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Abstract—We propose a two-dimensional non-separable block- ~ 2(n)

lifting structure (2D-NSBL) that is easily formulated from the lM%> > >
one-dimensional separable block-lifting structure (1D-SBL) and 271

2D non-separable lifting structure (2D-NSL). The 2D-NSBL can >

be regarded as an extension of the 2D-NSL because a two-channel 2~ N - E(z)

2D-NSBL is completely equivalent to a 2D-NSL. We apply the : :

2D-NSBL to M-channel (M = 2", n € N) perfect reconstruction L-1v,) L M N N
filter banks (PRFBs). The 2D-NSBL-based PRFBs outperform

1D-SBL-based PRFBs at lossy-to-lossless coding, whose image

quality is scalable from I_ossless data to high compregsed IossyFig. 1. Polyphase structure dif-channel FB.
data, because their rounding errors are reduced by merging many

rounding operations.

TABLE |

Index Terms—Lossy-to-lossless image coding, perfect recon- CLASSIFICATION OF LIFTING STRUCTURES

struction filter bank (PRFB), two-dimensional non-separable

block-lifting structure (2D-NSBL) 1D-SL  1D-SBL  2D-NSL  2D-NSBL
[10-12] [13] [14], [15] Prop.
Block-Lifting — v — v
I. INTRODUCTION Non-Separable] — — v v

HE amount of video being sent over communications
networks has been steadily increasing as a result

aof . .
developments in multimedia devices and communication toomgrarch|cal lapped transform (HLT) [9]. However, there is a

Filter banks (FBs) [1] have been widely researched as a Wl wing need for better FBs in order to alleviate the burden

to efficiently compress such signals. The polyphase matriced SETVers and free up communication bandwidth.
of M-channel {1 — 2", n € N) FBs shown in Fig. 1 are Lossy-to-lossless image coding, which merges two or more
presented as ' ' pieces of data into one piece of data of the same piece

of content, i.e., “one source multi-use” image coding, has

[Ho(z) Hi(z) --- HM_l(z)}T attracted attention from researchers as a possible way to
M 1 M1 T meet this need. Reversible transforms that map integers to
=E(:z")[1 = 2~ (M-1)] . : . .

integers, called integer-to-integer transforms, are important
[FO(Z) Fi(z) - FMfl(Z)] tools for lossy-to-lossless image coding. Sweldens presented

= [1 L—1 L. Z*(Mfl)] R(zM), a lifting structure [10-12] with which to achieve integer-to-
- o integer transforms, and this structure has been applied to many

where H;(z), Fi(z), z, and -~ denote an analysis filter, aFgs[16-23]. Although JPEG XR [4] has scalability ranging

synthesis filter, a delay element, and matrix transpositiofiom |ossless to lossy as a result of using a lifting-based HLT,

respectively. IfE(z) is invertible, the inverse oE(z) can be 5 cqding performance is not sufficient especially for images
chosen as a synthesis polyphase maRik), and such FBs iy high-frequency components (texture).

are called perfect reconstruction FBs (PRFBs). WRER) = 1he gne-dimensional separable block-lifting structure (1D-
ET(z—l),.the FBs are called paraunitary FBs (PUFBs) whlchL) of BOFB was proposed in [13] for the purpose of
are special classes of PRFBs. On the other hand, PRFRSqning lifting-based FBs with higher coding performance.
that are not PUFBs are commonly called biorthogonal FRsg a1y, the design parameters and structure of lifting-based
(BOFBs). In particular, the JPEG series [2-4] and H.28%gg gre constrained when factorizing the original FB into lift-
series [5], [6] of global standards use various classes gty giryctures, whereas the 1D-SBL-based BOFBs presented
PRFBs, mcludmg the discrete cosine/sine transform (DGJA [13] do not constrain them except in the initial blotkhe

and DST) [7], discrete wavelet transform (DWT) [8], anqp sy is better at lossy-to-lossless image coding because

