
A Fake Face Image Encryption With Style Mixing

Xin Yan, Shingo Otsu, and Taizo Suzuki
University of Tsukuba, Ibaraki, Japan

{yanxin,otsu}@wmp.cs.tsukuba.ac.jp, taizo@cs.tsukuba.ac.jp

Kosuke Shimizu
Gifu University, Gifu, Japan

shimizu.kosuke.x5@f.gifu-u.ac.jp

Abstract—In this study, we propose a novel perceptual en-
cryption method for face images with style mixing via Style-
GAN2 using the pixel2style2pixel (pSp) encoder. Our method
generates natural fake face images by replacing specific latent
vectors, ensuring privacy protection while allowing decryption
by authorized users. Experimental results using CelebA-HQ
dataset and Cross-Age Celebrity Dataset (CACD) demonstrate
the effectiveness of our method in maintaining image quality
and privacy.

Index Terms—Fake face image, perceptual encryption, privacy
protection, style mixing.

I. INTRODUCTION

Image perceptual encryption [1] is a technology that allows

encrypted information to be displayed as an image, unlike tra-

ditional encryption standards such as the Advanced Encryption

Standard (AES) and Rivest–Shamir–Adleman (RSA). Com-

monly used encryption methods include sign inversion [2],

which randomly inverts the signs of a signal, and shuffling [3],

which randomly rearranges the signal at certain intervals.

While most conventional methods adequately protect privacy,

they have limitations. The encrypted image may appear “un-

natural” due to obtrusive artifacts and colors, which can be

unpleasant for observers and may attract the attention of

malicious attackers.

With advances in image generation technology like genera-

tive adversarial networks (GANs) [4], it has become possible

to generate highly realistic images. GANs are unsupervised

learning models composed of two networks, the generator and

the discriminator, which learn by competing against each other.

StyleGAN2 [5], an extension of StyleGAN [6], is one of the

most notable GANs. Especially for face images, it not only

generates high-quality and high-resolution images but also

allows for the separation of global attributes (facial outline,

presence or absence of glasses, etc.) from local attributes

(wrinkles, skin texture, etc.), which can be controlled. This

separation enables style mixing, generating a new image by

blending a content image with the style of another image (style

image). Also, GAN inversions [7] find the latent code that

most accurately reconstructs a given known image. While most

methods provide better reconstruction quality than learned

encoders, they often require significant computation time. The

pixel2style2pixel (pSp) encoder [8] sacrifices less computation

time and can be considered as one of the most practical

inversion techniques.

In this study, we propose a “natural” fake face image

encryption method with style mixing. Figure 1 shows a result

of encryption and decryption with our method. Existing style

Fig. 1. Resulting images with our method: (left to right) original, for
authorized receiver, for third party, and for attacker.
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Fig. 2. Structure of StyleGAN2 (FC, Mod, Demod, and Conv mean fully
connected layer, modulation layer, demodulation layer, and convolution layer,
respectively).

mixing methods emphasize high-quality face replacement and

do not consider encryption, which requires restoration (decryp-

tion) methods. Our method utilizes latent space via StyleGAN2

using the pSp encoder to achieve facial feature replacement

and restoration.

II. REVIEW

A. StyleGAN2

StyleGAN2 [5] as shown in Fig. 2 is a GAN improved

the StyleGAN [6]. In conventional GAN, the input noise

z ∈ Z is directly input to the generator. However, when

some combinations of image features do not exist, the latent

space Z in which the input noise z exists may not be linear

but a distorted space with entanglements. To address this

problem, StyleGAN2 inputs z as a latent variable into a

mapping network f consisting of 8-layer perceptrons, and

creates an intermediate latent space W . After mapping to W
and obtaining another latent variable w ∈ W , the disentangled

latent vector is input into the subsequent synthesis network g.

Since f is learned to disentangle, it is possible to optimize w
with less entangled image features. When training StyleGAN2,
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Fig. 3. Structure of pixel2Style2pixel encoder.

a gradient penalty and a path length penalty are applied as loss

functions.

