compression and encryption (JCE) sys-
tem [8]–[12] encrypts a content while it is being compressed
(Fig. 1(b)). Here, Alice encrypts the content during com-
pression, and Bob decrypts it during decompression. To
avoid destroying the standardized syntax of the codec, the
JCE system uses perceptual encryption. It can encrypt
content quickly and make it difficult to perform unautho-
rized decryption without decryption key, e.g., by using low-
computational complexity and high-invisibility approaches
that apply sign flips in the frequency domain [11], [12].
However, the JCE system is not easy to implement, and like
the CTE system, it cannot cope with SNSs that support re-
encoding.

The encryption-then-compression (ETC) system [13]–
[16] encrypts the content before compressing it (Fig. 1(c)).
Alice encrypts the content before compressing it, and Bob
decrypts the content after decompressing it. The ETC system
employs perceptual encryption so that existing compression
frameworks such as JPEG can be used directly. Unlike CTE
and JCE, it can cope with SNSs that support re-encoding.
Therefore, this paper focuses on the ETC system.

The conventional ETC system for Motion JPEG
(MJPEG) [13] employs block-based perceptual encryption
(B-PE) consisting of four methods: block scrambling,
block rotation/inversion, block negative/positive (nega-
/posi-) transformation, and block color component shuffling.
B-PE is applied to each frame independently, and its appli-
cation to the ETC system can decompress and decrypt each
frame in real time. However, since the original blocks re-
main in the encrypted frame, the encrypted frames may be
decrypted by using attack methods without any decryption
key such as the jigsaw-puzzle solver (JPS) attack [17].

To make the intra-block observation difficult and pre-
vent unauthorized decryption from only a single frame, we
propose cube-based perceptual encryption (C-PE), which
consists of four methods: cube scrambling, cube rotation,
cube nega-/posi-transformation, and cube color component
shuffling. We aim to enhance the security even at the expense
of real-time processing and complexity. Since cube rotation

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers



1816
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.11 NOVEMBER 2018

Fig. 1 Encryption and compression frameworks: (a) CTE system, (b) JCE system, and (c) ETC system.

makes intra-block observation more difficult and prevents
unauthorized decryption from only a single frame, C-PE is
robust against attacks without any decryption key, including
the JPS attack, the cube-based JPS (CJPS) attack that we
propose, the algorithmic brute force (ABF) attack, and the
key-based brute force (KBF) attack. However, cube rotation
affects the MJPEG compression performance slightly (un-
like cube scrambling, cube nega-/posi-transformation, and
cube color component shuffling) because the depth-wise
cube sides (spatiotemporal sides) appear in the observed
frame. As a remedy, we describe C-PE with no spatiotem-
poral sides (NSS-C-PE) that hardly affects compression per-
formance. The results of experiments we conducted show
the compression efficiency and encryption robustness of the
C-PE/NSS-C-PE-based ETC system.

A preliminary version of this paper was presented
in [18], where we discussed only a part of the C-PE. This
paper describes the whole C-PE scheme and NSS-C-PE and
their robustness against various attack methods.

2. Block-Based Encryption-then-Compression System

2.1 Block-Based Perceptual Encryption

The procedure of the conventional B-PE scheme is shown in
Fig. 2(a). Each frame of the input video sequence is divided
into blocks on which four methods are applied, as described
in Sects. 2.1.1–2.1.4. When B-PE uses smaller blocks, visi-
bility is further reduced. On the other hand, its application
to the ETC system with MJPEG hardly affects compression
performance when the block size is appropriately selected.
A suitable block size for B-PE is 16k × 16l (∀k, l ∈ Z>0).
Moreover, the optimal block size, which reduces visibility as
much as possible and does not affect MJPEG compression
performance, is 16×16. This is because of that the MJPEG
downsamples each frame from 16×16 blocks to 8×8 blocks
in the chroma components and applies 2D discrete cosine
transforms (DCTs) and quantization to the 8 × 8 downsam-
pled blocks.

2.1.1 Block Scrambling

Block scrambling permutes sequentially numbered blocks
in accordance with the number of blocks. It is clear that
block scrambling does not affect MJPEG compression per-
formance at all when a suitable block size, in our case
16k × 16l, is selected.