T. Suzuki and H. Kudo are with the Faculty of Engineering, Information and Uses fewer rounding operations in comparison with the
Systems, University of Tsukuba, Tsukuba, Ibaraki, 305-8573 Japan (e-mail:
{taizo, kudg @cs.tsukuba.ac.jp). 1The determinant of the initial block is constrained to be an integer value.



standard 1D separable lifting structure (1D-SL). Furthermorand LI(z) are related as follows:
the two-dimensional non-separable lifting structure (2D-NSL)

for DWTs proposed in [14], [15] performs even better at i iia jr';gs;léi((ﬁggxz))
coding because it uses fewer rounding operations than the 1D- Yi=Xi Yi (Case A
SL i =y —round(H(2)y;) = x;
' . z; =y; —round(£(2)x;) = x;
Here, we propose a 2D non-separable block-lifting structure — x; + round(81(2)x, )
(2D-NSBL) that is easily formulated from the 1D-SBL and Vi B Xf + round(£(2) J_)
2D-NSL methods. The 2D-NSBL can be regarded as an 3Z'J _ 7 round(&( )yf) . (Case B.
extension of the 2D-NSL because a 2D-NSBL with= 2 is j= Yy ron 2Yi) = X
z; = y; — round($(2)x,) = x;

completely equivalent to a 2D-NSL. We apply the 2D-NSBL

to M-channel PRFBs and show that the PRFBs perform better these cases, the matrices and their inverse matrices are

at lossy-to-lossless coding than the conventional 1D-SBEexpressed by

based PRFBs do because their rounding errors are reduced_ < . . <.

by merging many rounding operations. C[yz} = 20(z) { l] : [ l} =W ' (2) Bl} = [ l} ;
The remaining part of this paper is organized as follows. We !

review and define the block-lifting structure, 1D—SBL—baseWhere

PRFBs, and 2D-NSL-based DWTs in Section Il. Section IlI By (2)BLr(z) (CaseA
presents the derivation of the 2D-NSBL and its application to 2(z) = B, (2)By(z) (Case B
M-channel PRFBs. Design examples, lossy-to-lossless image B .

coding simulations, and comparisons with the conventional g1y _ {%L (2)B; () (Case A
PRFBs are shown in Section IV. Section V concludes this B, '(2)B;'(z) (Case B
paper. )

I Mz _ I —U(z
Notations: A classification of lifting structures is shown in By (z) = [0 % } ) %Ul(z) = {0 I( )}
Table. I.1,,,, 0, det(-), andround(-) denote ann x m identity I o I 0

. . . . . -1

matrix, a null matrix, determinant of a matrix, and a rounding ~ Br(2) = [S(z) I] , B ()= |:—£(z) I] :
operation, respectivel\L,,, is simply expressed by if its size
is clear. Indexes, y, w, and2d in the matrices mean to operatéNote that the rounding operations are actually implemented
horizontally, vertically, horizontally or vertically{ = = ory), €ven if the lifting matrix expression omits the notation of them.
and horizontally and vertically, respectively. For example, The block-lifting structure for a 1D implementation is called
“1D-SBL” to distinguish it from the “2D-NSBL” proposed in

this paper. When\/ = 2, they will also be called “1D-SL"
T?x = xTT, TVx = Tx, andT?x = TxT7, and “2D-NSL”.

whereT andx are a transform matrix and a 2D input signalB. 1D-SBL-based PRFBs

respectively. The polyphase matriE(z) of an M-channel PRFB of filter
length MK (K € N, K > 2) is expressed as [24]

1

E(z) = E G 1
ll. REVIEW AND DEFINITIONS (2) k:ll_([—l{ k(2)}Go, )
where the initial blockGg is an M x M nonsingular matrix
A. Block-Lifting Structure and the building blockE, (z) is expressed by

7 _ T —1 T
A lifting structure [10-12] is a transform that map integers E(z) =T-UpV) + 27UV

to integers by implementing rounding operation in each liftinGhe M x ~, parameter matrice®;, andV,, satisfy
step; i.e., it is a means of lossy-to-lossless image coding.

