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ABSTRACT

Directional block transforms (DBTs), such as discrete Fourier trans-
forms, are basically less efficient for sparse image representation
than directional overlapped transforms, such as curvelet and con-
tourlet, but have advantages in practical computation, such as less
computational cost, less amount of memory usage to be used, and
parallel processing. In order to realize efficient DBTs, this paper pro-
poses directional discrete cosine transforms (DDCTs) by using dis-
crete cosine and sine transforms. The resulting transforms provide
richer directional orientations of atoms than conventional DBTs, and
thus they are expected to be more efficient for image analysis and
processing. In experiments, we evaluate DDCTs with conventional
DBTs in image recovery by a convex optimization.

Index Terms— Block transform, discrete cosine transform, di-
rectionality, image recovery, convex optimization

1. INTRODUCTION

Sparse image representation (SIR) allows us to analyze images pre-
cisely, and realize many image processing tasks, e.g., denoising,
deblurring, and compressive sensing, by integrating SIR into con-
vex optimization algorithms [1–3]. For SIR, directional frames have
been extensively studied, such as curvelet [4], contourlet [5], dirLOT
[6], and dual-tree complex wavelets/filter banks [7–11]. Recently,
more general systems, so-called dictionary [12–14], non-local frame
[15], and graph wavelets/filter banks [16, 17], that explore complex
structures or non-local similarity, have been proposed.

Although those transforms can efficiently provide SIR and con-
tribute precise image analysis and processing, they have several
problems in practical computation. First, computational complexity
is typically high, due to 2D filtering [4–6], sparse coding with itera-
tive scheme [12–14], block matching [15], or large-scale eigenvalue
decomposition [16, 17]. Second, they require a large amount of
memory usage to store the coefficients. Third, they require global
memory access because each support of atoms in those frames is
overlapped each other. It disturbs parallel computation.

Block transforms (BTs) are widely used in practical applica-
tions, e.g., video coding [18], because supports of atoms are iden-
tical or disjoint, and transformation can be parallelized. Moreover,
they require low computational cost and a small amount of mem-
ory. Conventional directional BTs (DBTs) can be classified into
fixed type and adaptive type. The fixed class contains transforms
with directionally oriented bases, such as discrete Fourier transform
(DFT) and its variants [8, 19, 20]. In the latter class, the adaptive
directional transforms apply a BT along predetermined oblique di-

rections [21,22]. Applications of the latter class are relatively limited
because transform directions have to be determined from an image in
advance. For example, in image recovery, observed images are usu-
ally degraded, and thus suitable directions cannot be easily found.
For general purposes, we focus on the former fixed class. The prob-
lem on conventional fixed type DBTs is that they contain duplicated
atoms in their basis and cannot provide rich directional selectivities1.
This degrades the efficiency of image analysis and processing.

In order to achieve DBTs with rich directional selectivities, we
firstly introduce directional discrete cosine transforms (DDCTs),
which are constructed from the discrete cosine transform (DCT) and
the discrete sine transform (DST). The resulting transform provides
richer directionally oriented atoms than conventional DBTs. Then,
we extend the DDCT to the biorthogonal DDCTs (BDDCTs) for
improving the performance. DCTs and DSTs can be regarded as
modulated filter banks [23–25]. By customizing prototype filter
coefficients of DCTs and DSTs, we can design higher performance
for certain criteria, such as coding gain [26–29], while keeping rich
directional selectivity. In the experiments, the DDCT/BDDCT are
compared with the conventional DBTs in image inpainting as a
practical application and we show their effectiveness.

Notations: Bold-faced lower-case and upper-case letters denote
vectors and matrices, respectively. A set of Nr [row] and Nc [col-
umn] real-valued matrices is described as RNr×Nc . I, J, and O
are reserved for the identity, reverse identity and zero matrices, re-
spectively. A[N ] represents an N × N square matrix. [x]i (or xi)
and [X]i,j (or Xi,j) denote the i-th element of a vector x and the
(i, j)-th element of a matrix X, respectively. X(i,j) ∈ RM×M in-
dicates the (i, j)-th M × M subblock of X ∈ RML1×ML2 . For
a given image X ∈ RNr×Nc , vec(X) ∈ RNrNc denotes the vec-
torization of X, i.e., xNrj+i = Xi,j . bvec(X) ∈ R(ML1)(ML2)

is the block-wise vectorization of X ∈ RML1×ML2 as bvec(X) =

[vec(X(0,0))⊤ vec(X(0,1))⊤ . . . vec(X(L1−1,L2−1))⊤]⊤. ⊗ de-
notes the Kronecker product. diag(a0, . . . , aM−1) and diag(A0

, . . . ,AM−1) denote diagonal and block diagonal matrices.

