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ABSTRACT

This study presents a pseudo reversible symmetric extension (P-
RevSE) that solves the signal boundary problem of lifting-based
nonlinear-phase paraunitary filter banks (L-NLPPUFBs), which
have high compression rates thanks to their not having a constraint
on the linear-phase property unlike the existing transforms used in
image coding standards. The conventional L-NLPPUFBs with a
periodic extension (PE) yield annoying artifacts at the signal bound-
aries. However, the P-RevSE is implemented smoothly at the signal
boundaries by using a nonexpansive convolution of a symmetric
extension (SE) and determinant control for the lifting factorization.
Although the determinant control causes a pseudo SE, not a true SE,
the resulting L-NLPPUFB with P-RevSE outperforms not only the
L-NLPPUFB with PE but also the current transform used in JPEG
XR.

Index Terms— Lifting structure, lossy-to-lossless image cod-
ing, nonlinear-phase paraunitary filter bank, signal boundary prob-
lem, symmetric extension.

1. INTRODUCTION

Image compression (coding) standards help to alleviate the burden
on servers and free up communication bandwidth. JPEG is the most
common image coding standard, but it uses the discrete cosine trans-
form (DCT), which causes blocking artifacts in low bitrate compres-
sion. JPEG XR (eXtended Range) [1] is a more effective image cod-
ing standard that uses a lapped transform (LT) [2], which is a class
of linear-phase filter banks (LPFBs) [3], and it solves the blocking
problem. Although LPFBs have to extend the signals at the signal
boundaries because of the overlapping processing, the output sig-
nals should not be larger than the input signals. A periodic exten-
sion (PE), which is one of the simplest boundary processing, causes
annoying artifacts due to discontinuities at the signal boundaries.
LPFBs solve the problem by using a symmetric extension (SE) [4],
which extends the boundary signals smoothly and does not require
transmission of extra signals for reconstruction.

Nonlinear-phase filter banks (NLPFBs) [5, 6] have high com-
pression rates thanks to their not having a constraint on the linear-
phase property unlike LPFBs. NLPFBs also have the signal bound-
ary problem, and some solutions for it have been presented [7–10].
On the other hand, lifting-based FBs (L-FBs) for lossy-to-lossless
image coding, whose image quality is scalable from lossless to
highly compressed lossy data, are not able to use the existing
smooth boundary solutions [7–10] because of the rounding error
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in each lifting step. While our previous work presented a reversible
SE (RevSE) for lifting-based LPFBs (L-LPFBs) [11], the nonlinear-
phase case has not been treated yet.

This study presents a pseudo RevSE (P-RevSE) for lifting-
based nonlinear-phase paraunitary filter banks (L-NLPPUFBs).
NLPPUFBs are NLPFBs with paraunitariness and are more practi-
cal than NLPFBs without paraunitariness. In addition, NLPPUFBs,
whose building blocks are orthonormal matrices, can be easily fac-
torized into lifting structures for lossy-to-lossless image coding
because a minimum condition to realize a lifting factorization of a
matrix is that the determinant is ±1 [12]. The P-RevSE is imple-
mented smoothly at the signal boundaries by using a nonexpansive
convolution of an SE according to [9] and determinant control for
the lifting factorization. Although the determinant control causes a
pseudo SE, not a true SE, the resulting L-NLPPUFB with P-RevSE
outperforms not only L-NLPPUFB with PE but also the current LT
used in the JPEG XR standard.

Notations: Boldface small and capital letters represent vectors
and matrices, respectively. I[m], J[m], and ·T mean an m×m iden-
tity matrix, m × m reversal matrix, and transpose of a matrix, re-
spectively. We omit the matrix sizes when they are obvious.