B. pSp Encoder

The pSp encoder [8] as shown in Fig. 3 is one of the

GAN inversions that enhance StyleGAN2 to generate more

realistic images. It can accurately and efficiently embed facial

features into the extended latent space W+ without further

optimization. First, it extracts feature maps using a standard

feature pyramid on the ResNet [9] backbone. For each of the

18 target style, a small-scale mapping network is trained to

extract the learned style from the corresponding feature map.

Styles 0-2 are generated from small feature maps, styles 3-

6 are generated from medium feature maps, and styles 7-17
are generated from the largest feature maps. The mapping

network, termed as a map2style block, is a small-scale fully

convolutional network that uses a series of two-stride con-

volutions followed by LeakyReLU [10] to gradually reduce

the spatial size. Each of the generated 512 vectors is a latent

variable and the resulting image is more similar to the real

image. Additionally, the pSp encoder is defined as:

pSp(x) = G(E(x) +w) (1)

where x is an input image, w is an average style vector

of a pre-trained generator, E() is an encoder, and G() is a

generator. The encoder aims to learn latent codes in terms

of average style vectors. When training the pSp encoder, the

loss function is composed of pixel-wise L2 loss, LPIPS loss,

regularization loss and cosine similarity.

C. Style Mixing

Style mixing generates a new image that reflects the style

of a style image in a content image. Two different latent

vectors are input into different levels of a synthesis network,

so that the generated image contains features from both latent

vectors. In StyleGAN2, two latent vectors z1 and z2 ∈ Z are

sampled from the latent space, along with two intermediate

latent vectors w1 and w2 ∈ W . When inputting w1 and

w2 as parameters for the regularization parts in the synthesis

network, w1 is used up to a certain resolution scale, e.g.,

4 × 4, and w2 is used for subsequent resolution scales. As

a result, the synthesis network no longer learns that styles

are correlated between layers at adjacent resolution scales,

…
…

…
…

Fig. 4. Style mixing in the case of replacing the latent variables with indices
except for n = [3, 6, 7] (E and G mean encoder and generator, respectively).

allowing the influence of styles to be localized to layers at

each resolution scale. If the latent vectors of the content and

style images are wcon and wsty, the style mixing for nth

(n = 0, 1, · · · ) latent vector is defined as:

wcon
n ← wcon

n + η(wsty
n −wcon

n ), (2)

where η = [0, 1]∈R is the parameter that adjusts the degree of

style application.

III. FAKE FACE IMAGE ENCRYPTION WITH STYLE

MIXING

A. Overview
We introduce a natural fake face image encryption with style

mixing. When training StyleGAN2 and the pSp encoder, an

additive angular margin loss (AAML) as described in [11] was

newly added. If the latent vectors from the original and key

face images are wori and wkey, the style mixing for nth latent

vector is defined as:

wori
n ← wori

n + (wkey
n −wori

n ) = wkey
n . (3)

Here, note that η in (2) is set to 1 to enable the reconstruction.

The flow of our method is outlined below (Fig. 5).
1) Sender Side:
i) Using the pSp encoder, a face image of the sender

(original image) and an encryption key face image of

the third party (encryption key face image) are converted

into latent vectors.

ii) Using StyleGAN2, a natural encrypted image is generated

by replacing some of the latent vectors of the original

image with those of the encryption key face image.

iii) Using existing encoder, the encrypted image is sent to

the receiver side.

2) Authorized Receiver Side:
i) Using existing decoder, the encrypted image is received

from the sender side.

ii) Using the pSp encoder, the received encrypted image and

a correct decryption key face image (another correct face

image of the sender prepared in advance) are converted

into latent vectors.

iii) Using StyleGAN2, the original image is reconstructed

by replacing some of the latent vectors of the encrypted

image with those of the decryption key face image.
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3) Third Party and Attacker Sides: For a third party, the

encrypted image is displayed as it is. For an attacker with

an incorrect decryption key face image, different encrypted

image is provided by replacing some of the latent vectors of

the encrypted image with those of the decryption key face

image.

IV. EXPERIMENTS

A. Datasets and Training Settings

We used the CelebA-HQ dataset [12] and the Cross-

Age Celebrity Dataset (CACD) [13] as image datasets. The

CelebA-HQ dataset is a high-quality version of CelebA [14]

and consists of 30, 000 images with 1024 × 1024 pixels.