2. PRELIMINARIES

2.1. Conventional Block and Directional Block Transforms

DCT (type-II) [30] is one of the most standard transforms and widely
used [18]. Its transform matrix FC ∈ RM×M is defined as:

[FC ]k,n = αk

√
2

M
cos(θk,n), θk,n =

π

M
k

(
n+

1

2

)
, (1)

1We use directional selectivity as the number of orientation of atoms.
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(a) DCT (b) DFT (real part)

Fig. 1: Frequency partition and the corresponding atoms B(k1,k2) in
basis (M = 4).

where the ranges of the subband index k and the time index n are
0 ≤ n, k ≤ M − 1, α0 = 1√

2
(k = 0), and αk = 1, (k ̸= 0).

For a block in an image x = vec(X) (X ∈ RM×M ), the 2D DCT
is given by FC ⊗ FC ∈ RM2×M2

. A drawback of DCT is lack of
directional selectivity in its atoms (elements of basis/frames). The
2D atom B(k1,k2) ∈ RM×M in the DCT forms:

B(k1,k2)
n1,n2

= [FC ]k1,n1 [FC ]k2,n2 (2)

where k1 and n1 denote the vertical subband and spatial index,
respectively, and k2 and n2 denote the horizontal ones (0 ≤
k1, k2, n1, n2 ≤ M − 1). Clearly, it is not directionally ori-
ented (Fig. 1(a)2), and thus it cannot express various directionally
components in images.

The DFT [19] and its variants (discrete Hartley transforms
(DHTs) [20] and conjugate-symmetric Hadamard transforms [8])
are the DBTs. For example, the transform matrix of DFT is
[FW ]k,n = 1√

M
e−jφk,n ∈ RM×M (φk,n = 2π

M
kn) and whose

2D atoms B(k1,k2) ∈ RM×M are specified as:

B(k1,k2)
n1,n2

= [FW ]k1,n1 [FW ]k2,n2 =
1

M
ej(φk1,n1

+φk2,n2). (3)

As shown in Fig. 1(b), the basis contains directionally-oriented
atoms. One problem on the DFT and its variants is that they contain
duplicated atoms in their basis and cannot provide rich directional
selectivity as shown in Fig. 1(b). It means that high efficiency of
image analysis and processing cannot be achieved.

2.2. Primal-Dual Splitting Method

Here, we briefly review the primal-dual splitting algorithm (PDS)
[31–33] as a solver of a convex optimization problem used in the
experiments in Section 4. Consider the following convex optimiza-
tion problem to find x⋆ ∈ argminx∈Rn g(x) + h(Lx), where g ∈
Γ0(Rn)3, h ∈ Γ0(Rm), and L ∈ Rm×n. Then the PDS for solving
the problem is given as follows:{

xk+1 := proxγ1g
[xk − γ1L

∗zk]

zk+1 := proxγ2h∗ [zk + γ2L(2xk+1 − xk)]
, (4)

where prox denotes the proximal operator [34], h∗ is the conjugate
function [34] of h, and L∗ is the adjoint operator of L.

3. DISCRETE DIRECTIONAL COSINE TRANSFORM

3.1. Definition of DDCT

In order to solve poor directional selectivity of the conventional
DBTs mentioned in Section 2.1, the DDCT is introduced as follows.

2In Figs. 1 and 2, enlarged atoms are depicted for better visualization.
3Γ0(RN ) is the set of proper lower semi-continuous convex functions

[34] on RN .
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Fig. 2: (a) Procedure of the DDCT (M = 4). (b) and (c): Atoms
B(k1,k2,±1) in the DDCT frame.

Definition 1. The DDCT FD ∈ R2M2×M2

is defined as

FD := P⊤
1 WP1

[
FC ⊗ FC

FS ⊗ FS

]

W =

 1√
2
I[2M−1] O O

O 1
2
I[(M−1)2] − 1

2
I[(M−1)2]

O 1
2
I[(M−1)2]

1
2
I[(M−1)2]

 (5)

where FC is in (1) and P1 ∈ RM2×M2

is a permutation matrix. P1

places the 4M − 2 DCT and DST coefficients associated with the
subband indices k1 = 0 or k2 = 0 to the first part, and the other
2(M − 1)2 coefficients associated with the subband indices k1 ̸= 0
and k2 ̸= 0 to the last (see Fig. 2(a)). FS ∈ RM×M is defined as