2.1.2 Block Rotation/Inversion

Block rotation/inversion rotates/inverts each block through
a random angle and direction. Let Pi := {(Ri,Gi,Bi)}, P ′i ,
and εm(n) be the set of pixels and the RGB components in
the ith block, the ith encrypted block, and the m-ary random
number calculated in the nth block, respectively. The block
rotation and block inversion are described as

P ′i =




Pi 	 0◦ (ε4(i) = 0)
Pi 	 90◦ (ε4(i) = 1)
Pi 	 180◦ (ε4(i) = 2)
Pi 	 270◦ (ε4(i) = 3)

, (1)

where	 means rotation, and

P ′i =




Pi � no inversion (ε4(i) = 0)
Pi � horizontally (ε4(i) = 1)
Pi � vertically (ε4(i) = 2)
Pi � diagonally (ε4(i) = 3)

, (2)

where � means inversion. The block rotation/inversion
affects the MJPEG compression performance only slightly
when a suitable block size, i.e., 16k×16l, is selected because
the quantization table is not symmetric.

2.1.3 Block Negative/Positive Transformation

The block nega-/posi-transformation inverts the colors of
the blocks randomly. A nega-/posi-transformation in the ith
block is described as

P ′i =



Pi (ε2(i) = 0)
{255} − Pi (ε2(i) = 1)

. (3)

Like block rotation/inversion, the block nega-/posi-
transformation affects MJPEG compression performance
only slightly when a suitable block size, i.e., 16k × 16l,
is selected, because the signal characteristics in the nega-
/posi-transformed block change only a little.

2.1.4 Block Color Component Shuffling

Block color component shuffling exchanges the order of the
color components in each block. The block color component
shuffling is described as



SHIMIZU et al.: CUBE-BASED ENCRYPTION-THEN-COMPRESSION SYSTEM FOR VIDEO SEQUENCES
1817

Fig. 2 Block-/cube-based perceptual encryption: (a) block-based and (b) cube-based.

Fig. 3 Cube scrambling.

P ′i =




{(Ri,Gi,Bi)} (ε6(i) = 0)
{(Ri,Bi,Gi)} (ε6(i) = 1)
{(Gi,Ri,Bi)} (ε6(i) = 2)
{(Gi,Bi,Ri)} (ε6(i) = 3)
{(Bi,Ri,Gi)} (ε6(i) = 4)
{(Bi,Gi,Ri)} (ε6(i) = 5)

. (4)

Like block rotation/inversion and block nega-/posi-
transformation, block color component shuffling affects the
JPEG compression performance only slightly when a suit-
able block size, i.e., 16k ×16l, is selected, because the YUV
components obtained from the shuffled RGB components
are somewhat different from the original YUV components.

2.2 Advantages and Disadvantages

The advantage of B-PE is that the encrypted frames maintain
almost the same MJPEG compression performance as the
unencrypted ones when a suitable block size, i.e., 16k ×
16l, is selected. Furthermore, the encrypted frames can be
decrypted in order and in real time.

However, real-time decryption faces a risk. Each block
of the encrypted frames can be observed in each frame by
anyone. Therefore, each encrypted frame may be decrypted
by applying methods such as the JPS attack without any
decryption key. To prevent unauthorized decryption, the
blocks in the encrypted frames should be moved from their
original frames to other frames.

Fig. 4 Cube rotation.

Algorithm 1: Cube scrambling
Input: Video sequence Vin, cube depth ` (` ∈ Z>0)
Output: Encrypted Vin

1: Initialize N, ND, NV , NH, NS , and A using (5)
2: for i = 0 to b(N − 1)/2c do
3: Compute (D2i,V2i, H2i) using (6)
4: Compute (D2i+1,V2i+1, H2i+1) using (6)

//Exchanging two cubes
5: ` × ` × ` cube from Vin(D2i,V2i, H2i) �

` × ` × ` cube from Vin(D2i+1,V2i+1, H2i+1)

3. Cube-Based Encryption-then-Compression System

3.1 Cube-Based Perceptual Encryption

The procedure of the C-PE is shown in Fig. 2(b). Frames of
the input video sequence are bundled as a large cuboid and di-
vided into the small cubes to apply cube scrambling, cube ro-
tation, cube nega-/posi-transformation, and cube color com-
ponent shuffling.