The elementary matrices are identity matrices with one single Lo X

nonzero off-diagonal element. However, an FB with too many T 0 1 N

iy ) . viu, = 2 W,
lifting steps cannot perform good coding because it generates - _

a rounding error in each lifting step. 0 ' O. >1<

We proposed the block-lifting structure in [13], which is a Vi XYk
special class of standard lifting structure (Fig. 2). It is good favhere x indicates possibly nonzero elements and is a
lossy-to-lossless image coding because it reduces the roundif@Millan degree ¢ € N, 1 < 4 < M —1). Wy =1
error by merging many rounding operations. In Fig. 2, thehen the filter lengths in analysis and synthesis banks are
analysis input signal vectors, and x;, the analysis output equal. A synthesis polyphase mati#X(z) is defined as one
(synthesis input) signal vectoys andy ;, the synthesis output that has the PR properR(z)E(z) = I. Moreover,U;, and
signal vectors; andz;, and the lifting coefficient block€(z) Vi are defined adf;, = [u}, u};|” and vV, = [v},, vi,]7,
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Fig. 2. Block-lifting structures. Black and white circles mean adders and rounding operations, respectively: (left) Case A and (right) Case B.

whereuyo andvyg are (M — ~;) X v, matrices andi,; and where
Vi1 areqg X v square matrices. Wheyl, = Uy, the PRFB 1 un(2) 1 0
has the paraunitary property, i.e., PUFB. In this paper, we fix wi(z) = [0 1 } L (2) 1] .
Wi =Tand~, = M/2. k
We factorized the PRFBs into the 1D-SBL in [13]. The 1DFor example, 5/3-DWT had’ =1, s = 1, ug(z) = (1 +2) /4

SBL-based PRFBs represeh,(z) in Eqg. (1) as andlo(z) = —(1 + 271)/2. If an image is transformed by
B I o1 U, AG) I UJ[I o the 2D-NSL-based DWT polyphase matrig’(224), one can
HE =1L 1o 1 o I ||L, 1| Wrte

T T T T 1T
whereLy = v viy, Ui = upvy,, and Y Yin Yiw Yiyl
T

A() [I 0 } =eil(z00) [XTr, Xt Xiw Xhw)
z) = 1y -

0 =71 where X, Xy, Xrn, and Xy are the top-left, top-right,
In addition, det(Gg) is constrained to belet(G,) = +n bottom-left, and bottom-right pixels iix 2 blocks composing

(n € N) for the purpose of making a lifting factorization.the image,Yr;, Yur, Yo, andYyy are their output pixels,
If paraunitariness is not requirell,, andU,, can be arbitrary and

M /2x M /2 matrices. To improve coding performance, Eq. (1) 22 0 0 0
can be rewritten as (Fig. 3) €2 (299) = {0 L 0 H W2 (29).
1 0 0 s72|k=nN-1
E(z) = Wk(z) H {A(2)W(2)}Go, (2) g _ _
B K1 w2d(z9q) in €*(294) is represented as [14], [15]
where 1 [uf(ze) up(zy) —uit(z2a)
Wl [T U,z)][ T 0 Wi (200) = {0 k(o) i ZIZ R ]}
w(z) = {0 I ] [ik(z) I} 1o 0
- o (k = K) , {li(zz)} [ {ug(zy)}
Uil=) = {(zl —1)U;, (otherwise zg((,)zy) ; “k(lzr)
R L (k=1) ] I, 0 2
o) ={Lis  (h=K) | N ) gy 1) ©