[FS ]k,n =


√

1
M

sin
(
π
(
n+ 1

2

))
(k = 0)√

2
M

sin
(

π
M
k
(
n+ 1

2

))
(k ̸= 0)

. (6)

FS is the row-wise permutated version of the type-II DST. Be-
cause the DCT (FC ) and the DST (FS) are orthogonal matrices, the
DDCT consists a Parseval frame F⊤

DFD = I[M2].
The procedure of the DDCT is illustrated in Fig. 2(a). The

DDCT requires just two block transforms, and additions/subtractions
between two transforms with scaling operations. Its redundancy ra-
tio is 2, which is the same as the DFT and the DTCWTs [7,8,10,11],
and is less redundant than frames and dictionaries, e.g., [13, 14].

According to the above setting, the atoms of the DDCT ex-
hibit rich directional selectivity as explained in the following. Be-
cause the DDCT forms a Parseval frame, its atoms are given by[
f0 . . . f2M2−1

]
:= F⊤

D . From (5), each fk is 1) an atom in the
2D DCT/DST basis, or 2) an atom arising from the sum/difference
of 2D DCT/DST atoms. Let B(k1,k2,1), B(k1,k2,−1) ∈ RM×M be
two directional atoms of the DDCT that correspond to the subband
(k1, k2) ∈ {1, . . . ,M − 1} × {1, . . . ,M − 1}. They can be repre-
sented as

B(k1,k2,±1)
n1,n2

= [FC ]k1,n1 [FC ]k2,n2 ± [FS ]k1,n1 [FS ]k2,n2

=
2

M
cos (θk1,n1 ∓ θk2,n2) . (7)

These 2D cosine functions (this is the reason why FD in (5) is
termed as DDCT) are lying along various oblique directions, as il-
lustrated in Figs. 2(b) and (c), analogous to the DFT (3).
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(a) (b) (c)

Fig. 3: Frequency responses: (a) Zoneplate, (b) (Half of) DDCT
coefficients, (c) (Half of) DDCT coefficients using DC shifting.

Whereas the DDCT satisfies the rich directionality, it suffers
from DC leakage, as shown in (half of) DDCT coefficients of the in-
put image (Zoneplate) in Fig. 3(b). Since DC leakage degrades the
energy compaction in the subband domain, we introduce DC shifting
as follows. First, let M ∈ RM2×M2

be an averaging operator de-
fined as: M = M0⊗M0, where M0 ∈ RM×M and [M0]k,n = 1

M
.

Then, the transform matrix of the DDCT with DC shifting is defined
as FD(I−M). Fig. 3(c) shows the (half of) the transformed coeffi-
cients. It is clear that DC shifting (I −M) can promote sparsity of
coefficients.

3.2. Directional Selectivity of DDCT from the Viewpoint of 2D
Frequency Domain

Before introducing the BDDCTs, this section discusses the direc-
tional selectivity of the DDCT from the viewpoint of 2D frequency
domain. Let H(c)

k (ω) and H
(s)
k (ω) (k = 1, . . . ,M − 1) be the

frequency spectrum of the k-th row in DCT and DST, respectively,
which can be expressed as

H
(c)
k (ω) =

1

2

(
Uk(ω) + Uk(ω)

)
H

(s)
k (ω) =

1

2j

(
Uk(ω)− Uk(ω)

)
, (8)

where Uk(ω) = ej
π

2M
k ∑M−1

n=0 pk,ne
j(ω+ π

M
k)n, pk,n = 1 (∀k, n).

While H
(c)
k (ω) and H

(s)
k (ω) distribute in the both positive/negative

frequency domain (Fig. 4(a)), Uk(ω) distributes in the positive fre-
quency domain (Fig. 4(b)). From (8), we can derive

D1(ω1, ω2) :=
1

2

(
Uk1(ω1)Uk2(ω2) + Uk1(ω1)Uk2(ω2)

)
= H

(c)
k1

(ω1)H
(c)
k2

(ω2)−H
(s)
k1

(ω1)H
(s)
k2

(ω2)

D2(ω1, ω2) :=
1

2

(
Uk1(ω1)Uk2(ω2) + Uk1(ω1)Uk2(ω2)

)
= H

(c)
k1

(ω1)H
(c)
k2

(ω2) +H
(s)
k1

(ω1)H
(s)
k2

(ω2). (9)

As shown the 2D frequency spectra in Figs. 4(c) and (d), (9) en-
sure that a directional frequency decomposition can be realized
by the DDCT (i.e., the 2D separable DCT/DST followed by addi-
tion/subtraction).

