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M-Channel Fast Hartley Transform Based Integer DCT for
Lossy-to-Lossless Image Coding

Taizo SUZUKI†a), Member and Hirotomo ASO††, Fellow

SUMMARY This paper presents an M-channel (M = 2n (n ∈ N)) in-
teger discrete cosine transforms (IntDCTs) based on fast Hartley transform
(FHT) for lossy-to-lossless image coding which has image quality scalabil-
ity from lossy data to lossless data. Many IntDCTs with lifting structures
have already been presented to achieve lossy-to-lossless image coding. Re-
cently, an IntDCT based on direct-lifting of DCT/IDCT, which means direct
use of DCT and inverse DCT (IDCT) to lifting blocks, has been proposed.
Although the IntDCT shows more efficient coding performance than any
conventional IntDCT, it entails many computational costs due to an extra
information that is a key point to realize its direct-lifting structure. On the
other hand, the almost conventional IntDCTs without an extra information
cannot be easily expanded to a larger size than the standard size M = 8,
or the conventional IntDCT should be improved for efficient coding perfor-
mance even if it realizes an arbitrary size. The proposed IntDCT does not
need any extra information, can be applied to size M = 2n for arbitrary n,
and shows better coding performance than the conventional IntDCTs with-
out any extra information by applying the direct-lifting to the pre- and post-
processing block of DCT. Moreover, the proposed IntDCT is implemented
with a half of the computational cost of the IntDCT based on direct-lifting
of DCT/IDCT even though it shows the best coding performance.
key words: direct-lifting, fast Hartley transform (FHT), integer discrete
cosine transform (IntDCT), lossy-to-lossless image coding

1. Introduction

Discrete cosine transform (DCT) [1] has several types, and
DCT type-II (DCT-II) and -III (DCT-III) are commonly
called DCT and inverse DCT (IDCT). They are applied to
lossy image/video compression (coding) such as the inter-
national standard JPEG [2] and H.26x family [3], because
DCT has excellent energy compaction capability, many
fast implementations [4]–[7] and numerous applications on
JPEG devices. Since it is compatible with the lossy JPEG,
DCT is especially promising.

Recently, with the rapid development of multimedia
devices such as media tablets and smartphones, and the con-
tinual expansion of broadband, lossy-to-lossless image cod-
ing, which has image quality scalability from lossy data to
lossless data, is demanded to respond to the various needs.
To achieve it, many integer DCTs (IntDCTs) based on lifting
structures [8]–[10] have been proposed [11]–[13]. We also
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have proposed a direct-lifting which is a so effective struc-
ture for lossy-to-lossless image coding [14]. The IntDCT,
however, requires an extra information because both of a
transform and its inverse transform are required, i.e., both
of DCT and IDCT must be simultaneously implemented.
As its solution, DCT is separated to the pre- and post-
processing block as the first stage. If at least one of the pre-
/post-processing blocks is a symmetric orthogonal matrix,
the DCT may perform efficient lossy-to-lossless image cod-
ing due to application of a direct-lifting. Although our pre-
vious work in [15] has such structure using a direct-lifting
of Walsh-Hadamard transform (WHT) as the pre-processing
block, it should be improved for more efficient coding per-
formance because there are many rounding operations in the
post-processing block. Also, the conventional IntDCTs ex-
cept for [13], [14] cannot be easily expanded to a larger size
M = 2n (n ∈ N) than the standard size M = 8. Such
arbitrary size is needed for the super high resolution stan-
dards as 4K Digital Cinema (4096 × 2160) and 8K Super
Hi-Vision (7680 × 4320). Nevertheless, many rounding op-
erations newly generated cause worse coding performance
due to their rounding error when the IntDCT has a larger
size than M = 8.

On the other hand, faster DCT algorithms without mul-
tipliers are widely researched for real time encode/decode
implementations [15]–[17]. We also have proposed a mul-
tiplierless fast DCT based on fast Hartley transform (FHT)
[18]. The structure has an FHT and the residue orthogo-
nal matrix with (M − 2)/2 rotation matrices as the pre- and
post-processing blocks, respectively. It is easy that the DCT
obtains an arbitrary size M = 2n.

