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Reversible Symmetric Non-Expansive Convolution:
An Effective Image Boundary Processing for
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Abstract—We present an effective image boundary processing for
M -channel (M ∈ N, M ≥ 2) lifting-based linear-phase filter banks
(L-LPFBs) that are applied to unified lossy and lossless image com-
pression (coding), i.e., lossy-to-lossless image coding. The reversible
symmetric extension (RevSE) we propose is achieved by manipulating
building blocks on the image boundary and reawakening the symmetry
of “each building block” that has been lost due to rounding error
on each lifting step. Moreover, complexity is reduced by extending
non-expansive convolution, called reversible symmetric non-expansive
convolution (RevSNEC), because the number of input signals does not
even temporarily increase. Our method not only achieves reversible
boundary processing, but also is comparable to irreversible SE (IrrSE)
in lossy image coding and outperformed periodic extension (PE) in lossy-
to-lossless image coding.

Index Terms—Lifting-based linear-phase filter bank (L-LPFB), lossy-
to-lossless image coding, reversible symmetric extension (RevSE), re-
versible symmetric non-expansive convolution (RevSNEC).

I. INTRODUCTION

Filter banks (FBs) [1] have been contributing to signal processing
and communication tools for many years. They have often been
employed as transforms in image compression (coding) because they
have extensive frequency selectivity and high coding gain. FBs with
linear-phase (LP) properties, i.e., LPFBs [2–8], including lapped
transforms (LTs) [9–14] are particularly one of the most useful
transforms for image coding. LPFBs can be easily designed and
they simply overcome problems with image boundary distortion via
symmetric extension (SE) [2] that maintain continuity at the image
boundary. The output signals can be reconstructed without image
boundary distortion by using symmetry even if the extended signals
are not transmitted to the synthesis bank. Symmetry means that when
an input signal vector for a building block is the reflected vector of
another input signal vector, their output signal vectors also have the
same relationship. Smith and Eddins [2] achieved such SE by using
the symmetry of “whole FB.”

Lifting structures with rounding operations have also been pre-
sented [15–17]. A transform only composed of lifting structures and
integer multipliers achieves an integer-to-integer transform that maps
integer input signals to integer output signals. Thus, many lifting-
based FBs (L-FBs) [18–23] including lifting-based LTs [24–26] have
been proposed, and the structures have led FBs to achieve lossy-
to-lossless image coding, which is unified lossy and lossless image
coding, such as JPEG 2000 [27] and JPEG XR [28]. Discrete wavelet
transforms (DWTs) [17] in JPEG 2000 have demonstrated excellent
coding, whereas L-FBs have greater potential for lossy-to-lossless
image coding due to their higher degrees of design freedom than
DWTs. Several reversible smooth extensions have in fact been applied
to 2-channel L-FBs including DWTs [21], [22], [29]. However, no
smooth boundary extensions can directly be applied to generalized
M -channel (M ∈ N, M ≥ 2) L-FBs. 4 × 8 hierarchical lapped
transform (HLT) [30] in JPEG XR is well-known as one of the most
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popular L-FBs. Although it uses a constrained case of the image
boundary solution we propose later, M×2M L-LPFB case, it causes
a little bit boundary error because SE cannot be precisely achieved
by ignoring the scaling coefficients. Periodic extension (PE), which
causes image boundary distortion, is often reluctantly used for lossy-
to-lossless image coding based on M -channel L-FBs even if it has
LP properties because rounding error on each lifting step corrupt
symmetry [26].

We solve the image boundary problem in lossy-to-lossless image
coding based on M -channel lifting-based LPFBs (L-LPFBs) by
focusing on the symmetry of “each building block” unlike that of the
“whole FB” [2]. Although the proposed reversible SE (RevSE) is not
completely equivalent to SE, which is called irreversible SE (IrrSE)
to distinguish it from RevSE, it can obtain very similar smoothness
to IrrSE at the image boundary even if rounding operations are
used. Moreover, complexity is reduced by extending non-expansive
convolution [13], called reversible symmetric non-expansive convo-
lution (RevSNEC), because the number of input signals does not
even temporarily increase. The proposed RevSNEC can be applied
to M × MK (K ∈ N, K ̸= 0, and K must only be odd in odd
channel case) L-LPFBs which are extensions of M × 2M L-LPFBs
as HLT in JPEG XR. The RevSNEC not only achieves reversible
boundary processing, but also is comparable to IrrSE in lossy image
coding and outperformed PE in lossy-to-lossless image coding.