3.1.1 Cube Scrambling

The cube scrambling is shown in Fig. 3. It permutes the
cubes randomly in the video sequence. When the cubes are
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Algorithm 2: Cube rotation
Input: Video sequence Vin, cube depth ` (` ∈ Z>0)
Output: Encrypted Vin

1: Initialize N, ND, NV , NH, NS , and A using (5)
2: for i = 0 to N − 1 do
3: Compute (Di,Vi, Hi) using (6)
4: ϑ ← ε4(i) // 0, 1, 2, or 3

//Depth-wise rotation
5: Rotate ` × ` × ` cube from Vin(Di,Vi, Hi)

by (90 × ϑ)◦ depth-wise
6: ϑ ← ε4(i)

//Vertical rotation
7: Rotate ` × ` × ` cube from Vin(Di,Vi, Hi)

by (90 × ϑ)◦ vertically
8: ϑ ← ε4(i)

//Horizontal rotation
9: Rotate ` × ` × ` cube from Vin(Di,Vi, Hi)

by (90 × ϑ)◦ horizontally

scrambled, the blocks in each original frame are moved to
other frames. To return the encrypted blocks to the original
positions, they must be returned from other frames, unlike
in the conventional B-PE.

The cube scrambling algorithm is described in Algo-
rithm 1. Here, D, H , W , and ` are the depth, height, width
of the Vin, and the cube depth ` (` ∈ Z>0), respectively;
ND, NV , NH, N , and NS are calculated as

ND =

⌊
D
`

⌋
, NV =

⌊
H
`

⌋
, NH =

⌊
W
`

⌋
,

N = ND × NV × NH, NS = NV × NH,

(5)

where they are the depth-wise cube number, vertical cube
number, horizontal cube number, total cube number, and
cube number per ND = 1. A := {a0, a1, · · · , aN−1 |ai ∈
[0, N − 1] ⊂ Z} (i = 0, 1, · · · , N − 1) is the shuffled
number set in which the elements differ from each other
and is generated from a pseudo random number generator
(PRNG) [19] initialized with a seed based on the encryption
key. While scanning A, two cube start points (D2i,V2i, H2i)
and (D2i+1,V2i+1, H2i+1) are calculated as

Dt = bat/NSc × `,

Vt = b(at%NS )/NH c × `,

Ht = (at%NS )%NH × `,

(6)

where the % means the modulo operator. The two
` × ` × ` cubes extracted from Vin(D2i,V2i, H2i) and
Vin(D2i+1,V2i+1, H2i+1) are iteratively exchanged by the op-
erator�.

3.1.2 Cube Rotation

The cube rotation method is shown in Fig. 4. It rotates
the cubes through a random angle and direction. When

the cubes are rotated through particular angles, the spa-
tiotemporal sides are observable. Thus, the textures in the
original blocks are exchanged with different ones. If the
spatiotemporal sides appear in the observed frames, decryp-
tion with only a single frame clearly becomes impossible
and the spatiotemporal redundancies are compressed by the
MJPEG framework instead of intra-frame redundancies like
in the other video compression standards: MPEG1, MPEG2,
H.264/AVC, and H.265/HEVC. However, the spatiotempo-
ral sides are unexpected textures that JPEG usually does
not process so that they may greatly affect the compression
performance of MJPEG. We will investigate this effect in
Sect. 4.

Algorithm 2 is for cube rotation. Here, N , ND , NV ,
NH , NS , andA are initialized as before. The cube start point
(Di,Vi, Hi) is iteratively calculated while scanning A. Ran-
domly generated ϑ determines the rotation angle of the ith
cube. For example, if the three ϑs are 3, 1, and 2, the ith cube
extracted from (Di,Vi, Hi) is rotated by 270◦ depth-wise, 90◦
vertically, and 180◦ horizontally. The above rotations are it-
erated. The vertical and depth-wise cube rotations into 90◦
and 270◦ mix the blocks in the spatiotemporal sides into the
observed frames unlike B-PE. Also, note that a combination
of the depth-wise cube rotation by 180◦ (0◦) and the verti-
cal cube rotation by 0◦ (180◦) represents a combination of
the block inversion and (spatiotemporal) block scrambling.
Therefore, we have not proposed “cube inversion (an exten-
sion of block inversion)” specifically.