Ly — Ly—1 (otherwisg The 2D-NSL is also more effective at lossy-to-lossless image
In comparison with the 1D-SBL-based PRFBs in Eq. (1), thepding than the 1D-SL is because it uses fewer rounding
1D-SBL-based PRFBs are more effective at lossy-to-losslegserations.
image coding because they reduce the rounding error by

merging more rounding operations. I1l. 2D-NSBL-BASED PRFBs

C. 2D-NSL-based DWTs A. Derivation of 2D-NSBL

1D-SL-based 9/7-tap and 5/3-tap DWTs (9/7-DWT and 5/3- We introduce 2D-NSBL in this subsection.
DWT) [8] are used in the JPEG 2000 [3] lossy and lossless Theorem: Consider an image that has been 2D-
modes, respectively. La#(z) be a polyphase matrix of 1D- transformed by the set of lower and upper block-lifting matri-
SL-based DWTs, expressed as ces in Fig. 2 as follows:

YT, Yo Yii Yha]

T
k=N—-1 :m2d(z2d) [X}:L XEL XEH XIF}H}

. (4
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Fig. 3. 1D-SBL-based PRFB. Black and white circles mean adders and rounding operations, respectively.

where Proof: When a matrix¥ = T,_1---To (n € N) is
M (2, mY 0 applied to a 2D input signat in the horizontal and vertical
W (29) = [ O(Z ) %x(zz)} P [ O(Zy) WY (z,) P directions, the output signal is expressed as [25]
. By (2w)B1 (20) (Case A
Y (2) = — T _ T ..pT
(2w) {%"f(zw)%}?(zw) (Case B y=TxT =T, - - ToxTd ... TL . (6)
I 00 O
0 0I 0 This Eqg. (6) means that the 2D implementation 'Bf is
P = 0I o of” performed after that ofl',_; (1 < k < n —1), i.e., the two
0 0 0TI block-lifting matricesB7 (z,,) and®B{;(z,) in Eq. (4) can be

) operated separately. The resulting representaticfiiof (zo,)
X, Xpr, X, andX gy are the top-left, top-right, bottom- is

left, and bottom-right\/ /2 x M /2 blocks of anM x M image,
andY;r., Ygr, Yru, andY gy are their respective output

blocks (Fig. 4).283%(zy,) in Eq. (4) can be factorized into W 2y) — B (204)B7(204) (Case A %
three 2D-NSBL matrices, as follows (Fig. 5): M) B2 (299) B2 (25)  (Case B,
AW (209) = W57 (224) W7 (220) 05" (224), (5)
where
where
Isni/2 0 2d (B (2,) O } {%y(z ) 0 }
, B (29) = | L P TE P
£ £7(2) £7(20)] 11 PE0 = we] Pl 0wy
Case ! 0 0 0
Wi (22) = | . y 2(d 2 £7(2,) I 0 o0
I [Ll (22) W(z,) M (zzd)w = £Y(z,) 0 I 0
10 | ESYRP | €% (200) £Y(2,) £%(2) 1
(Case B y [B7(x) 0 BY(2,)
\ % — U\~x . P U\~y P
I o0 o P = [P0 | P70 )
£%(2) 1Y (zy) [T 3%(2) W(z,) U (z5)
%Qd _ |: :| I |: ;. Y Zy Zy 22d
v = e e o1 0 MYz,
L O 0 I “lo o I 8% (2,)
I [ﬂx(zm) uy(zy) _u2d(22d)}] _0 0 0 I
0 Lsni/2 _ . o L
ince the lifting matrix will have inevitably generated round-
(Case A S the lift t Ilh tabl ted d
Q;Ugd(zm) =9q . ing operations in a process, as described in Section II-A, we
Lsni/o 0 separate each 6B%(zy;) and B (zy,) into two 2D-NSBL
[-2"(e0) £(2) &) T matrices:
(Case B
2d 2d
It is clear that the 2D-NSBL is an extension of the 2D-NSL B2 (29) = %gil(@d)%%)(zw) (Case A ®)
in [14], [15] because the 2D-NSBL with/ = 2 in Eq. (5) By (22a)B71(224) (Case B
(Case A) is completely equivalent to the 2D-NSL in Eqg. (3). B2 g2 Case
Furthermore, a 2D-NSBL with the McMillan degreg, # B (294) = { gf<z2d) g}<22d) <C A (9)
M /2 can be easily obtained. B (220)Bo(z2a) (Case B,
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Fig. 4. 2D implementation of 1D-SBL. Black and white circles mean adders and rounding operations, respectively: (left) Case A and (right) Case B.