3.3. Definition of BDDCTs

From (8), DCT and DST can be regarded as special classes of mod-
ulated filter banks [23–25]. The fact produces the possibility to en-
hance the DCT and the DST by finding better prototype lowpass fil-
ter coefficients pk,n. Now we define biorthogonal DCTs (BDCTs),
biorthogonal DSTs (BDSTs), and BDDCTs by extending the origi-
nal DCT and DST as follows.

(a) Real-valued filter (b) Complex-valued filter

(c) D1(ω1, ω2) (d) D2(ω1, ω2)

Fig. 4: Example of frequency spectra.

Definition 2. For given coefficients {fn}M−1
n=0 and {gn}M−1

n=0 ,
BDCT FBC ∈ RM×M and BDST FBS ∈ RM×M are defined
as:

[FBC ]k,n = pk,nαk

√
2

M
cos(θk,n)

[FBS ]k,n = pk,nαk

√
2

M
sin(θk,n)

pk,n =

{
(fn + gn) k : even

(fn − gn) k : odd
. (10)

BDDCT (denoted as FBD ∈ R2M2×M2

) is defined by replacing
DCT FC and DST FS in (5) with BDCT FBC and BDST FBS .

Since both FBC and FBS are often required to be invertible, we
should consider the perfect reconstruction condition for BDCTs. For
that, we derive the following proposition.

Proposition 1. The matrices FBC and FBS can be factorized as:

FBC = FCGc, FBS = FSGs, (11)
Gc = diag(f0, . . . , fM−1) + Jdiag(g0, . . . , gM−1)

Gs = diag(f0, . . . , fM−1)− Jdiag(g0, . . . , gM−1)

Gs = ΓGcΓ, Γ = diag(I,−I). (12)

Proof. Due to the symmetry/antisymmetry of the DCT, we obtain[
pℓck,ℓ pM−1−ℓck,M−1−ℓ

]
=

[
(fℓ + gℓ)ck,ℓ (fM−1−ℓ + gM−1−ℓ)ck,ℓ

]
=

[
ck,ℓ ck,ℓ

] [fℓ gM−1−ℓ

gℓ fM−1−ℓ

]
=

[
ck,ℓ ck,M−1−ℓ

] [fℓ gM−1−ℓ

gℓ fM−1−ℓ

]
(k : even)[

pℓck,ℓ pM−1−ℓck,M−1−ℓ

]
=

[
ck,ℓ −ck,ℓ

] [fℓ gM−1−ℓ

gℓ fM−1−ℓ

]
=

[
ck,ℓ ck,M−1−ℓ

] [fℓ gM−1−ℓ

gℓ fM−1−ℓ

]
(k : odd). (13)

From the above discussion, we can verify the factorization for the
BDCT. In a similar way, the statement on the BDST can be checked.
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Algorithm 1 Solver for (14)

1: set n = 0 and choose x(0), z(0)
1 , z(0)

2 , γ1, γ2.
2: while stop criterion is not satisfied do
3: x(n+1) = proxγ1ιC[0,1]

(x(n) − γ1(F
⊤z

(n)
1 + Φ⊤z

(n)
2 ))

4: t
(n)
1 = z

(n)
1 +γ2F(2x(n+1)−x(n)), t(n)

2 = z
(n)
2 +γ2Φ(2x(n+1)−

x(n)).

5: t̂
(n)
1 = prox 1

γ2
ρ∥·∥1

(
1
γ2

t
(n)
1

)
, t̂(n)

2 = prox 1
γ2

ι{v}

(
1
γ2

t
(n)
2

)
.

6: z
(n+1)
k = t

(n)
k − γ2t̂

(n)
k (k = 1, 2).

7: n = n + 1.
8: end while
9: Output x(n).

From the proposition, if Gc is designed to be non-singular,
BDCT FBC , BDST FBS , and BDDCT FBD are invertible.

4. EXPERIMENTAL RESULTS

We evaluated the performance of the DDCT/BDDCT in image in-
painting [3], i.e., missing pixel recovery, as a practical application.