In this paper, we adopt direct-liftings for both of the
pre- and post-processing blocks of DCT based on FHT
to achieve effective lossy-to-lossless image coding. We
can implement it without any complex calculation because
direct-lifting can be easily adopted for a combination of
two symmetric orthogonal matrices. Both FHT as the pre-
processing block and the residue orthogonal matrix as the
post-processing block are symmetric orthogonal matrices.
Also, two-dimensional (2-D) separable block transform is
considered to achieve a more effective implementing. The
resulting simple structure avoids a propagation of rounding
error generated by cascading rounding operations. As a re-
sult, the proposed IntDCT does not need any extra informa-
tion, can be applied to size M = 2n for arbitrary n, and shows
better coding performance than the conventional IntDCT
without any extra information. Moreover, the proposed Int-
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Table 1 The comparison of IntDCTs.

Efficient coding Arbitrary size No side
performance M = 2n information

[11] � �
[12] �
[13] � � �
[14] �(Best) �
[15] � �
Prop. �(2nd best) � �

DCT is implemented with a half of the computational cost of
the IntDCT based on direct-lifting of DCT/IDCT [14] even
though it shows the best coding performance. Table 1 sum-
marizes the comparison of IntDCTs.

Notations: I, J, {·}[N], {·}T and diag{M,N} are an iden-
tity matrix, a reversal identity matrix, N × N matrix, trans-
pose of a matrix and a block diagonal matrix, respectively.

2. Review

2.1 Discrete Cosine Transform (DCT)

Not only is DCT [1] often used for the international standard
JPEG [2] and H.26x family [3], but also numerous devices
for DCT have been developed. The (m, n)-element of M-
channel DCT-II matrix C, DCT-III matrix D and DCT-IV
matrix E are defined as

[C]m,n =

√
2
M

cm cos

(
m (n + 1/2) π

M

)

[D]m,n =

√
2
M

cn cos

(
(m + 1/2) nπ

M

)

[E]m,n =

√
2
M

cos

(
(m + 1/2) (n + 1/2) π

M

)

where D = C−1 = CT , E−1 = ET = E, 0 ≤ m, n ≤ M − 1,
ck = 1/

√
2 (k = 0) or 1 (k � 0), respectively. For simplic-

ity, let M be defined as M = 2n (n ∈ N). Also, many fast
implementations of DCT have been widely researched [4]–
[7]. For example, Chen’s fast implementation of M-channel
DCT C[M] in [4] is the most popular structure as

C[M] =
1√
2

PChen

[C[M/2] 0
0 E[M/2]

] [
I J
J −I

]
(1)

where PChen is an M × M permutation matrix. In case of
M = 8, it is simplified by 4 rotation matrices with π/4 angles
and 4-channel DCT-II/-IV as shown in Fig. 1(a). Note that
any coding system by DCT is limited to operation in only
lossy image coding because distortion of the decoded image
is unavoidable with these lossy algorithms.

2.2 Fast Hartley Transform (FHT)

The FHT is a tool for the frequency analysis, design and
implementation of digital signal processing algorithms and
systems like DCT. It is strictly symmetrical concerning the

Fig. 1 8-channel DCT C: (a) Chen’s DCT in [4], (b) FHT based DCT in
[18].

Fig. 2 8-channel FHT PH .

transformation and its inverse, i.e., a symmetric orthogonal
matrix. The (m, n)-element of M-channel FHT matrix H is
defined as [19]

[H]
m,n =

1√
M

cas

(
2mnπ

M

)

where cas θ = cos θ + sin θ and H−1 = HT = H . Since
H is not according to the frequency band order, let H with
the correct order be PH where P is a permutation matrix. In
case of M = 8, it is simplified by 13 rotation matrices with
π/4 angles as shown in Fig. 2.