3.1.3 Cube Negative/Positive Transformation

The cube nega-/posi-transformation inverts the color val-
ues in the cubes randomly. Let Ci :=

⋃`
t=0 Pit =⋃`

t=0{(Rit,Git,Bit )} and C′i be the ith cube including `
blocks and the ith encrypted cube, respectively. The trans-
formation is described as

C′i =



⋃`
t=0({255} − Pit ) (ε2(i) = 0)⋃`
t=0 Pit (ε2(i) = 1)

. (7)

3.1.4 Cube Color Component Shuffling

The cube color component shuffling permutes the color com-
ponents of the cubes randomly. The transformation is de-
scribed as

C′i =




⋃`
t=0{(Rit,Git,Bit )} (ε6(i) = 0)⋃`
t=0{(Rit,Bit,Git )} (ε6(i) = 1)⋃`
t=0{(Git,Rit,Bit )} (ε6(i) = 2)⋃`
t=0{(Git,Bit,Rit )} (ε6(i) = 3)⋃`
t=0{(Bit,Rit,Git )} (ε6(i) = 4)⋃`
t=0{(Bit,Git,Rit )} (ε6(i) = 5)

. (8)

3.2 Robustness Analysis

C-PE prevents unauthorized decryption from only a single
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frame because of original blocks exchanged with different
ones, as described in Sect. 3.1.2. However, other attacks
which try to decrypt the encrypted video sequence with-
out any decryption key may be conducted. This subsection
investigates the robustness of C-PE against these sorts of at-
tacks. We can consider that the C-PE is robust against them
if their numbers of total brute force attacks are greater than
2256, which is the number of brute force attack against the
one-way hash function SHA-256 [20] and is a number that
makes decryption of the encrypted content impossible in real
time.

3.2.1 Jigsaw-Puzzle Solver Attack and Cube-Based
Jigsaw-Puzzle Solver Attack

Chuman et al. have already presented that B-PE is robust
enough against JPS attacks if the appropriate sizes of blocks
and selection of B-PE methods can prevent JPS attacks [17].
Therefore, we can easily find that our C-PE, which includes
all B-PE methods and mixes the blocks in the other frames
and the spatiotemporal sides into the observed frames, has
sufficient robustness against JPS attacks.

Also, we present a CJPS attack as a new JPS attack
for C-PE. The CJPS attack chooses cubes of the encrypted
video sequence and tries to assemble them correctly. This
attack against C-PE corresponds to matching two cube sides
after concatenation, rotation, color inversion, and shuffling
of the color component order of the cubes. The number
of CJPS attacks is calculated as follows. The number of
sides per cube is 6. The number of color inversions and
color component order shufflings is 2 × 6 = 12 per side.
Namely, a sufficient number to match each cube side with
the corresponding one is 6 × 12 = 72. If this operation is
conducted on all N cubes, totally ΣN

t=1(2+4t)× (24×12)N−t

matches are required. Therefore, the CJPS attack cannot
decrypt the content encrypted by C-PE in real time when the
total number of cubes N is 33 or more.

3.2.2 Algorithmic Brute Force Attack

The ABF attack decrypts the encrypted video sequence by
applying all possible candidates of this algorithm.

The number of ABF attacks against cube scrambling
is calculated as follows. The probability of a cube being
moved back to the correct place is 1

N . The joint probability
of another cube also being moved back to the correct place
is 1

N (N−1) . Accordingly, the joint probability of all cubes
being moved back to the correct places is

∏N
t=1

1
t (N−t) =

1
N ! .

Consequently, the number of the ABF attacks against cube
scrambling is

NCS = N! = 2log2
∏N

i=1 i = 2
∑N

i=1 log2 i . (9)

The number of ABF attacks against cube rotation is
calculated as follows. The rotation directions are depth-
wise, vertically, and horizontally. The rotation angle is
0◦, 90◦, 180◦, or 270◦. Thus, the probability with which

the directions and angles of N cubes are correctly returned
is (1/43)N = 1/64N . Consequently, the number of ABF
attacks against the cube rotation is