First, we explain the detail algorithm used in the experiments.
The cost function for image inpainting is formulated as follows.

x⋆ = argmin
x∈RNrNc

ρ∥Fx∥1 + ιC[0,1]
(x) + Fv(Φx), (14)

where ρ > 0, x = bvec(X), X ∈ RNr×Nc , F = I[NrNc/M2] ⊗
(FBD(I − M)) or F = I[NrNc/M2] ⊗ (FD(I − M)), Φ denotes
some degradation process, and ιA(x) is the indicator function of a
set A. C[0,1] is the set of vectors whose entries are within [0, 1].
Fv ∈ Γ(RN ) is a data fidelity term on the observation v. Since we
simply evaluate the performance of the proposed method in image
inpainting, we set the data fidelity term as the ι{v} (x), where the
set of {v} consists of the observation v. In order to solve (14) by
PDS, the functions g and h, and the matrix L in (4) are set as:

g(x) = ιC[0,1]
(x), h([z⊤1 z⊤2 ]

⊤) = ρ∥z1∥1 + ι{v}(z2),

z1 = Fx, z2 = Φx, L =
[
F⊤ Φ⊤]⊤ . (15)

Then, a solver of (14) can be described in Algorithm 14. For compar-
ison, we also used ℓ1-norm of the coefficients obtained by the DCT,
the DFT, and the DHT in (14).

The block size was set to M = 8. The parameter Gc (or
Gs) in (11) for the prototype filter of BDCT/BDST was constructed
by SVD-based parameterization [26] and optimized by maximizing
the coding gain5, which evaluates the energy compaction efficiency,
i.e., sparse representation, via subband transform. In optimization,
we used MATLAB built-in function “fminunc” (the resulting coding
gains and frequency responses (DST/BDST) are shown in Table 1
and Figs. 5(a)–(b)). The parameters γ1 and γ2 in (4), and ρ in (14)
were chosen as 0.01, 1

12γ1
, and 0.5. The stopping criterion for Algo-

rithm 1 as ∥x(n+1) −x(n)∥2 ≤ 0.01. We used test images shown in
Figs. 5(c)–(e), and Zoneplate (Fig. 3(a)). Each observation consists

4For x ∈ RN , [proxγ∥·∥1 (x)]i = sign(xi)max{|xi| − γ, 0}
(soft-thresholding), proxιC[0,1]

(x) is the clipping operation to [0, 1], and

proxι{v}
(x) = v, where v ∈ RN is an observation.

5Since the 2M2 ×M2 BDDCT is a 2D oversampled filterbank, we used
the generalized coding gain [27] for 2D signals whose normalized autocorre-
lation is given by isotropic model [28, 29] with the correlation coeffcient of
0.95.
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(a) DST
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(b) BDST

(c) Barbara (d) House (e) Mandrill

(f) DCT (g) DFT (h) DDCT (i) BDDCT

Fig. 5: (a), (b): Frequency responses of DST/BDST, (c)–(e): Orig-
inal images (256 × 256) and degraded images (losing 50% pixels),
(f)–(i): The (zoomed) resulting images ((h), (i): prop.).

Table 1: (Upper table) Coding gains of DDCT and BDDCT. (Lower
table) Numerical results of image recovery.

DDCT (M = 8) BDDCT (M = 8)
11.93 12.52

Barbara (PSNR [dB]: 9.255) House (PSNR [dB]: 9.366)
DCT DFT DHT DDCT BDDCT DCT DFT DHT DDCT BDDCT
25.56 25.33 24.60 26.28 26.65 24.72 24.80 24.16 25.10 25.39

Mandrill (PSNR [dB]: 8.540) Zoneplate (PSNR [dB]: 7.265)
DCT DFT DHT DDCT BDDCT DCT DFT DHT DDCT BDDCT
25.13 25.40 24.77 26.10 26.25 14.80 16.41 15.53 17.34 18.31

50% pixels chosen randomly. The matrix Φ in (14) can be obtained
by replacing some 1s of an identity matrix to 0 at the indices where
corresponding pixels are lost.

Table 1 and Figs. 5(f)–(i) show the experimental results. The
BDDCT and the DDCT provided better subjective quality for direc-
tional textures than the DCT and the DFT. Although the subjective
quality between the BDDCT and the DDCT was almost the same,
the BDDCT outperformed the DDCT (and conventional DBTs) in
terms of the reconstruction errors (PSNR) because it was optimized
to have higher coding gain than that of the DDCT.

5. CONCLUDING REMARKS

In this paper, we proposed the DDCT and the BDDCT. The DDCT
was constructed by using DCT/DST and could provide richer di-
rectional orientations than conventional DBTs under the same block
size. Then, since the DCT and the DST could be regarded as special
realizations of modulated filter banks, we could realize the BDDCT
that improves the performance of the DDCT by optimizing coeffi-
cients in the prototype filter, while keeping the directional selectivity
of atoms. In the experimental results, for images with fine textures,
the DDCT and BDDCT could achieve higher subjective and numer-
ical qualities than the conventional DBTs.
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