where
r I
2 _ 3M/2 N
) = (02100 (o) £7(:0)]
[ I 0 0
L7 (2,
B (20q) = [gvgzy;] Ly 0
L 0 0 I
- I )
32 _ 3M /2 N
L2(%24) (€% (200) £Y(z,) £%(2.)]
z y 2d
ey [ ) ) 1)
_O IgM/Z
T o 0
uy
%%Jdl(zzd): 0 Ly [HEEZH
0 0 I
_I T J— d
w5 - |1 (807 (2,) u1(2y> 1% (239)]
I 3M/2

Consequentlyﬂﬁ2d(22d) is expressed as

o2 B (220) BT (220) BTG (220)  (Case A
(224) = B2 () 232 2d c
12(224) BTy (224)Bo(224) (Case B,
where
I 0 0
£5 (2, Y (z
B (20) = Bl (220) = [Sygzﬁ} T legzzg

0 0 I

0
I

|

|

where
A (z20) = :A(ozr) A(gm} i [ng) A<2y>>} i
W w,ﬁ) Wio(zx)} o [wz()(zw Wzﬂ(gy)] P
=[5 &]eS &)

Applying Case A of the proposed 2D-NSBL in Eq. (5) to
W2 (29,) yields

I
W2 (294) =
i (224) L)

—

Uf(z2) Ollz) ﬁi%)}]
Isnr/2

I 0 0
Fﬁs(zz) - FZ(@)]
0 0 I

Isni)2 0
B2 Tl(z) Ti(e)] 1

For G2¢, a 1D-SL factorization is used. As is done in [13],
we use the single-row elementary reversible matrix (SERM)
presented in [16] for each initial bloc&y, where any other
1D-SL factorization can be applied @ .

from Eqgs. (7)-(9). The resulting equation is completely the

same as Eq. (5).

B. Application to PRFBs

IV. EXPERIMENTAL RESULTS

A. Filter Design

Here, we will apply the 2D-NSBL in Eq. (5) to the conven-

tional 1D-SBL-based PRFBs in Eq. (2). LBE%(zy4) be a 2D

By following the method presented in [13§ x 16 and

separable polyphase matrix based on a 1D separable polypiase 24 BOFBs with order-1 building blocks were de-
matrix E(z) in Eq. (2). Since the 2D implementation ofsigned by using the cost functioft and fminunc.m in

the separable block transform allows us to change the orddptimization ToolBox

of MATLAB ¢ was a weighted

in which the blocks are operated on, the polyphase matfiRear combination of the coding gaificc and the stopband

E?!(2y,) can be expressed as
1

E*(20) = Wi(z20) [ {A™(220) W7 (220) }G3Y,

k=K-1

attenuation values of analysis and synthesis filtégg, and
CSAS:

¢ = (w1Cs40 + w2Csas) — w3Ccq,
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Fig. 5. 2D-NSBL. Black and white circles mean adders and rounding operations, respectively: (top) Case A and (bottom) Case B.

TABLE I
LOSSLESS IMAGE CODING RESULTSLBR [BPH]).