The remaining part of this paper is organized as follows: Sec. II
reviews the lattice structures of LPFBs and explains how we derive
their lifting structures. Sec. III presents IrrSE using symmetry of
“each building block” newly in both even and odd channel cases.
This structures are extended to RevSE and RevSNEC by simple
matrix manipulations. Filter design examples, lossy-to-lossless image
coding simulations, and comparisons to the conventional methods are
presented in Sec. IV. Sec. V concludes the paper.

Boldface letters represent vectors or matrices. IN , JN , 0, ·T ,
diag(· · · ), and det(·) respectively denote an N×N (N ∈ N, N ̸= 0)
identity matrix, N×N reversal identity matrix, null matrix, transpose
of a matrix, block diagonal matrix, and determinant of a matrix.

II. LATTICE AND LIFTING STRUCTURES OF LPFBS

A. Linear-Phase Filter Banks (LPFBs)

When m ∈ N, m ̸= 0, M = 2m (M is even) and M = 2m + 1
(M is odd), the type-II analysis polyphase matrix E(z) in M×MK
LPFBs are presented as in Tran [6]:

E(z) = E0G1(z) · · ·GK−2(z)GK−1(z) (1)

where

E0 = Φ0W, Gk(z) = Λ(z)WΦkW,

Φk =


diag{Ue,k,Ve,k} (M is even)
diag{Uo,k,Vo,k} (M is odd, k is even)
diag{Uo,k, wk,Vo,k} (M is odd, k is odd),

Λ(z) =

{
diag{Im, z−1Im} (M is even)
diag{Im+1, z

−1Im} (M is odd),

W =



1√
2

[
Im Jm

Jm −Im

]
(M is even)

1√
2

Im 0 Jm

0
√
2 0

Jm 0 −Im

 (M is odd),

Ue,k, Ve,k, and Vo,k are m × m arbitrary nonsingular matrices,
Uo,k is an (m+1)×(m+1) or m×m arbitrary nonsingular matrix
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Fig. 1. Building blocks of M -channel L-LPFB in even channel case (white
circles mean rounding operations, bold arrows mean m × 1 vector signals,
and narrow arrows mean scalar signals).

when k is even or odd, and wk is a nonzero scalar. Also, either
Ue,k or Ve,k and Vo,k are usually replaced by Im when k ≥ 1
to eliminate redundancy. If E(z) is invertible, synthesis polyphase
matrix R(z) can be chosen as the inverse of E(z), i.e., the perfect
reconstruction (PR) property R(z)E(z) = IM is satisfied. The
LPFBs are paraunitary LPFBs (PULPFBs) if all Ue,k, Ve,k, Uo,k,
and Vo,k are orthogonal matrices and wk is 1, and the others are
biorthogonal LPFBs (BOLPFBs). In PULPFBs, m must be m ≥ 2.
As described in Sec. III-A, IrrSE can simply be applied to the LPFBs
to improve coding performance.

B. Lifting-based Linear-Phase Filter Banks (L-LPFBs)

This subsection presents L-LPFBs based on the polyphase matrix
in Eq. (1). When all lifting steps are implemented with rounding
operations, L-LPFBs achieve integer-to-integer mapping, i.e., the
lossless mode. The building block Gk(z) in Eq. (1) to achieve this
is represented as

Gk(z) = Λ(z)WΦkW = Λ(z)WLΦkWR ≜ Λ(z)Ξk

where

WL =



[
Im 0

Jm Im

][
Im − 1

2
Jm

0 Im

]
(M is even) Im 0[

0

Jm

]
Im+1

[
Im

[
0 − 1

2
Jm

]
0 Im+1

]
(M is odd)

and

WR =



[
Im

1
2
Jm

0 Im

][
Im 0

−Jm Im

]
(M is even)

[
Im

[
0 1

2
Jm

]
0 Im+1

] Im 0[
0

−Jm

]
Im+1

 (M is odd).

