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ABSTRACT

To efficiently compress raw camera images captured using a color
filter array (CFA-sampled raw images), wavelet-based spectral-
spatial transforms (WSSTs) that change a CFA-sampled raw image
from an RGB color space into a decorrelated color space have been
presented. This study introduces weighted WSSTs (WWSSTs) that
work especially for the CFA-sampled raw images with many edges
well. The WWSSTs are obtained by considering that each predict
step of the conventional WSSTs is constructed by a combination
of two 1-D diagonal transforms and by weighting them along the
edge directions in the images. The experiments at JPEG 2000-based
lossless and lossy compression basically show that compared with
the WSSTs, our WSSTs improve the results for the images with
many edges by about 0.04 bpp in LBRs, 2.10 [%] in BD-rates, and
0.12 dB in BD-PSNRs while keeping the compression efficiency for
the general images.

Index Terms— Color filter array, raw camera image, lossless
and lossy compression, spectral-spatial transforms, wavelet trans-
forms.

1. INTRODUCTION

RAW camera image is mainly obtained by placing a color filter array
(CFA) between the light sensors and the camera lens. To economize
the cost of hardware, most cameras capture a color image with a sin-
gle sensor instead of using three RGB sensors. Each sensor collects
a color component, which is composed of either red, green, or blue
component for each pixel, not full-color one, and the obtained raw
data is called CFA-sampled raw image. The most popular and widely
used CFA is the Bayer CFA (Fig. 1). Using the CFA-sampled raw
image as it is, an image processor performs most of the preprocess-
ing such as white balancing, denoising, and demosaicing, which are
irreversible processes. Especially, the image quality largely depends
on the performance of the demosaicing process.

The demosaicing-first compression method, which demosaics
the CFA-sampled raw image before compression, has been em-
ployed as the standards such as JPEG and JPEG 2000. However,
since the demosaicing-first one causes redundancy, i.e., data volume
of a full-color image is three times compared with one of the original
CFA-sampled raw image, the compression-first method that com-
presses the CFA-sampled raw image before demosaicing and avoids
the redundancy is gathering attention. In addition, the compression-
first one allows us higher degree of freedom that performs various
image processing than the demosaicing-first one. Many CFA image
compression methods have been presented [1–9], all demonstrating
the efficiency of the compression-first scheme.

Fig. 1. Bayer CFA.

This study focuses on spectral-spatial transforms (SSTs) [3–9].
They change a CFA-sampled raw image from an RGB color space
into a decorrelated color space, such as YDgCbCr or YDgCoCg
color space composed of luma, difference green, and two chroma
components. The spectral redundancy between the decorrelated
components is very small. Since the human visual system is not
very sensitive against the distortions of high frequency (different
green) and chroma components, the strong compression of the com-
ponents will not affect the image quality much. However, the direct
use of wavelet transforms for the SSTs is nothing but ignoring the
image features, especially, edge information. On the other hand,
(non-redundant) adaptive directional wavelet transforms [10–12],
which adapt the filtering directions to the orientations of edge in-
formation, are well-known as efficient methods for considering the
image features.

Inspired by the adaptive directional wavelet transforms, this
study introduces weighted WSSTs (WWSSTs) that work espe-
cially for the CFA-sampled raw images with many edges well.
The WWSSTs are obtained by considering that each predict step
of the conventional WSSTs to YDgCoCg color space (YDgCoCg-
WSSTs) in [8] is constructed by a combination of two 1-D diagonal
transforms and by weighting them along the edge directions in the
images. The experiments at JPEG 2000-based lossless and lossy
compression show that our WWSSTs achieve comparable perfor-
mance to the conventional WSSTs in the case of the general images
and that our WWSSTs outperform the conventional WSSTs because
of more efficient decorrelation in the case of the images with many
edges.