Conventional Methods Proposed Method
Test Not Lifting 1D-NSL 1D-SBL [13] 2D-NSBL
Images || 8 x 8 DCT [26] | 4 x 8 HLT [9]  5/3-DWT [14], [15] | 8 x 16 BOFB 8 x 24 BOFB | 8 x 16 BOFB 8 x 24 BOFB
Barbara — 4.81 4.86 4.79 4.76 4.76 4.75
Boat — 5.13 5.09 5.09 5.10 5.08 5.09
Finger — 571 5.83 5.66 5.65 5.65 5.64
Grass — 6.05 6.06 6.05 6.05 6.05 6.05
Lena — 4.61 4.48 4.63 4.62 4.61 4.61
Pepper — 4.96 4.85 4.93 4.92 4.92 4.92
Bridge — 4.63 4.65 4.65 4.67 4.63 4.63
Deer — 477 4.76 4.76 4.76 4.74 4.74
Arri — 11.28 11.40 11.27 11.27 11.27 11.27
Face — 10.33 10.37 10.28 10.28 10.28 10.28

wherew;s are weighted coefficient€/ce, Csaq., and Csas  region of H;(z) and F;(z), respectively. The input signal
are x(n) is the AR(1) process with an intersample autocorrelation
2 coefficientp = 0.95 in common use.

Oy

CCG =10 loglo M—1
k=0 0% I fil?

M—1
Csaa = W H;(e7°))%d :
Sda kZ:O we [Hi(e") | dw B. Lossy-to-Lossless Image Coding
M-1
Cons = W7 | Fy(e7) 2 dw, The resulting BOFBs were implemented with a rounding
o Jwen; operation at each lifting step and compared in terms of the

lossless bitrate (LBR) [b in lossless image coding:
whereo?, o2, || fi |, Wg, W¢, andQ; are the variance of (LBR) [bpp] 9 9

the input signal, the variance of tli¢h subbands, the norm of ) )
the i-th synthesis filter, weighting functions for the stopband LBR [bpp] = Total number Of_ bits [b'lt]
attenuation of the analysis, synthesis bank, and the stopband Total number of pixels [pixel]




TABLE Il
LOSSY IMAGE CODING RESULTYPSNR pPB]).

Conventional Methods Proposed Method
Test Bitrate Not Lifting 1D-NSL 1D-SBL [13] 2D-NSBL
Images  [bpp] || 8 x 8 DCT [26] | 4 x 8 HLT [9]  9/7-DWT [14], [15] | 8 x 16 BOFB 8 x 24 BOFB | 8 x 16 BOFB 8 x 24 BOFB
0.25 26.96 26.85 27.24 28.04 28.64 28.05 28.65
Barbara 0.50 30.40 30.43 30.46 31.63 32.18 31.67 32.20
1.00 34.98 35.05 34.85 35.88 36.26 35.94 36.38
0.25 27.85 27.62 28.45 28.26 28.62 28.25 28.63
Boat 0.50 30.87 30.87 31.38 31.35 31.61 31.36 31.63
1.00 34.39 34.31 34.48 34.66 34.85 34.70 3491
0.25 22.78 22.96 23.49 23.52 23.86 23.51 23.86
Finger 0.50 25.42 25.56 25.98 26.43 26.93 26.43 26.95
1.00 29.17 29.01 29.07 30.06 30.78 30.07 30.81
0.25 24.00 23.99 24.35 24.27 24.50 24.28 24.50
Grass 0.50 25.94 25.86 26.09 26.30 26.61 26.30 26.62
1.00 28.70 28.68 28.68 29.08 29.42 29.10 29.44
0.25 30.55 31.65 32.50 32.20 31.85 32.20 31.86
Lena 0.50 34.43 35.03 35.49 35.41 35.65 35.44 35.73
1.00 38.87 38.65 38.63 38.68 38.76 38.78 38.95
0.25 29.84 31.20 31.90 31.45 31.08 31.45 31.10
Pepper 0.50 32.83 33.95 34.45 33.97 33.70 34.01 33.76
1.00 35.75 35.59 36.08 35.92 36.01 35.97 36.11
0.25 31.11 31.14 31.79 31.93 32.19 31.94 32.22
Bridge 0.50 33.76 34.06 34.25 34.57 34.54 34.60 34.63
1.00 36.64 37.35 36.83 37.24 37.27 37.38 37.42
0.25 34.14 33.96 34.10 33.88 34.02 33.90 34.06
Deer 0.50 35.10 34.83 34.88 34.99 35.06 35.03 35.13
1.00 37.45 36.97 36.83 37.11 37.04 37.20 37.27
0.25 31.92 33.22 33.28 33.63 34.14 33.63 34.14
Arri 0.50 36.82 36.75 37.30 38.26 38.98 38.26 38.98
1.00 41.80 42.28 41.97 43.87 43.93 43.87 43.93
0.25 45.01 45.49 45.96 46.27 46.67 46.27 46.67
Face 0.50 47.85 48.40 48.72 48.98 49.31 48.98 49.31
1.00 50.87 51.47 51.68 51.89 52.22 51.89 52.22