The CACD contains 163, 446 images from 2, 000 celebrities

collected from the Internet. We randomly selected 90 % of the

images from each dataset above as the training set and used the

rest to evaluate the training results of the network. Note that

as part of the preprocessing to simplify network training and

experiments, we preprocessed all images as follows (Fig. 6): (i)

image were resized from 1024×1024 to 256×256 pixels, (ii)

the positions of eyes and mouth between images were aligned

using InsightFace [15], and (iii) using a trimap that estimates

foreground from background by inscribing unknown region,

the foreground and background were separated (matted) using

IndexNet [16].

B. Quantitative Evaluation Indicators

We used five quantitative evaluation indicators: peak signal-

to-noise ratio (PSNR) [dB], structural similarity (SSIM) [17],

learned perceptual image patch similarity (LPIPS) [18], and

two additive angular margin losses (AAMLs) in ArcFace [11]

and BlendFace [19] (denoted as AAML-A and AAML-B).

PSNR is an index that evaluates the mean pixel-by-pixel

difference between input and output images and is defined as

PSNR = 10 log10
MAX2

MSE
, (4)

where MAX is the maximum pixel value of the image and

MSE is the mean square error of the input and output images.

SSIM is an index that indicates the structural similarity

between the original image and the evaluation image, and is

defined as

SSIM =
(2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
, (5)

where μx and μy are the averages in the local parts of the

input and output images, σx and σy are the standard deviations

in the local parts of the input and output images, σxy is the

covariance of the input and output images, and C1 and C2 are

the adjustment parameters.

LPIPS is an index that uses deep neural network, specifically

AlexNet [20], to indicate similarity based on features of

images being compared.

The AAML-A is a loss function introduced in ArcFace as

follows:

LArc = − 1

N

N∑
i=1

log
es·(cos(θyi+m))

es·(cos(θyi+m)) +
∑C

j=1,j �=yi
es·cos(θj)

,

(6)

where N is the batch size, θyi
and θj are the angles between

the feature vector of the i-th sample and the weight vector

of their true class yi and j, m is the angular margin, which

is used to increase the inter-class distance, and s is the scale

factor, which is used to control the magnitude of the logits.

AAML-B, which is an extend version of AAML-A, has also

been presented in BlendFace as follows:

LBlend = Ladv + Lmask + λ1LArc + λ2Lrec + λ3Lcyc, (7)

where Ladv is the adversarial loss of GauGAN [21], Lmask is

the binary cross entropy loss, Lrec is the reconstruction loss,

and Lcyc is the cyclic generation loss, which are defined as

Ladv(G,D) = Ex[logD(x)] + Ez[log(1−D(G(z)))] (8)

Lmask = −
∑
x,y

{
Mx,y log M̂x,y+

(1−Mx,y) log(1− M̂x,y)
}

(9)

Lrec =

{
‖Xt − Ys,t‖1 if ID(Xt) = ID(Xs),

0 otherwise.

(10)

Lcyc = ‖Xt −G(Xt, Ys,t)‖1 , (11)

respectively.

All indicators are calculated based on the original image.

C. Verification Results of Style Mixing

Note that at 256×256 pixels instead of 1024×1024 pixels,

the latent space is 14 × 512 instead of 18 × 512, i.e., there

are only 14 levels of latent space from w0 to w13. In order

to determine the latent variables to be specified, Fig. 7 shows

the verification results of an encrypted image in which only

w0 to w13 latent variables were sequentially replaced by style

mixing. For most patterns, even if w8 or higher was specified,

the structural information did not change significantly and

only the overall color tone changed. When w4 was specified,

we can see that the facial expression changed to that of the

encryption key face image and that the hairstyle also resembled

that of the encryption key face image. We can also confirm that

w5 inherited facial expression and hairstyle features from the

encryption key face image, although not as much as w4. Based

on these verifications, we summarized the transformation area

according to the position of the latent variables in Table I. In

this study, based on Table I, we replaced the latent variables

with indices except for n = [3, 6, 7].