2. REVIEW AND DEFINITIONS

2.1. Wavelet Transforms

Cohen-Daubechies-Feauveau (CDF) wavelet transforms [13] are
commonly used for image processing. A 1-D wavelet transform is
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Table 1. Coefficients of 5/3 and 9/7 wavelet transforms.
5/3 9/7

p0 −1/2 −1.58613434205992
u0 1/4 −0.05298011857295
p1 0 0.882911075530940
u1 0 0.443506852043967

Fig. 2. Weights: (top-left) w1n for G2 prediction, (top-right) w2n

for G2 prediction, (bottom-left) w1n for R prediction, and (bottom-
right) w2n for R prediction.

expressed by predict and update steps as follows:

W(z) =

0∏
k=N−1

[
1 Uk(z)
0 1

]
︸ ︷︷ ︸

update step

[
1 0

Pk(z) 1

]
︸ ︷︷ ︸

predict step

, (1)

where z is a delay element and Pk(z) and Uk(z) are polynomials
with coefficients pk and uk:

Pk(z) = (1 + z−1)pk and Uk(z) = (1 + z)uk. (2)

Table 1 shows the coefficients pk and uk in the 5/3 wavelet trans-
forms (N = 1) and 9/7 wavelet transforms (N = 2). Since the 5/3
and 9/7 wavelet transforms can predict the pixels of interest more
accurately than Haar wavelet transforms do, they can decorrelate the
signals more.

2.2. Wavelet-based Spectral-Spatial Transforms to YDgCoCg
Color Space

This study focuses specifically on the YDgCoCg-WSSTs in [8],
which we will hereafter simply refer to as the WSST. When R, G1,
G2, B, Y , Dg, Co, and Cg mean red, green, another green, blue,
luma, orange chroma, and green chroma components, respectively,
the WSST Tog is represented as[

Y,Dg, Co, Cg
]>

= Tog
[
G1, G2, B,R

]>
, (3)

where

Tog = P2

[
W(z−1

2 ) O
O I

]
P1

[
W(z−1

1 , z2) O
O W(z−1

1 , z−1
2 )

]
.

(4)

Here, P1 and P2 are permutation matrices:

P1 =

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 , P2 =

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 . (5)

A 2-D customized wavelet transform W(z1, z2) is expressed by pre-
dict and update steps as follows:

W(z1, z2) =

0∏
k=N−1

[
1 Uk(z1, z2)
0 1

]
︸ ︷︷ ︸

update step

[
1 0

Pk(z1, z2) 1

]
︸ ︷︷ ︸

predict step

, (6)

where z1 and z2 are horizontal and vertical delay elements, N is the
number of iterations of the two lifting steps depending on the type of
wavelet transforms, and Pk(z1, z2) and Uk(z1, z2) are polynomials
with coefficients pk and uk:

Pk(z1, z2) =
1

2
(1 + z−1

1 + z−1
2 + z−1

1 z−1
2 )pk, (7)

Uk(z1, z2) =
1

2
(1 + z1 + z2 + z1z2)uk, (8)

respectively. The actual implementation is shown in Fig. 3. The pix-
els used in predict and update steps are not limited within a focused
2×2 macropixel and the surrounding pixels are also used to make
the predict results more accurate. However, due to not considering
the image features, the prediction may not be so accurate in some
cases.

3. WEIGHTED WAVELET-BASED SPECTRAL-SPATIAL
TRANSFORMS

This study customizes the polynomial Pk(z1, z2) in the predict steps
of the WSSTs into

P̃k(z1, z2) =
W1(1 + z−1

1 z−1
2 ) +W2(z−1

1 + z−1
2 )

W1 +W2
pk. (9)

When W1 = W2 = 1, it is clear that P̃k(z1, z2) = Pk(z1, z2).
Consequently, we can rewrite it for the case of each of G2 and R
predictions as

P̃k(z−1
1 , z2) =

W1(1 + z1z
−1
2 ) +W2(z1 + z−1

2 )

W1 +W2
pk

if G2 prediction, (10)

P̃k(z−1
1 , z−1

2 ) =
W1(1 + z1z2) +W2(z1 + z2)

W1 +W2
pk

if R prediction, (11)

where

Wm =

d−1∑
n=0

wmn + ε (m = 1, 2 and d = 5, 9), (12)

w1n =

{
|αn(z1 − z−1

2 )G1|, if G2 prediction
|αn(z1 − z2)B|, if R prediction , (13)

w2n =

{
|αn(1− z1z−1

2 )G1|, if G2 prediction
|αn(1− z1z2)B|, if R prediction , (14)
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Fig. 3. Implementation of the WSSTs.