2.3 Direct-Lifting Structure

Lifting structure, also known as a ladder structure, is an im-
plementation method of wavelet transforms originally pro-
posed [8]–[10] by Sweldens. It is a special type of lattice
structure: a cascading construction using only elementary
matrices, that is, identity matrices with a single nonzero off-
diagonal element. Figure 3(a) shows a standard lifting struc-
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Fig. 3 A lifting structure (white circles mean rounding operations): (a) a
standard lifting, (b) a block-lifting.

ture. In this case, the lifting matrix and its inverse matrix are
as follows:[

1 T
0 1

]
,

[
1 T
0 1

]−1

=

[
1 −T
0 1

]
.

Then, they are represented by

yi = xi + round{T xj}
y j = x j

→ zi = yi − round{Ty j} = xi

z j = y j = x j

where T and round{.} are a lifting coefficient and a rounding
operation, respectively. The lifting structures with rounding
operation can achieve integer-to-integer transform for lossy-
to-lossless image coding.

To obtain more efficient transform performance than a
transform by standard lifting, block-lifting as a class of lift-
ing structure has been proposed [20]. Instead of a lifting
coefficient T , we adopt a lifting matrix (block) T. Such
block-lifting can be expressed as follows:

[
I T
0 I

]
,

[
I T
0 I

]−1

=

[
I −T
0 I

]

and

yi = xi + round{Tx j}
y j = x j

→ zi = yi − round{Ty j} = xi

z j = y j = x j
,

where xi, x j, yi, y j, zi and z j are the input and output signal
matrices, as shown in Fig. 3(b). Similar to standard lifting,
it is clear that the reconstructed signals zi and z j are exactly
the same value as xi and x j. The block-lifting would be effi-
cient for lossy-to-lossless image coding due to having fewer
number of rounding operations†.

Moreover, we have proposed direct-lifting as a class
of block-lifting [14]. First, we process the two individual
signals xi and si by a matrix M and its inverse matrix N, i.e.,[

yi

ti

]
=

[
M 0
0 N

] [
xi

si

]

Fig. 4 A direct-lifting structure (white circles mean rounding
operations).

where MN = NM = I, and yi and ti are the output sig-
nals of xi and si, respectively, as shown on the left side of
Fig. 4. Then, the matrix diag{M,N} can be redefined to lift-
ing structures as[

M 0
0 N

]
=

[
0 I
−I 0

] [
I 0

M I

] [
I −N
0 I

] [
I 0

M I

]
.

This is called direct-lifting because two matrices M and N
are directly used to lifting blocks. To obtain lossless data, a
rounding operation is applied to each lifting step because it
achieves an integer-to-integer transform without any distor-
tion in the quantization part in image coding flow. Com-
monly, an extra information is used to implement direct-
lifting because both of a transform M and its inverse trans-
form N must be implemented simultaneously [14]. But the
extra information is not required if M and N have the sym-
metric orthogonality, i.e., N =M−1 =MT=M.

3. M-Channel FHT Based Integer DCT (IntDCT)

3.1 FHT Based DCT

A fast FHT based DCT [18] is definitely different from
the most popular Chen’s structure in (1). The structure is
separated to a permutation matrix PT , FHT H as the pre-
processing block, the residue orthogonal matrix Q as the
post-processing block and a diagonal matrix D with either
of +1 or −1 values as follows:

C = DQHPT (2)

where

D =
[
I[M/2+1] 0

0 −I[M/2−1]

]

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 JCJ 0 JS
0 0 1 0
0 SJ 0 −C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

[C]k,k = cos
(

(k+1)π
2M

)
[S]k,k = sin

(
(k+1)π

2M

)

for 0 ≤ k ≤ M/2 − 2 as shown in Fig. 1(b). Note that this
structure can be easily expanded to a larger size than M =
8. However, if this DCT is factorized into the lifting part
and the scaling part according to [18], it is inapplicable to
lossy-to-lossless image coding due to M multipliers as the
generated scaling part.

†When the number of rounding operations increases, the quan-
tization error simultaneously increased affects the subband energy
compaction [13].
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Fig. 5 M-channel FHT based IntDCT (white circles mean rounding operations): (a) by using 1-D
transform in each of vertical and horizontal directions, (b) by making full use of 2-D separable block
transform.