The top half of Fig. 1 outlines the building block of L-LPFB in
even channel case. Let ·̂ be a matrix factorized into lifting structures
with rounding operations. Hence, Ξ̂k, Ûe,k, V̂e,k, Ûo,k, and V̂o,k

respectively mean matrices factorizing Ξk, Ue,k, Ve,k, Uo,k, and
Vo,k into lifting structures with rounding operations. Although any
lifting factorization can be applied to them if each |det(Ue,k)|,
|det(Ve,k)|, |det(Uo,k)|, |det(Vo,k)|, and |wk| is an integer value,

single-row elementary reversible matrices (SERMs) [18] have been
applied to PULPFBs designed in this paper because they have fewer
rounding operations than the others. Also, let W0 be W in the last
block E0. W0 in PULPFBs is factorized by using the traditional
three steps lifting factorization of the Givens rotation matrix. On the
other hand, BOLPFBs based on time-domain LTs (TDLTs) in [14]
and lifting-based DCT in [31] are designed in this paper because
they not only are simple but also have high coding performance.
IrrSE cannot directly be applied to the L-LPFBs as explained in Sec.
III-B. We will explain our solution to the problem in the next section.

III. IMAGE BOUNDARY PROCESSING FOR L-LPFBS

Let symmetry be that of “each building block” unlike that of the
“whole FB” in Smith and Eddins [2]. PR is satisfied by using such
symmetry without receiving redundant signals in the synthesis bank.
First, IrrSE is investigated in both case of even and odd channels.
Furthermore, RevSE for the lossless mode is presented with Cases
I and II. Case I means building blocks that do not step over the
image boundary, and Case II means those that just step over the
image boundary. Moreover, the redundancy of RevSE is eliminated
by extending non-expansive convolution [13], called RevSNEC.

A. Irreversible Symmetric Extension (IrrSE)

Fig. 2 shows IrrSE in even channel case. Let Xk, JMXk, Yk, and
Zk correspond to an M × 1 input signal vector for a building block
Ξk, a reflected vector of Xk, an output signal vector of ΞkXk, and
an output signal vector of ΞkJMXk as Yk = ΞkXk and Zk =
ΞkJMXk. Symmetry means

Yk = JMZk. (2)

We demonstrate this symmetry is satisfied in both Cases I and II.

1) Case I (Not Stepping Over Image Boundary): Xk is an input
signal vector for Ξk that does not step over the image boundary
in this subsection. Let Xk be Xk = [AT

k ,BT
k ]

T (M is even) or
[AT

k , ck,BT
k ]

T (M is odd) where Ak and Bk are m× 1 vectors and
ck is a scalar. Also, let Uo,k (k is even) be redefined as

Uo,k =

[
uk sk
tk uk

]
where uk, sk, tk, and uk correspond to m×m, m×1, 1×m matrices,
and a scalar. The output signal vectors Yk and Zk are expressed by

Yk = ΞkXk

=



1
2

[
Ue,kUk + JmVe,kVk

JmUe,kUk −Ve,kVk

]
(M is even)

1
2

 ukUk +
√
2cksk + JmVo,kVk√

2tkUk + 2ukck

Jm(ukUk +
√
2cksk)−Vo,kVk


(M is odd, k is even)

1
2

Uo,kUk + JmVo,kVk

wkck

JmUo,kUk −Vo,kVk

 (M is odd, k is odd)
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Fig. 2. IrrSE by M × 3M LPFB in even channel case (dashed lines, bold arrows, narrow arrows, dark gray blocks, light gray blocks, and white blocks
correspond to image boundary, m× 1 vector signals, scalar signals, blocks that do not step over image boundary, blocks that just step over image boundary,
and inner blocks).

and

Zk = ΞkJMXk

=



1
2

[
Ue,kUk − JmVe,kVk

JmUe,kUk +Ve,kVk

]
(M is even)

1
2

 ukUk +
√
2cksk − JmVo,kVk√

2tkUk + 2ukck

Jm(ukUk +
√
2cksk) +Vo,kVk


(M is odd, k is even)

1
2

Uo,kUk − JmVo,kVk

wkck

JmUo,kUk +Vo,kVk

 (M is odd, k is odd),

where Uk = Ak + JmBk and Vk = JmAk − Bk, respectively.
Consequently, it is clear that symmetry is satisfied as Yk = JMZk

in Eq. (2). Precisely, this means that when an input signal vector is
the reflected vector of another input signal vector, their output signal
vectors also have the same relationship.