NCR = 64N = 26N . (10)

The number of ABF attacks against cube nega-/posi-
transformation is calculated as follows. The probability with
which the colors of N cubes are correctly inverted is 1/2N .
Consequently, the number of ABF attacks against the cube
nega-/posi-transformation is

NCN = 2N . (11)

The number of ABF attacks of cube color component
shuffling is calculated as follows. The probability withwhich
the colors of N cubes are correctly shuffled is 1/6N . Conse-
quently, the number of ABF attacks against the cube nega-
/posi-transformation is

NCC = 6N = 2N log2 6. (12)

The total number of ABF attacks against all methods of
C-PE is

NC = NCSNCRNCN NCC = 27N+N log2 6+
∑N

i=1 log2 i .
(13)

Therefore, we can consider that the ABF attack cannot de-
crypt the C-PE encrypted content in real time when the total
number of cubes N is 21 or more.

3.2.3 Key-Based Brute Force Attack

The KBF attack decrypts the encrypted content by applying
all possible keys.

The secrecy of the key of C-PE depends on the PRNG.
The PRNG generates the random numbers from a primitive
seed δ by performing a recursive calculation. However, δ is
4 bytes, which is too short to prevent attacks on it, so that it
is inapplicable as an encryption key. Thus, the key should be
long data such as the SHA-256 hash digest. If the SHA-256
hash digest is used as the parent key Γ, each Γt (t ∈ Z≥0) for
each C-PE method can be generated [13], [21] as

Γ0 = Γ,

Γt+1 = S(Γt ),
(14)

where S(·) is a hash function. The seeds δs are recursively
extracted from Γt+1 and applied to the encryption methods
and the encrypted regions. The regions are selected in any
way: a key, which S(·) has been applied, can be applied to
a C-PE method for whole video sequence or for each region
bundling 16 frames of video sequence. Although having
only Γ allows one to decrypt the content with or without
the correct key, the computational time to find Γ has been
believed to be very long, because the preimage of the SHA-2
family cannot be calculated in real time [22].
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Fig. 5 R-D curve (average of 256 frames): (a) Akiyo, (b) Bowing, and (c) Coastguard.

Fig. 6 Frames in which a sequence was encrypted by 16 × 16 × 16 cubes: (top-to-bottom) Akiyo’s
200th frame, Bowing’s 160th frame, and Coastguard’s 140th frame, (left-to-right) original, only cube
rotation, only cube scrambling, and all C-PEs.

Table 1 Test video sequences.
Input video sequence Akiyo Bowing Coastguard

Moving area small medium large
Stopping area large medium small

Size & color depth 288 × 352 × 256, 8-bit RGB

Table 2 BD-PSNR [dB] of each encryption method applied to Akiyo,
Bowing, and Coastguard.
Method Akiyo Bowing Coastguard
Cube scrambling −0.25 −0.20 −0.11
Cube rotation (C-PE) 3.66 −0.17 −2.01
Cube rotation (NSS-C-PE) −0.01 −0.03 −0.02
Cube nega-/posi-transformation −0.15 −0.13 −0.05
Cube color component shuffling −0.44 −0.17 −0.09

4. Experiments

First, we describe the experimental conditions and proce-

dures. Then, we describe the compression efficiency and
encryption robustness of video sequences encrypted by C-
PE and NSS-C-PE. NSS-C-PE is the variant of C-PE that
does not show the spatiotemporal sides by cube rotation;
i.e., it does not conduct depth-wise and vertical rotations by
90◦ and 270◦.

4.1 Experimental Conditions and Procedure

The test video sequences [23] are shown in Table 1
and Fig. 6(a), (e), (i). The purpose of the experiments was
to measure the compression efficiencies of encrypted video
sequences whose movements depicted therein were different
from each other. The size of the cube in the experiments was
set as 16 × 16 × 16 in accordance with [13].

The common procedure was as follows.
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Fig. 7 Results of encryption: (a) original Akiyo and encrypted with C-PE, (b) original Bowing and
encrypted with C-PE, (c) original Coastguard and encrypted with C-PE.