2. NONLINEAR-PHASE PARAUNITARY FILTER BANKS

Let M × MK NLPFB (M,K ∈ N, M is even, K ≥ 2) be an
NLPFB whose channel and filter length are M and MK, respec-
tively. The polyphase matrix E(z) is expressed as [13]

E(z) =

(
1∏

i=K−1

GiΛi(z)

)
G0, (1)

where Gk (k = 0, 1, · · · ,K−1) is an M×M arbitrary nonsingular
matrix and Λi(z) is a delay matrix with a delay element z as:

Λi(z) =

[
I[M−γi] 0

0 z−1I[γi]

]
. (2)

Although γi is an arbitrary integer 1 ≤ γi ≤ M − 1, we set
γi = M/2 for simplicity. Thus, Λi(z) is denoted as Λ(z). Since an
NLPFB is not constrained by the linear-phase property, it achieves
a better frequency decomposition compared with the linear-phase
case. When Gk is an arbitrary orthonormal matrix, G−1

k = GT
k [5],

an NLPFB is called an NLPPUFB.

3. SYMMETRIC EXTENSION FOR NLPPUFBS

Tanaka et al. proposed a nonexpansive convolution for NLP-
PUFBs [9]. The top images of Fig. 1 shows the upper boundary
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Fig. 1. Upper boundary processing of the analysis banks of NLPPUFBs (dashed lines mean boundaries): (top) SE, (bottom) nonexpansive
convolution, (left) K = 2, (right) K = 3.

processing of the analysis banks of NLPPUFBs when K = 2 and
3. They mean that (K − 1)M/2 extra signals have to be extended
at each boundary. To obtain smooth signals and for simplicity, the
extra signals are commonly extended by using J[(K−1)M/2]; i.e., the
extension is an SE.

Here, we have a nonexpansive problem because the signals
transmitted to the synthesis bank should only be yn (n = 0, 1, 2, · · · ).
This section presents a reconstruction method at the synthesis bank
without any extra signal; i.e., xn is reconstructed from only an,
which can be reconstructed from yn. Let Gk be

Gk =

[
Ak Bk

Ck Dk

]
, (3)

where each submatrix is M/2 ×M/2. Hereafter, we consider only
the upper boundary processing. The signals at the lower boundary
processing can be reconstructed in the same way as in the upper
boundary processing.

3.1. Case of K = 2

From the top left of Fig. 1, we obtain

a0 =
[
A1 B1

] [Jx0

x0

]
= (A1J+B1)︸ ︷︷ ︸

≜ U

x0. (4)

The problem is to reconstruct x0 from a0, which is transmitted to
the synthesis bank. x0 is represented as

x0 = U−1a0, (5)

where the boundary matrix U has to be nonsingular, i.e., det(U) ̸=
0. The nonexpansive convolution of the analysis banks in case of
K = 2 is shown at the bottom left of Fig. 1.

3.2. Case of K = 3

From the top right of Fig. 1, similar to the case of K = 2, we obtain

b−1 =
[
A2 B2

] [Jx1

Jx0

]
=
[
B2J A2J

] [x0

x1

]
. (6)

Also, x0 and x1 in Eq. (6) can be recalculated from b0 and b1 as[
x0

x1

]
=

[
AT

2 CT
2

BT
2 DT

2

]
︸ ︷︷ ︸

GT
2

[
b1

b0

]
, (7)

where G2 is an orthonormal matrix. We cannot easily calculate
b0 from the limited signals an unlike b1. Substituting Eq. (7) into
Eq. (6) yields

b−1 =
[
B2J A2J

] [AT
2 CT

2

BT
2 DT

2

] [
b1

b0

]
. (8)

Also, we obtain

a0 =
[
A1 B1

] [b−1

b0

]
. (9)

Consequently, b0 can be calculated from Eqs. (8) and (9) as

b0 =
(
A1

(
B2JC

T
2 +A2JD

T
2

)
+B1

)
︸ ︷︷ ︸

≜ V

−1

·

a0 −A1

(
B2JA

T
2 +A2JB

T
2

)
︸ ︷︷ ︸

≜ W

b1

 , (10)

where the boundary matrix V has to be nonsingular, i.e., det(V) ̸=
0. The nonexpansive convolution of the analysis banks in case of
K = 3 is shown at the bottom right of Fig. 1.