2) Case II (Just Stepping Over Image Boundary): Xk is an input
signal vector for Ξk that just steps over the image boundary in
this subsection. Let Xk be Xk = [(JmBk)

T ,BT
k ]

T (M is even) or
[(JmBk)

T , ck,BT
k ]

T (M is odd) where Bk is an m × 1 vector and
ck is a scalar. Similar to Case I, it is clear that symmetry is satisfied
as Yk = JMZk in Eq. (2) where

Yk = Zk =



[
Ue,kJmBk

JmUe,kJmBk

]
(M is even) Uo,kJmBk

wkck

JmUo,kJmBk

 (M is odd).

B. Reversible Symmetric Extension (RevSE)

IrrSE in Sec. III-A is only for the lossy mode. We solve the
problem with symmetry lost due to rounding errors in the lossless
mode in this subsection. It can be solved with a very simple
matrix manipulation where Ξ̂k for extended signals is replaced
with JM Ξ̂kJM except for the case where the process involves just
stepping over the image boundary. Fig. 3 shows a realization of the
symmetry of L-LPFBs with rounding operations in even channel case.

1) Case I (Not Stepping Over Image Boundary): When Xk is an
input signal vector for Ξk that does not step over the image boundary
and rounding operations are considered, this is expressed as Y ′

k ≜
Ξ̂kXk ̸= Yk and Z ′

k ≜ Ξ̂kJMXk ̸= Zk. Obviously, symmetry is lost
as Z ′

k ̸= JMY ′
k due to rounding error on each lifting step. Therefore,

we cannot use this extension as it is. We need to refocus on Ξk before
it is factorized into lifting structures. According to Eq. (2), Ξk can
be represented by

Ξk = JMΞkJM . (3)

However, when Ξ̂k is used instead of Ξk, this relationship is not
preserved completely as Ξ̂k ̸= JM Ξ̂kJM , where each building block
Ξ̂k for extended signals is replaced by JM Ξ̂kJM . Although this
transform at the boundary is different from a normal transform with
Ξ̂k, this difference is trivial. By replacing Ξ̂k for extended signals,
the implementation in the case of reflected input signal vector JMXk

is expressed as JM Ξ̂kJM · JMXk = JM Ξ̂kXk = JMY ′
k. Fig. 1

shows the symmetry in building blocks Ξ̂k and JΞ̂kJ of L-LPFB in
even cannel case. As a result, it is clear that symmetry can be satisfied
by a simple matrix manipulation for extended signals as Eq. (3) even
if rounding operations are implemented.

2) Case II (Just Stepping Over Image Boundary): When Xk is an
input signal vector for Ξk that just steps over the image boundary
and rounding operations are considered, it is clear that symmetry as

Y ′
k = JMZ ′

k, (4)

where

Y ′
k = Z ′

k =



[
Ûe,kJmBk

JmÛe,kJmBk

]
(M is even) Ûo,kJmBk

wkck

JmÛo,kJmBk

 (M is odd),

is structurally satisfied even if the rounding operations are imple-
mented in this case similar to those in Sec. III-A2. Ξ̂k for extended
signals can be replaced by JM Ξ̂kJM in this case because it is clear
that Ξ̂k = JM Ξ̂kJM unlike that in Sec. III-B1, where we did not
replace it for the sake of simplicity.
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Fig. 3. RevSE by M × 3M L-LPFB in even channel case (dashed lines, bold arrows, narrow arrows, dark gray blocks, light gray blocks, and white blocks
correspond to image boundary, m× 1 vector signals, scalar signals, blocks that do not step over image boundary, blocks that just step over image boundary,
and inner blocks).