Fig. 4. A part of Dg components of #482:
(top-left) the WSST that uses 5/3 wavelet transforms,
(top-right) the WWSST that uses 5/3 wavelet transforms,
(bottom-left) the WSST that uses 9/7 wavelet transforms, and
(bottom-right) the WWSST that uses 9/7 wavelet transforms.

αn =



1, if n = 0 (center)
z2, if n = 1 (top)
z1, if n = 2 (left)
z−1
1 , if n = 3 (right)
z−1
2 , if n = 4 (bottom)
z1z2, if n = 5 (left-top)
z−1
1 z2, if n = 6 (right-top)
z1z
−1
2 , if n = 7 (left-bottom)

z−1
1 z−1

2 , if n = 8 (right-bottom)

. (15)

To avoid any divisions by zero in (9)-(11), an extremely small value
ε is added in (12). d means that p pairs of pixels are chosen as
weighted, e.g., in this study, we selected d = 5 in lossless compres-
sion and d = 9 in lossy compression experimentally.

4. CFA-SAMPLED RAW IMAGE COMPRESSION

We compared our WWSSTs with the conventional WSSTs [8]. The
5/3 and 9/7 wavelet transforms were used for lossless and lossy com-
pression, respectively. The transformed images were compressed
with JPEG 2000 by using imwrite.m in MATLAB. We used MIT-

Table 2. Improved MSEs [%] of Dg components.
5/3 wavelet 9/7 wavelet

Images WSST→WWSST WSST→WWSST
#9 -10.12 -8.83

#11 -8.83 -8.17
#34 -11.77 -11.54
#42 -13.55 -11.44
#45 -14.51 -14.02
#46 -10.38 -8.97
#92 -14.53 -14.06
#99 -9.35 -9.15
#103 -4.79 -3.97
#107 -14.30 -12.81
#138 -16.81 -13.07
#482 -36.28 -33.75
#560 -15.03 -11.98
#784 -8.22 -7.47
#845 -11.32 -10.67

#1145 -32.50 -30.61
#1366 -22.90 -11.32
#4026 -16.30 -12.95
#4479 -9.57 -9.28
#4823 -11.67 -10.63

Average -16.00 -14.40

Adobe FiveK dataset [14] after converting the dynamic range of the
images from 16 to 14 bits because the sensor data usually had only
about 10 to 14-bit resolution at most (Fig. 5) and subsampling the
images in accordance with the Bayer CFA.

Fig. 4 and Table 2 show a part of Dg components of the several
images transformed by the WSSTs and WWSSTs and their improved
mean squared errors (MSEs)1 [%]. The WWSSTs decorrelated each
color component more thoroughly than the WSSTs, especially, they
reduced more energies of Dg components like high frequency infor-
mation between G1 and G2 components for the CFA-sampled raw
images with many edges. Table 3 shows the lossless bitrates (LBRs)
[bpp] in lossless compression and the Bjøntegaard delta (BD) met-
rics (BD-rates [%] and BD-PSNRs [dB]) between about 0.0625-2
bpp in comparison with the WSSTs in lossy compression. On av-
erage compared with the WSSTs, the WWSSTs outperformed by
about 0.01 bpp in LBRs, 0.15 % in BD-rates, and 0.01 dB in BD-
PSNRs. This fact indicates that the WWSSTs have almost the same
compression efficiency as the WSSTs in this case. Table 4 shows the
results in lossless and lossy compression for the images with many
edges. In this case, the WWSSTs improved the results by about 0.04
bpp in LBRs, 2.10 % in BD-rates, and 0.12 dB in BD-PSNRs com-

1Strictly speaking, it is not MSE. However, we express it as MSE because
Dg is like the error between G1 and G2 components.
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Fig. 5. Images: (first and second rows) general ones: #1, #2, #3, #4, #5, #6, #7, #8, #10, #12, #13, #14, #15, #16, #17, #18, #19, #20, #21,
and #22 and (third and fourth rows) ones with many edges: #9, #11, #34, #42, #45, #46, #92, #99, #103, #107, #138, #482, #560, #784, #845,
#1145, #1366, #4026, #4479, and #4823.

Table 3. LBRs [bpp], BD-rates [%], and BD-PSNRs [dB] in lossless
and lossy compressions for the general CFA-sampled raw images.