and the peak signal-to-noise ratio (PSNR) [dB] in lossy imageerformed better on images with many low frequency com-

coding: ponents, overall, the 2D-NSBL-based BOFBs outperformed
) the conventional methods. These results are considered to be

PSNR [dB]= 101og;, MAXS, 7 _due to the merging (reducing) of many r_oundi_ng operations

MSE in the 2D-NSBL-based BOFBs. Comparing Figs. 4 and 5,

) ] ) it is clear that the number of rounding operations of the
where MAX, and MSE are the maximum possible pixel valugp non-separable implementation is the almost half that of
of the image and the mean squared error, respectively. (i 1D separable implementation. However, there were no
evaluate transform performance fairly, we employed tWogitferences between the 1D-SBL and 2D-NSBL of BOFBs

three-, six-, and two-level decompositions, respectively, on the g-pit images. In the future, we should solve the problem
eight-channel DCT [26] (H.265/HEVE)HLT [9] (JPEG XR), in high bit images.

1D-NSL-based DWTs without adaptive directionalities [14],

[15], and eight-channel BOFBs. The 1D-SBL-based BOFBs

had the same transfer function as the proposed FBs. The image

set included six%12 x 512 eight-bit standard grayscale images We devised a 2D-NSBL and applied it 3d-channel PRFBs

in [27], two 2048 x 2048 eight-bit clipped grayscale images inin lossy-to-lossless image coding. The 2D-NSBL is easily

[28], and two02816 x 1600 16-bit grayscale images in [29]. A formulated from the 1D-SBL and 2D-NSL methods and can

quadtree-based embedded image coder EZW-IP [30] was ubédregarded as an extension of the 2D-NSL because it is

to encode the transformed images. EZW-IP is more suited@@mpletely equivalent to a 2D-NSL wheWl = 2. A lossy-to-

block transforms than are the popular zerotree-based codé@ssless image coding experiment confirmed the improvements

e.g., EZW [31] and SPIHT [32]. A periodic extension was useiiat could be had with 2D-NSBL.

in the image boundary processing of the BOFBs, whereas the

extensions used in JPEG XR and JPEG 2000 were used as the ACKNOWLEDGMENT

respective boundary processings of the HLT and DWTs.
Tables I, Ill, and Fig. 6 show lossless and lossy imagr%

coding results. Although the conventional methods sometimI

V. CONCLUSION
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2Since the DCT in H.265/HEVC is not composed of liting structures, it i@orted by JSPS Grant-in-Aid for Young Scientists (B), Grant
unsuitable for lossless image coding. Number 25820152.



Fig. 6. Comparison of a particular area of an im&grbara (bitrate: 0.25 [bpp]): (left-right)8 x 8 DCT, 4 x 8 HLT, 2D-NSL-based 9/7-DWT8 x 24
1D-SBL-based BOFB [13], anl x 24 2D-NSBL-based BOFB.
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