C. Reversible Symmetric Non-Expansive Convolution (RevSNEC)

It is important for the input and output signals for Ξ̂k to always
achieve symmetry as explained in Sec. III-B. Therefore, only Ξ̂k that
just stepping over the image boundary should be considered, and only
m or m+ 1 output signals are used to the next block as follows:

1) When M is even, either Ûe,kJmBk or JmÛe,kJmBk in the
output signals in Eq. (4) are used.

2) When M is odd, either [(Ûo,kJmBk)
T , (wkck)

T ]T or
JmÛo,kJmBk in the output signals in Eq. (4) are used.

Consequently, RevSE in the above subsection can be replaced by non-
expansive convolution [13], called RevSNEC, as seen in Fig. 4. This
RevSNEC is less complex because it does not need any temporarily
extensions to the input and output signals at the image boundary.
Also, since Ûe,k (k ̸= 0) usually adopts Im as discussed in Sec.
II-A, JmÛe,k and Ûe,kJm are simply replaced by Jm.

IV. RESULTS

A. Filter Optimization

We designed 8×16 and 8×24 PULPFBs, which have Ue,k = Im
(k ̸= 0), U−1

e,0 = UT
e,0 and V−1

e,k = VT
e,k, based on Sec. II-B

and 8 × 16 and 8 × 24 BOLPFBs based on TDLTs in [14] and
lifting-based DCT in [31]. We optimized the design parameters by
using fminunc.m in the Optimization ToolBox of MATLAB
and only coding gain CCG as the cost function [1] for simple
design. Moreover, since less DC leakage is one of the most important
properties in FB theory for image compression, we parameterized the
initial blocks of LPFBs for one degree of regularity [32].

B. Application to Lossy-to-Lossless Image Coding

The resulting LPFBs were applied to lossy-to-lossless image cod-
ing. Integer-to-integer transforms can be obtained by using a rounding
operation at each lifting step. A wavelet-based coder (embedded
zerotree wavelet based on intraband partitioning: EZW-IP) [33]
was used in the simulation to fairly evaluate the performance of
transforms. Also, RevSNEC, PE, and IrrSE were used for the image
boundary processing in the designed LPFBs. We compared the lossy

image coding results in Table I in the peak signal-to-noise ratio
(PSNR): PSNR [dB] = 10 log10(MAX2

p/MSE), where MAXp and
MSE are the maximum possible pixel value of the image and the
mean squared error, respectively, at 0.25, 0.50, and 1.00 bit per pixel
(bpp) for several test images: 512 × 512 8-bit standard grayscale
images, 512× 768 8-bit Kodak grayscale images, and 2816× 1600
16-bit clipped grayscale images in [34]. The bold numerals indicate
the best PSNRs. 9/7-tap DWT (9/7-DWT) and 4 × 8 HLT are
the transforms used in JPEG 2000 and JPEG XR lossy modes,
respectively. Table I shows that most LPFBs with the RevSNEC
achieves better lossy coding than the conventional methods. Fig. 5
illustrates the comparison of a particular area of the image Barbara.
It is obvious that the proposed RevSNEC is better than PE and the
boundary processing for HLT in JPEG XR in the image boundary at
the right of the images in Fig. 5. Also, the LPFBs with the RevSNEC
achieved almost same performance compared with the IrrSE which
can achieve only lossy mode. Since the RevSNEC in 8× 16 case is
completely equivalent to the IrrSE in same case, Table II show the
results of IrrSE only in 8× 24 case.

Since the resulting LPFBs are integer-to-integer transforms, we can
also obtain lossless reconstructed images at high bit rates. The per-
formance of lossless coding at the lossless bit rate (LBR): LBR [bpp]
= (Total number of bits [bit])/(Total number of pixels [pixel]) is
summarized in Table II. The bold numerals mean the best LBRs.
5/3-tap DWT (5/3-DWT) and 4× 8 HLT are the transforms used in
JPEG 2000 and JPEG XR lossless modes, respectively. Although the
LPFBs with the RevSNEC are often inferior as compared with DWT
and HLT in Kodak images and 16-bit large images, they demonstrated
their effectiveness in images with high frequency components.