3.2 Direct-Lifting of Pre-/Post-Processing Blocks of DCT

To achieve lossy-to-lossless image coding without any ex-
tra information, we apply direct-lifting factorization to FHT
and the residue orthogonal matrix as the pre- and post-
processing blocks of DCT, respectively.

Generally, it is careful that the direct-lifting requires an
extra information because both transform M and its inverse
transform N (N � M) must be implemented. However, we
can easily come up with a simple realization for lossy-to-
lossless image coding without any extra information. First,
an hM × wM (h, w ∈ N) image X is segmented to M × M
block xk (0 ≤ k ≤ hw − 1). The segmented block xk is
sequentially transformed by hw DCTs as follows:

[
yT

0 , yT
1 , · · · , yT

hw−1

]T
=

diag {C, C, · · · ,C} ·
[
xT

0 , xT
1 , · · · , xT

hw−1

]T

We process each combination of the two adjacent signal
blocks xe and xo (e and o are an even and an odd value,
respectively) by DCT, i.e.,

[
ye

yo

]
=

[C 0
0 C

] [
xe

xo

]

=

[
D 0
0 D

] [
Q 0
0 Q

] [H 0
0 H

] [
PT 0
0 PT

] [
xe

xo

]
(3)

where ye and yo are the output signals of xe and xo, respec-
tively. Then, a combination of the pre- and post-processing
blocks in (3) is factorized into five step direct-liftings as fol-
lows:

[
Q 0
0 Q

] [H 0
0 H

]
=

[
I 0
−Q I

] [
I Q
0 I

]

×
[

I 0
H −Q I

] [
I −H
0 I

] [
I 0
H I

]

(4)

(4) is shown in Fig. 5(a). Consequently, the two adjacent
blocks separated from an image can be simultaneously im-
plemented by (4), and it does not require any extra infor-
mation. Since PT and D have no necessity to be factorized
into lifting structures, we have just realized a novel IntDCT
by (3) and (4). As mentioned in Sect. 2.3, although an ex-
tra information is often used to implement direct-lifting, the
proposed structure does not require it due to the symmetric
orthogonalities ofH and Q. The proof of (4) is presented in
the Appendix.

3.3 Making Full Use of Two-Dimensional (2-D) Separable
Block Transform

A DCT matrix C is commonly applied into an M × M input
signal x in column- and row-wise (vertical and horizontal
direction) separately. The output signal y is expressed by

y =
(
C (Cx)T

)T
= CxCT . (5)

We call it a 2-D separable block transform [14]. Since the
DCT can be factorized as C = DQHPT in (2), (5) is repre-
sented by

y = DQHPT x(DQHPT )T = DQHPT xPHT QT DT .

This equation means the 2-D separable block transforms are
implemented according to the following order as shown in
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Fig. 6 A 2-D separable block transform: (a) a standard transform, (b) an ordered transform to each
block.

Fig. 6(b).

(a) A 2-D separable block transform by PT is imple-
mented.

(b) A 2-D separable block transform byH is implemented
after (a) is implemented.

(c) A 2-D separable block transform by Q is implemented
after (b) is implemented.

(d) A 2-D separable block transform by D is implemented
after (c) is implemented.

Also, let the 2-D separable block transforms of x by PT ,H ,
Q and D be defined as

PT xP � PT
2D(x), HxHT � H2D(x),

QxQT � Q2D(x) and DxDT � D2D(x),

respectively. Therefore, (4) are represented by[
Q2D(x) 0

0 Q2D(x)

] [H2D(x) 0
0 H2D(x)

]
=

[
I 0

−Q2D(x) I

] [
I Q2D(x)
0 I

] [
I 0

H2D(x) −Q2D(x) I

]

×
[
I −H2D(x)
0 I

] [
I 0

H2D(x) I

]

as shown in Fig. 5(b). Such lifting matrices are more ef-
fective for lossy-to-lossless image coding than lifting ma-
trices without considering the 2-D separable block trans-
form, because the number of rounding operations per an
one-dimensional (1-D) transform of M×1 signals is reduced
from (5M − 4)/2 to (5M − 4)/4 in each block and rounding
error is also reduced much more. Table 2 shows the number
of rounding operations in each IntDCT. It is clear that the
number of rounding operations of the proposed structure is
less than the previous works except for [12].