Lossless (LBRs) Lossy
Images WSST WWSST BD-rate BD-PSNR

#1 11.50 11.49 -0.21 0.01
#2 10.90 10.92 1.25 -0.03
#3 8.34 8.33 -0.75 0.04
#4 9.46 9.45 -0.29 0.01
#5 8.03 8.03 -0.23 0.01
#6 9.24 9.24 0.59 -0.02
#7 10.57 10.57 0.40 -0.02
#8 9.32 9.32 0.90 -0.03
#10 8.70 8.68 -0.09 -0.01
#12 9.61 9.60 -0.56 0.03
#13 8.97 8.95 -0.89 0.06
#14 9.97 9.96 -0.65 0.02
#15 8.84 8.82 -0.62 0.03
#16 9.05 9.04 -0.22 0.01
#17 10.86 10.84 -0.66 0.03
#18 9.25 9.24 -0.25 0.01
#19 9.88 9.88 0.05 0.00
#20 9.38 9.36 -0.68 0.03
#21 9.04 9.03 -0.26 0.00
#22 10.39 10.38 -0.05 0.00

Average 9.57 9.56 -0.15 0.01

pared with the WSSTs.

5. CONCLUSION

This study introduced the WWSSTs that work especially for the
CFA-sampled raw images with many edges well. The WWSSTs
were obtained by considering that each predict step of the conven-
tional WSSTs is constructed by a combination of two 1-D diagonal
transforms and by weighting them along the edge directions in the
images. As a result, without reducing the compression efficiency

Table 4. LBRs [bpp], BD-rates [%], and BD-PSNRs [dB] in lossless
and lossy compressions for the CFA-sampled raw images with many
edges.

Lossless (LBRs) Lossy
Images WSST WWSST BD-rate BD-PSNR

#9 9.76 9.72 -1.29 0.06
#11 10.90 10.87 -1.18 0.06
#34 10.92 10.88 -1.81 0.09
#42 10.72 10.68 -1.54 0.07
#45 11.30 11.24 -2.05 0.10
#46 9.57 9.54 -1.45 0.08
#92 10.46 10.41 -2.16 0.11
#99 11.09 11.06 -1.30 0.07
#103 9.82 9.80 -1.38 0.07
#107 10.10 10.08 -1.45 0.07
#138 8.42 8.40 -1.37 0.09
#482 10.18 10.08 -6.12 0.36
#560 8.98 8.95 -1.71 0.10
#784 9.69 9.67 -1.68 0.09
#845 10.04 10.01 -1.20 0.06

#1145 9.44 9.38 -4.67 0.27
#1366 9.54 9.51 -2.13 0.13
#4026 10.38 10.32 -4.02 0.28
#4479 9.61 9.60 -1.41 0.07
#4823 10.40 10.37 -2.09 0.11

Average 10.07 10.03 -2.10 0.12

for the general CFA-sampled raw images, our WWSSTs could fur-
ther improve the compression efficiency for the images with many
edges.

1853

Authorized licensed use limited to: Tsukuba Univ Lib. Downloaded on May 02,2022 at 08:15:30 UTC from IEEE Xplore.  Restrictions apply. 



6. REFERENCES

[1] N.-X. Lian, L. Chang, V. Zagorodnov, and Y.-P. Tan, “Revers-
ing demosaicking and compression in color filter array image
processing: Performance analysis and modeling,” IEEE Trans.
Image Process., vol. 15, no. 11, pp. 3261–3278, Nov. 2006.

[2] K. Chung and Y. Chan, “A lossless compression scheme for
bayer color filter array images,” IEEE Trans. Image Process.,
vol. 17, no. 2, pp. 134–144, Feb. 2008.

[3] N. Zhang and X. Wu, “Lossless compression of color mosaic
images,” IEEE Trans. Image Process., vol. 15, no. 6, pp. 1379–
1388, Jun. 2006.

[4] H. S. Malvar and G. J. Sullivan, “Progressive-to-lossless com-
pression of color-filter-array images using macropixel spectral-
spatial transformation,” in Proc. DCC, Snowbird, UT, Apr.
2012, pp. 3–12.

[5] M. Hernández-Cabronero, M. W. Marcellin, I. Blanes, and
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