V. CONCLUSION

This paper has presented reversible symmetric extension (RevSE)
for M -channel lifting-based linear-phase filter banks (L-LPFBs)
applied to lossy-to-lossless image coding. Since the proposed RevSE
has similar smoothness to an irreversible symmetric extension (IrrSE)
at the image boundary, it does not generate distortion at the image
boundary even if rounding operations are used. Moreover, complexity
is lessened by extending non-expansive convolution, called reversible
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Fig. 4. RevSNEC by M × 5M L-LPFB in even channel case (dashed lines, bold arrows, narrow arrows, dark gray blocks, light gray blocks, and white
blocks correspond to image boundary, m× 1 vector signals, scalar signals, blocks that do not step over image boundary, blocks that just stepping over image
boundary, and inner blocks).

Fig. 5. Comparison of particular area of image Barbara reconstructed with
8× 24 LPFBs when bit rate is 0.25 [bpp] (Left, top, and bottom boundaries
of each image are not image boundaries.): (top-left) 4 × 8 HLT, (top-right)
8×24 BOLPFBs with the PE, (bottom-left) 8×24 BOLPFBs with the IrrSE,
and (bottom-right) 8× 24 BOLPFBs with the RevSNEC.

symmetric non-expansive convolution (RevSNEC). As a result, it
achieves better performance in lossy-to-lossless image coding than
periodic extension (PE).

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers and
Dr. S. Kyochi for providing many constructive suggestions that
significantly improve the presentation of this paper. This work was
supported by JSPS Grant-in-Aid for Young Scientists (B) Grant
Number 25820152.

REFERENCES

[1] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice Hall, 1992.

[2] M. J. T. Smith and S. L. Eddins, “Analysis/synthesis techniques for
subband image coding,” IEEE Trans. Signal Process., vol. 38, no. 8, pp.
1446–1456, Aug. 1990.

[3] P. P. Vaidyanathan and T. Chen, “Role of anticausal inverses in multirate
filter-banks–part II: The FIR case, factorizations, and biorthogonal
lapped transforms,” IEEE Trans. Signal Process., vol. 43, no. 5, pp.
1103–1115, May 1995.

[4] T. D. Tran, R. L. de Queiroz, and T. Q. Nguyen, “Linear-phase perfect
reconstruction filter bank: Lattice structure, design, and application in
image coding,” IEEE Trans. Signal Process., vol. 48, no. 1, pp. 133–147,
Jan. 2000.

[5] L. Gan and K.-K. Ma, “A simplified lattice factorization for linear-phase
perfect reconstruction filter bank,” IEEE Signal Process. Lett., vol. 8,
no. 7, pp. 207–209, July 2001.

[6] T. D. Tran, “M -channel linear phase perfect reconstruction filter bank
with rational coefficients,” IEEE Trans. Circuits Syst. I, vol. 49, no. 7,
pp. 914–927, July 2002.

[7] Y. Tanaka, M. Ikehara, and T. Q. Nguyen, “A lattice structure of
biorthogonal linear-phase filter banks with higher order feasible building
blocks,” IEEE Trans. Circuits Syst. I, vol. 55, no. 8, pp. 2322–2331, Sep.
2008.

[8] S. Muramatsu, D. Han, T. Kobayashi, and H. Kikuchi, “Directional
lapped orthogonal transform: Theory and design,” IEEE Trans. Image
Process., vol. 21, no. 5, pp. 2434–2448, May 2012.

[9] H. S. Malvar and D. H. Staelin, “The LOT: Transform coding without
blocking effects,” IEEE Trans. Acoust., Speech, Signal Process., vol. 37,
no. 4, pp. 553–559, Apr. 1989.

[10] H. S. Malvar, “Lapped transforms for efficient transform/subband cod-
ing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 38, no. 6, pp.
969–978, June 1990.

[11] ——, Signal Processing with Lapped Transforms. Norwood, MA:
Artech House, 1992.

[12] R. L. de Queiroz, T. Q. Nguyen, and K. R. Rao, “The GenLOT:
Generalized linear-phase lapped orthogonal transform,” IEEE Trans.
Signal Process., vol. 44, no. 3, pp. 497–507, Mar. 1996.