D. Encryption and Decryption Evaluations

Table II shows quantitative evaluations of encryption and

decryption. In addition, Fig. 8 and 9 shows the resulting

images in encryption and decryption.
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Fig. 5. Flow of our method with pSp encoder for E and StyleGAN2 for G (E, G, Alice, Bob, Charlie, and Mallet mean encoder, generator, sender, receiver,
third party, and attacker, respectively).
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Fig. 7. Verification results of style mixing.

1) Encryption Evaluation: From Fig. 8 and Fig. 9, the

encrypted images effectively retain the facial expressions of

the original images while discarding all other features, thus

protecting personal privacy. According to the results in Fig. II,

the metrics based on pixel values and those based on dis-

criminator remain at very low levels after image encryption,

indicating that the encryption is highly effective.

2) Decryption Evaluation With Correct Decryption Key
Face Image: For the CelebA-HQ dataset, whose the decryp-

tion key face images are same as the original images, the

decrypted images were identical to the original images. While

TABLE I
TARGET FOR REPLACING LATENT VARIABLES.

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9+

Direction � � � �
Shape � � �

Expressions � �
Hairstyle � �

Eyes � � �
Color etc. � �

Source E. Key Encrypted D. Key T D. Key FDecrypted T Decrypted F

Fig. 8. Results of CelebA-HQ (Source, E. Key, Encrypted, D. Key T,
Decrypted T, D. Key F, and Decrypted F mean original, encryption key,
encrypted image, correct (true) decryption key, decrypted image with correct
decryption key, incorrect decryption key, and decrypted image with incorrect
(false) decryption key, respectively).

this is an impossible situation in real life, we evaluated an

experiment to verify the effectiveness of decryption as the first

step.
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Source E. Key Encrypted D. Key T D. Key FDecrypted T Decrypted F

Fig. 9. Results of CACD (Source, E. Key, Encrypted, D. Key T, Decrypted T,
D. Key F, and Decrypted F mean original, encryption key, encrypted image,
correct (true) decryption key, decrypted image with correct decryption key,
incorrect decryption key, and decrypted image with incorrect (false) decryption
key, respectively).

TABLE II
QUANTITATIVE EVALUATION: (A) APPROXIMATED IMAGE, (B) ENCRYPTED

IMAGE, (C) DECRYPTED IMAGE WITH CORRECT DECRYPTION KEY FACE

IMAGE, AND (D) DECRYPTED IMAGE WITH INCORRECT DECRYPTION KEY

FACE IMAGE.

CelebA-HQ CACD
(a) (b) (c) (d) (a) (b) (c) (d)

PSNR↑ 16.07 8.99 16.07 10.00 15.59 7.50 15.59 7.2
SSIM↑ 0.774 0.600 0.774 0.599 0.752 0.561 0.752 0.597
LPIPS↓ 0.307 0.547 0.307 0.488 0.310 0.662 0.310 0.666

ArcFace↑ 68.12 6.36 68.12 7.75 68.22 5.39 68.22 2.24
BlendFace↑ 56.49 8.20 56.49 1.37 59.60 7.02 59.60 1.47

The quality of the decrypted image was slightly degraded

compared to the original image, but the higher the repro-

ducibility of the approximate image, the higher the quantitative

evaluation value recorded, indicating a certain level of decryp-

tion effect. However, the generated results were not exactly the

same as original image, but from the qualitative analysis, there

was not much difference between the two. The cause is that

although the original image and the plain text key face image

are the same person, each part such as the eyes and mouth

changes slightly depending on the facial expression.

3) Decryption Evaluation With Incorrect Decryption Key
Face Image: According to Fig. 5, when a third party attempts

to decrypt the received image using a incorrect decryption

key face image, a natural face image with features from the

incorrect decryption key face image that is different from the

original image will be generated. From Table II, the difference

between the encrypted image and the image decrypted using

the incorrect decryption key is not obvious. In other words,

our experiment verified the security of the encryption process

and ensured that a third party cannot decrypt the image even

if it tries to reconstruct, without the correct decryption key.

V. CONCLUSION

In this study, we proposed a natural fake face image encryp-

tion based on style mixing. We selected StyleGAN2 with the

pSp encoder and discussed a novel fake face image perceptual

encryption that is different from conventional methods and

the restoration (decryption) of the original image. Through

encryption experiments using our method, we demonstrated

its effectiveness and identified some issues.
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