For any K, the signals can be reconstructed as the solution of a
simultaneous matrix equation with (K − 1) unknowns.

4. PSEUDO SYMMETRIC EXTENSION FOR L-NLPPUFBS

This section presents a P-RevSE for L-NLPPUFBs that uses the non-
expansive convolution described in Sec. 3 and determinant control
for the lifting factorization. From the bottom of Fig. 1, if the struc-
tures are expressed as lifting structures, they achieve reversible trans-
forms for lossless image coding. We can consider that the process-
ing with W is already a lifting structure. Consequently, the resid-
ual matrices Gk, U , and V should be factorized into lifting struc-
tures. A minimum condition to realize a lifting factorization of a
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Table 1. Coding gain Ccgs of the resulting 4× 12 L-NLPPUFBs.
Boundary Not Upper Lower

Ccg 8.3168 8.2852 8.3173

Table 2. Lossless image coding results (LBR [bpp]).
Test LT [2] L-NLPPUFBs

Images RevSE PE P-RevSE
Barbara 4.801 4.798 4.775

Boat 5.124 5.103 5.093
Elaine 5.166 5.132 5.106
Lena 4.587 4.615 4.587

Pepper 4.954 4.907 4.897
Room 4.344 4.452 4.427

matrix is that the determinant is ±1 [12]. Since Gk is an orthonor-
mal matrix, i.e., det(Gk) = ±1, the matrix can be factorized into
lifting structures. On the other hand, note that the determinants of
U and V might not satisfy this condition, i.e., det(U) ̸= ±1 and
det(V) ̸= ±1. Thus, we control the matrices in

Ũ =
U

M/2
√

|det (U)|
and Ṽ =

V
M/2
√

|det (V)|
, (11)

where det(U) ̸= 0 and det(V) ̸= 0, and these conditions are
completely equivalent to those as described in Sec. 3. Since these
matrices Ũ and Ṽ satisfy the condition for a lifting factorization,
det(Ũ) = ±1 and det(Ṽ) = ±1, Ũ and Ṽ can be factorized into
lifting structures. This means that the top half of G1 at the signal
boundaries is scaled by M/2

√
| det(U)| and M/2

√
|det(V)|,

G̃1 =

[
1
s
I 0
0 I

]
G1 =

[
1
s
A1

1
s
B1

C1 D1

]
, (12)

where s = M/2
√

| det(U)| (K = 2) or M/2
√

| det(V)| (K = 3);
i.e., the NLPPUFBs losing the original properties are used at the
signal boundaries. Therefore, if M/2

√
| det(U)| and M/2

√
| det(V)|

are quite different from 1, the boundary processing cannot be imple-
mented smoothly. Accordingly, we have to take this into considera-
tion when designing the NLPPUFB.

5. EXPERIMENTAL RESULTS

5.1. Design of NLPPUFBs

We designed 4 × 12 (M = 4 and K = 3) NLPPUFB with the cost
function ϕ, which is a weighted linear combination of the coding
gain Ccg [14], the symmetric property of filters Csym [9], and the
determinant control of matrices Cdet, as follows:

ϕ = −w0Ccg + w1Csym + w2Cdet, (13)

where

Cdet = (|det (Vu)| − 1)2 + (|det (V l)| − 1)2 . (14)

Vu and V l mean V at the upper and lower boundary process-
ing of the NLPPUFBs. wk was experimentally-determined as
{w0, w1, w2} = {1, 0.01, 0.15}. Regularity, which is one of
the most important image coding properties to prevent the DC leak-
age, was considered structurally [12]. As described in the previous

Fig. 2. Frequency responses of the resulting 4 × 12 NLPPUFBs
(black solid, pink dotted, and light blue chained lines mean the NLP-
PUFBs at non-signal boundaries, upper signal boundaries, and lower
signal boundaries, respectively): (top) analysis banks, (bottom) syn-
thesis banks.

section, smooth boundary processing cannot be implemented if
M/2
√

|det(V)| is quite different from 1. However, the resulting
4 × 12 NLPPUFB achieved M/2

√
| det(Vu)| = 0.9339 ≈ 1 and

M/2
√

|det(V l)| = 0.9635 ≈ 1 thanks to the cost functions Csym

and Cdet. Table 1 and Fig. 2 respectively show the coding gain Ccgs
and the frequency responses of the resulting 4 × 12 NLPPUFBs at
non-signal boundaries, upper signal boundaries, and lower signal
boundaries. From the coding gains and frequency responses, we
consider that the differences that depend on the signal boundaries
are trivial.