[13] T. Nagai, M. Ikehara, M. Kaneko, and A. Kurematsu, “Generalized
unequal length lapped orthogonal transform for subband image coding,”
IEEE Trans. Signal Process., vol. 48, no. 12, pp. 3365–3378, Dec. 2000.

[14] T. D. Tran, J. Liang, and C. Tu, “Lapped transform via time-domain
pre- and post-filtering,” IEEE Trans. Signal Process., vol. 6, no. 6, pp.
1557–1571, June 2003.

[15] W. Sweldens, “The lifting scheme: A custom-design construction of
biorthogonal wavelets,” Appl. Comput. Harmon. Anal., vol. 3, no. 2,
pp. 186–200, Apr. 1996.

[16] ——, “The lifting scheme: A construction of second generation
wavelets,” SIAM J. Math. Anal., vol. 29, no. 2, pp. 511–546, 1997.

[17] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting steps,” J. Fourier Anal. Appl., vol. 4, no. 3, pp. 245–267, 1998.

[18] P. Hao and Q. Shi, “Matrix factorizations for reversible integer mapping,”
IEEE Trans. Signal Process., vol. 49, no. 10, pp. 2314–2324, Oct. 2001.

[19] Y. J. Chen and K. S. Amaratunga, “M -channel lifting factorization
of perfect reconstruction filter banks and reversible M -band wavelet
transforms,” IEEE Trans. Circuits Syst. II, vol. 50, no. 12, pp. 963–976,
Dec. 2003.

[20] Y. She, P. Hao, and Y. Paker, “Matrix factorizations for parallel integer
transformation,” IEEE Trans. Signal Process., vol. 54, no. 12, pp. 4675–
4684, Dec. 2006.

[21] C. M. Brislawn, “Group lifting structures for multirate filter banks
I: Uniqueness of lifting factorizations,” IEEE Trans. Signal Process.,
vol. 58, no. 4, pp. 2068–2077, Apr. 2010.

[22] ——, “Group lifting structures for multirate filter banks II: Linear phase



6

TABLE I
LOSSY IMAGE CODING RESULTS (PSNR[DB]).

Test 9/7-DWT 4× 8 HLT 8× 16 PULPFB 8× 24 PULPFB 8× 16 BOLPFB 8× 24 BOLPFB
images [17] [30] RevSNEC (PE) RevSNEC (PE, IrrSE) RevSNEC (PE) RevSNEC (PE, IrrSE)

bit rate: 0.25 [bpp]
Barbara 27.23 26.85 28.09 (27.97) 28.30 (28.15, 28.29) 28.42 (28.31) 28.50 (28.34, 28.50)
Elaine 31.50 30.81 31.27 (31.01) 31.35 (31.08, 31.35) 31.65 (31.40) 31.66 (31.39, 31.66)
Finger 23.49 22.96 23.63 (23.60) 23.70 (23.68, 23.70) 23.72 (23.71) 23.72 (23.69, 23.72)

Kodim19 28.38 27.95 28.78 (28.60) 28.87 (28.66, 28.87) 28.96 (28.78) 29.01 (28.80, 29.01)
Kodim20 31.92 31.29 30.72 (30.57) 30.77 (30.63, 30.76) 30.85 (30.76) 30.89 (30.75, 30.89)
Kodim21 27.21 26.76 27.24 (27.07) 27.28 (27.11, 27.28) 27.49 (27.37) 27.53 (27.42, 27.53)

Arri 33.28 33.22 33.53 (33.42) 33.71 (33.59, 33.71) 34.09 (33.98) 34.02 (33.76, 34.02)
Face 45.96 45.49 46.27 (46.12) 46.42 (46.25, 46.42) 46.59 (46.44) 46.63 (46.49, 46.63)

Lake Locked 39.04 38.37 39.25 (39.10) 39.41 (39.24, 39.41) 39.71 (39.52) 39.76 (39.57, 39.76)
bit rate: 0.50 [bpp]

Barbara 30.47 30.43 31.74 (31.58) 31.92 (31.73, 31.93) 32.02 (31.85) 32.03 (31.84, 32.03)
Elaine 32.96 32.47 33.12 (32.42) 33.17 (32.56, 33.17) 33.16 (32.72) 32.93 (32.61, 32.93)
Finger 25.97 25.56 26.49 (26.44) 26.53 (26.48, 26.52) 26.79 (26.75) 26.74 (26.70, 26.74)