1. Encrypt the input frames.
2. Compress the encrypted frames with libjpeg-

turbo [24], whose compression qualities are Q :=
{10, 20, · · · , 100}.

3. Calculate the mean bitrates of the compressed frames.
4. Decompress the compressed frames.
5. Decrypt the decompressed frames.
6. Calculate the mean Bjøntegaard delta PSNRs (BD-

PSNRs), which correspond to the average PSNR dif-
ference [dB] for the same bit rate, between the input
frames and the decrypted frames.

4.2 Results of C-PE

Here, we compare the MJPEG compression performances
of the encrypted video sequences encrypted with each C-PE
method. The BD-PSNRs of each C-PE method for Akiyo,
Bowing, and Coastguard are listed in Table 2. The cube ro-
tation affected the MJPEG compression performance, espe-
cially for Akiyo and Coastguard, unlike the cube scrambling,
cube nega-/posi-transformation, or cube color component
shuffling.

The results of all C-PEmethods are shown as green lines
in Fig. 5. The rate-distortion (R-D) curves denote compar-
isons of compression performance between video sequences
encrypted with C-PE and unencrypted ones (black lines).
The compression performance of the encrypted Akiyo was
better than that of the unencrypted one. The compression
performance of the encrypted Bowing was almost the same
as that of the unencrypted one†. The compression perfor-
mance of encrypted Coastguard fell below that of the un-
encrypted one. We consider that the performance of C-PE-
based MJPEG compression depends on the video.

The visibilities of the encrypted frames are shown in
Fig. 6. When only cube rotation was applied, the spatiotem-
poral sides appeared in some blocks of the frame (Fig. 6(b),
(f), (j)). When only cube scrambling was applied, the orig-
inal blocks in the frame were hidden by exchanging them
with other blocks of the other frames (Fig. 6(c), (g), (k)).

†The difference at the highest two points (whose quality is
100) is not important because humans have difficulty perceiving
differences in images with PSNRs greater than 40 dB.

When all encryption methods were applied, the encrypted
blocks differed from the original blocks (Fig. 6(d), (h), (l)).
The whole encrypted results of Akiyo, Bowing, and Coast-
guard are shown in Fig. 7. As can be seen, many blocks
were moved from the observed frames to the spatiotemporal
sides. Therefore, it is clear that the encrypted frame cannot
be without any decryption key decrypted from only itself.

4.3 Results of NSS-C-PE

The compression performances of NSS-C-PE are shown
as red lines in Fig. 5. The NSS-C-PE hardly affected the
MJPEG compression performance because the cube rotation
did not put the spatiotemporal sides in any frames (Table 2
Cube rotation (NSS-C-PE)).

Regarding the encryption robustness of NSS-C-PE, the
number of ABF attacks against cube rotation with no spa-
tiotemporal sides becomes 24N . Thus, the total number
becomes N ′C > 25N+N log2 6+

∑N
i=1 log2 i , and a sufficient cube

number N is 24. Therefore, it is considered that NSS-C-PE
is robust against the ABF attack by dividing the input video
sequence into 24 or more cubes. On the other hand, the ro-
bustness against the CJPS attack is the same as in the case of
the full C-PE because no observer can distinguish whether it
is full C-PE or NSS-C-PE. The robustness against the KBF
attack appears to be the same as in the case of the full C-PE.
However, it may be less than that of the full C-PE because
the original textures appear in each block.

5. Conclusion

We proposed cube-based perceptual encryption, which con-
sists of cube scrambling, cube rotation, cube nega-/posi-
transformation, and cube color component shuffling, and
described its application to the ETC system with MJPEG.
Since C-PE makes the intra-block observation difficult and
prevents unauthorized decryption from only a single frame,
it is more robust than the conventional B-PE against attack
methods without any decryption key. Although the cube ro-
tation affects the MJPEG compression performance slightly,
we proposed a variant, NSS-C-PE, that hardly affects com-
pression performance. Experiments showed the compres-
sion efficiency and encryption robustness of the C-PE/NSS-
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C-PE-based ETC system. As future works, the C-PE and
NSS-C-PE will be applied with some block-based MJPEG-
like compression standard with no motion compensations.
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