4. Experimental Results

The resulting FHT based IntDCT and the conventional Int-
DCTs in [11]–[15] (M = 8) are applied to lossy-to-lossless

Table 2 The number of rounding operations in each M-channel IntDCT.
(N[M/2] indicates the number of rounding operations in M/2-channel Int-
DCT in [13].)

Size Conv. IntDCT Prop.
M [11] [12] [13] [14] [15] IntDCT

8 21 8 23 12 21 9

M – – 9
4 M + N[M/2]

3
2 M – 5

4 M − 1

image coding. Also, since the conventional methods in [11],
[12], [15] are inapplicable to a larger size DCT than M = 8,
only the proposed IntDCT and the conventional IntDCTs in
[13], [14] (M = 16) are applied to lossy-to-lossless image
coding as an example of larger sizes. An integer-to-integer
transform can be obtained by using a rounding operation
at each lifting step. As described above, only the conven-
tional IntDCT in [14] requires a side information, and the
others do not require one. To evaluate transform perfor-
mance fairly, after the images were transformed, they were
encoded by the set partitioning in hierarchical trees (SPIHT)
progressive image transmission algorithm with PSNR scal-
ability [21]. Test images are several 512 × 512 grayscale
standard images such as Barbara and Lena, respectively. In
lossy image coding, we compare their peak signal-to-noise
ratios (PSNRs):

PSNR [dB] = 10 log10

(
2552

MSE

)
,

where MSE is the mean squared error, for three standard
images as shown in Table 3. In lossless image coding, we
compare their lossless bit rates (LBRs) [bpp]:

LBR [bpp] =
Total number of bits [bit]

Total number of pixels [pixel]

as shown in Table 4.
Although our previous work in [14] shows the best per-

formance with an extra information, the proposed IntDCT is
implemented with a half of the computational cost of [14],
since the proposed one does not require any extra informa-
tion. It is, however, clear that the proposed IntDCT is better
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Table 3 Lossy image coding results (PSNR [dB]).

M = 8 M = 16
Test Bit rate DCT Conv. IntDCT Prop. Conv. IntDCT Prop.

image [bpp] [1] [11] [12] [13] [14] [15] IntDCT [13] [14] IntDCT

0.25 26.95 26.94 26.73 26.94 26.95 26.94 26.94 27.95 27.96 27.96
Barbara 0.50 30.70 30.67 30.40 30.67 30.68 30.68 30.67 31.79 31.84 31.83

1.00 36.08 35.97 35.84 35.96 36.03 35.98 36.00 36.88 37.08 37.04
0.25 22.55 22.54 22.21 22.55 22.55 22.55 22.54 23.24 23.24 23.24

Finger 0.50 25.57 25.55 25.36 25.55 25.56 25.56 25.56 26.57 26.58 26.58
1.00 29.70 29.66 29.47 29.67 29.70 29.68 29.69 30.79 30.85 30.84
0.25 29.38 29.36 29.13 29.36 29.37 29.38 29.37 29.71 29.73 29.72

Goldhill 0.50 31.99 31.94 31.80 31.96 31.97 31.96 31.96 32.33 32.38 32.38
1.00 35.40 35.27 35.19 35.28 35.36 35.31 35.33 35.51 35.69 35.66
0.25 31.88 31.87 31.86 31.87 31.89 31.88 31.88 32.67 32.70 32.70

Lena 0.50 35.60 35.53 35.49 35.55 35.59 35.57 35.58 36.10 36.21 36.19
1.00 39.23 38.95 38.93 38.94 39.13 38.99 39.07 39.04 39.44 39.37
0.25 31.43 31.40 31.43 31.41 31.42 31.41 31.41 32.06 32.09 32.09

Pepper 0.50 34.49 34.41 34.33 34.42 34.46 34.41 34.45 34.56 34.65 34.64
1.00 37.04 36.83 36.71 36.82 36.97 36.85 36.92 36.77 37.03 37.00

Table 4 Lossless image coding results (LBR [bpp]).