Kodim19 31.06 30.85 31.40 (31.23) 31.45 (31.40, 31.46) 31.60 (31.45) 31.63 (31.48, 31.63)
Kodim20 35.19 34.34 33.78 (33.69) 33.77 (33.68, 33.76) 33.98 (33.91) 34.03 (33.93, 34.03)
Kodim21 30.20 29.90 30.28 (30.15) 30.27 (30.15, 30.27) 30.41 (30.27) 30.41 (30.27, 30.41)

Arri 37.30 36.75 38.05 (37.93) 38.25 (38.13, 38.25) 38.68 (38.58) 38.78 (38.68, 38.78)
Face 48.72 48.40 49.04 (48.95) 49.11 (49.02, 49.11) 49.24 (49.15) 49.28 (49.19, 49.28)

Lake Locked 42.11 41.78 42.51 (42.41) 42.67 (42.55, 42.67) 42.93 (42.82) 43.00 (42.88, 43.00)
bit rate:1.00 [bpp]

Barbara 34.87 35.05 35.95 (35.77) 35.91 (35.75, 35.92) 36.28 (36.12) 36.20 (36.02, 36.20)
Elaine 34.63 34.22 35.09 (34.87) 35.03 (34.82, 35.03) 35.19 (35.00) 35.09 (34.89, 35.09)
Finger 29.06 29.01 30.09 (30.05) 30.13 (30.10, 30.12) 30.58 (30.54) 30.55 (30.52, 30.55)

Kodim19 34.70 34.66 34.95 (34.80) 34.87 (34.70, 34.87) 35.20 (35.06) 35.14 (34.99, 35.14)
Kodim20 39.45 39.50 38.23 (37.89) 38.08 (37.71, 38.07) 38.50 (38.27) 38.29 (38.13, 38.29)
Kodim21 34.31 34.12 34.31 (34.15) 34.22 (34.07, 34.21) 34.46 (34.31) 34.38 (34.24, 34.31)

Arri 41.97 42.28 42.75 (42.67) 43.32 (43.01, 43.32) 43.40 (43.32) 43.55 (43.46, 43.55)
Face 51.68 51.47 52.05 (51.98) 52.11 (52.04, 52.11) 52.17 (52.11) 52.20 (52.15, 52.20)

Lake Locked 45.50 45.37 46.02 (45.95) 46.13 (46.04, 46.13) 46.32 (46.25) 46.37 (46.30, 46.37)

TABLE II
LOSSLESS IMAGE CODING RESULTS (LBR [BPP]).

Test 5/3-DWT 4× 8 HLT 8× 16 PULPFB 8× 24 PULPFB 8× 16 BOLPFB 8× 24 BOLPFB
images [17] [30] RevSNEC (PE) RevSNEC (PE) RevSNEC (PE) RevSNEC (PE)

Barbara 4.87 4.81 4.83 (4.86) 4.85 (4.88) 4.81 (4.83) 4.83 (4.85)
Elaine 5.11 5.17 5.08 (5.12) 5.08 (5.12) 5.07 (5.10) 5.09 (5.12)
Finger 5.84 5.71 5.70 (5.71) 5.69 (5.70) 5.72 (5.72) 5.74 (5.75)

Kodim19 4.90 4.97 5.06 (5.10) 5.10 (5.13) 5.04 (5.07) 5.06 (5.09)
Kodim20 3.85 4.18 4.40 (4.42) 4.48 (4.51) 4.24 (4.26) 4.26 (4.28)
Kodim21 4.96 5.06 5.17 (5.20) 5.19 (5.22) 5.15 (5.17) 5.16 (5.19)

Arri 11.40 11.28 11.37 (11.39) 11.35 (11.36) 11.35 (11.37) 11.34 (11.36)
Face 10.37 10.33 10.30 (10.31) 10.28 (10.30) 10.34 (10.35) 10.33 (10.34)

Lake Locked 11.35 11.28 11.29 (11.30) 11.27 (11.28) 11.30 (11.31) 11.30 (11.31)
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