5.2. Lossy-to-Lossless Image Coding

We evaluated the 4 × 8 LT (JPEG XR) with RevSE1 and the result-
ing 4 × 12 L-NLPPUFBs with PE and P-RevSE through lossy-to-
lossless image coding. A single-row elementary reversible matrix
(SERM) [15] was used for the lifting factorization of Gk and Ṽ . As
described in Sec. 4, the processing with W is considered to be a lift-
ing structure without any lifting factorization. The resulting 4 × 12
L-NLPPUFBs were implemented with a rounding operation at each
lifting step and compared in terms of the lossless bitrate (LBR) [bpp]
in lossless image coding and peak signal-to-noise ratio (PSNR) [dB]

1Note that the RevSE in JPEG XR is not equivalent to [11] because it is
customized for JPEG XR.
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Fig. 3. Particular areas of images of Room, which was lossy compressed with 0.25 [bpp] (top and bottom boundaries of each image are
non-image boundaries): (top-to-bottom) original image, LT with RevSE, L-NLPPUFB with PE, and L-NLPPUFB with P-RevSE.

Table 3. Lossy image coding results (PSNR [dB]).
Test Bitrate LT [2] L-NLPPUFBs

Images [bpp] RevSE PE P-RevSE
0.25 26.569 27.436 27.578

Barbara 0.50 30.334 31.097 31.234
1.00 34.952 35.601 35.728
0.25 27.261 28.129 28.219

Boat 0.50 30.727 31.296 31.371
1.00 34.213 34.758 34.805
0.25 30.825 31.178 31.381

Elaine 0.50 32.502 32.876 33.016
1.00 34.179 34.746 34.894
0.25 31.603 31.965 32.251

Lena 0.50 35.024 35.300 35.524
1.00 38.247 38.572 38.708
0.25 31.026 31.078 31.586

Pepper 0.50 33.892 34.207 34.328
1.00 35.428 36.200 36.273
0.25 27.818 28.684 29.048

Room 0.50 32.715 32.838 33.116
1.00 38.288 37.927 38.407

in lossy image coding:

LBR [bpp] =
Total number of bits [bit]

Total number of pixels [pixel]
(15)

and

PSNR [dB] = 10 log10

(
2552

Mean Squared Error

)
. (16)

To evaluate transform performance fairly, we employed two-level
decompositions on all transforms. The image set included six 512×
512 eight-bit standard grayscale images in [16]. A quadtree-based
embedded image coder EZW-IP [17] was used to encode the trans-
formed images.

Table 2, Table 3, and Fig. 3 show the lossless and lossy image
coding results. The results show the advantage of the L-NLPPUFB
with P-RevSE over the L-NLPPUFB with PE. Especially, in Fig. 3,
the L-NLPPUFB with PE produces annoying artifacts, whereas no
artifacts are apparent in the image from the L-NLPPUFB with P-
RevSE. In addition, the L-NLPPUFB with P-RevSE outperformed
the 4× 8 LT with RevSE.

6. CONCLUSION

This study presented a P-RevSE for L-NLPPUFBs. The conven-
tional L-NLPPUFBs without any smooth boundary processing have
the annoying artifacts at signal boundaries. The L-NLPPUFB with
P-RevSE solved this problem by using a nonexpansive convolu-
tion of an SE and determinant control for the lifting factorization.
Although the determinant control caused a pseudo SE, not a true
SE, the L-NLPPUFB with P-RevSE outperformed not only the L-
NLPPUFB with PE but also the current transform used in JPEG
XR.
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