M = 8 M = 16
Test Conv. IntDCT Prop. Conv. IntDCT Prop.

image [11] [12] [13] [14] [15] IntDCT [13] [14] IntDCT

Airplane 4.44 4.40 4.43 4.36 4.40 4.39 4.44 4.33 4.36
Baboon 6.27 6.28 6.27 6.27 6.27 6.27 6.22 6.21 6.21
Barbara 4.98 4.97 4.98 4.94 4.97 4.96 4.85 4.79 4.80

Boat 5.20 5.19 5.20 5.18 5.20 5.18 5.14 5.10 5.11
Bridge 6.00 6.00 6.00 5.99 6.00 5.99 6.00 5.99 5.99
Elaine 5.23 5.25 5.23 5.22 5.23 5.23 5.18 5.16 5.17
Finger 6.07 6.06 6.06 6.06 6.06 6.06 5.84 5.83 5.83

Goldhill 5.17 5.16 5.16 5.14 5.16 5.15 5.11 5.08 5.08
Grass 6.17 6.18 6.17 6.17 6.17 6.17 6.11 6.11 6.11
Lena 4.65 4.63 4.65 4.61 4.63 4.62 4.61 4.56 4.57

Pepper 4.96 4.96 4.96 4.94 4.96 4.94 4.94 4.91 4.91
Tank 5.20 5.20 5.20 5.19 5.20 5.19 5.20 5.19 5.19

than the conventional methods without any extra informa-
tion in both lossy and lossless image coding, because the
proposed IntDCT has a few number of rounding operations
as shown in Table 2 and the simple structure avoids a prop-
agation of rounding error generated by cascading rounding
operations. Note that Chokchaitam’s IntDCT in [12] with
the fewest rounding operations in case of M = 8 cannot be
performed enough due to several removed scaling factors.

5. Conclusion

This paper presented an M-channel (M = 2n (n ∈ N)) fast
Hartley transform (FHT) based integer discrete cosine trans-
forms (IntDCTs) for lossy-to-lossless image coding. It was
obtained by applying direct-lifting factorization to each of
FHT and the residue orthogonal matrix as the pre- and post-
processing blocks of DCT, respectively, and considering a
two-dimensional (2-D) separable block transform. The re-
sulting IntDCT shows better coding performance than the
conventional IntDCT without any extra information, which
causes its handling trouble, due to a few rounding opera-
tions. Moreover, the proposed IntDCT can easily achieve an
arbitrary size M = 2n, which is required for the super high
resolution standards as 4K Digital Cinema (4096 × 2160)

and 8K Super Hi-Vision (7680 × 4320), than M = 8.
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Appendix: Direct-Lifting Factorization of Pre-/Post-
Processing of DCT

The proof of this derivation can be accomplished by using
a direct-lifting and a simple matrix manipulation. First, the
direct-lifting factorization can be easily applied to each of
FHT and the residue orthogonal matrix, respectively, be-
cause FHTH and the residue orthogonal matrix Q are sym-
metric orthogonal matrices, i.e., their inverses are them-
selves. However, to achieve a more effective implementa-
tion than a simple application of direct-lifting factorization
to them, the only pre-processing block diag{H ,H} is fac-
torized into direct-liftings at the first step as follows:[H 0

0 H
]
=

[
0 I
−I 0

] [
I 0
H I

] [
I −H
0 I

] [
I 0
H I

]
(A· 1)

where HH = I. Next, if the first matrix in (A· 1) is
multiplied by the right side of the post-processing block
diag{Q,Q} as[

Q 0
0 Q

] [
0 I
−I 0

]
=

[
0 Q
−Q 0

]
,

this matrix is factorized into the following direct-liftings.
[

0 Q
−Q 0

]
=

[
I 0
−Q I

] [
I Q
0 I

] [
I 0
−Q I

]
(A· 2)

Finally, (4) is obtained by connecting (A· 1) and (A· 2). This
completes the proof.
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