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ABSTRACT
We propose a two-dimensional (2D) non-separable block-
lifting structure (NSBL) that is easily formulated from the
one-dimensional (1D) separable block-lifting structure (SBL)
and 2D non-separable lifting structure (NSL). The NSBL
can be regarded as an extension of the NSL because a two-
channel NSBL is completely equivalent to a NSL. We apply
the NSBL to M -channel (M = 2n, n ∈ N) biorthogonal filter
banks (BOFBs). The NSBL-based BOFBs (NSBL-BOFBs)
outperform SBL-based BOFBs (SBL-BOFBs) at lossy-to-
lossless coding, whose image quality is scalable from lossless
data to high compressed lossy data, because their rounding
error is reduced by merging many rounding operations, i.e.,
the number of the NSBL is the almost half that of the SBL.

Index Terms— Biorthogonal filter bank (BOFB), lossy-
to-lossless image coding, non-separable block-lifting struc-
ture (NSBL).

1. INTRODUCTION

Filter banks (FBs) [1] have been widely researched as a way
to efficiently compress various signals. The polyphase ma-
trices of M -channel (M = 2n, n ∈ N) FBs are presented
as [

H0(z) H1(z) · · · HM−1(z)
]T

= E(zM )e(z)T[
F0(z) F1(z) · · · FM−1(z)

]
= e(z)R(zM )

where e(z) = [1, z−1, · · · , z−(M−1)], and Hi(z), Fi(z), z,
and ·T denote an analysis filter, a synthesis filter, a delay ele-
ment, and matrix transposition, respectively. If E(z) is in-
vertible, the inverse of E(z) can be chosen as a synthesis
polyphase matrix R(z), and such FBs are called perfect re-
construction FBs (PRFBs). Especially, PRFBs without parau-
nitariness are called biorthogonal FBs (BOFBs). The JPEG
series and H.26x series of global standards use various classes
of PRFBs, including the discrete cosine/sine transform (DCT
and DST) [2], discrete wavelet transform (DWT) [3], and
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Table 1. Classification of lifting structures.
SL [5] SBL [9] NSL [10] NSBL

Block-Lifting — ✓ — ✓
Non-Separable — — ✓ ✓

lapped transform (LT) [4]. However, there is a growing need
for better FBs in order to alleviate the burden on servers and
free up communication bandwidth.

Lossy-to-lossless image coding, which merges two or
more pieces of data into one piece of data of the same piece
of content, i.e., “one source multi-use” image coding, has
attracted attention from researchers as a possible way to meet
this need. Reversible transforms that map integers to integers,
called integer-to-integer transforms, are important tools for
lossy-to-lossless image coding. Sweldens presented a lifting
structure [5] with which to achieve integer-to-integer trans-
forms, and this structure has been applied to many FBs [6–8].
Although JPEG XR has scalability ranging from lossless to
lossy as a result of using a lifting-based LT (L-LT), its cod-
ing performance is not sufficient especially for images with
high-frequency components (texture).

The one-dimensional (1D) separable block-lifting struc-
ture (SBL) of BOFB was proposed in [9] for the purpose
of designing lifting-based FBs (L-FBs) with higher coding
performance. Usually, the design parameters and structure
of L-FBs are constrained when factorizing the original FB
into lifting structures, whereas the SBL-based BOFBs (SBL-
BOFBs) presented in [9] do not constrain them except in the
initial block. The SBL is better at lossy-to-lossless image cod-
ing because it uses fewer rounding operations in comparison
with the standard 1D separable lifting structure (SL). Further-
more, the two-dimensional (2D) non-separable lifting struc-
ture (NSL) for DWTs, NSL-based DWTs (NSL-DWTs), pro-
posed in [10] performs even better at coding because it uses
fewer rounding operations than the SL.

Here, we propose a 2D non-separable block-lifting struc-
ture (NSBL) that is easily formulated from the SBL and NSL
methods. The NSBL can be regarded as an extension of the
NSL because a NSBL with M = 2 is completely equivalent
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Fig. 1. Block-lifting structures (black and white circles mean
adders and rounding operations, respectively).

to a NSL. We apply the NSBL to M -channel BOFBs, NSBL-
based BOFBs (NSBL-BOFBs), and show that the BOFBs per-
form better at lossy-to-lossless coding than the conventional
SBL-BOFBs do because their rounding error is reduced by
merging many rounding operations.

Notations: A classification of lifting structures is shown
in Table. 1. Im, 0, det(·), and diag(· · · ) denote an m ×
m identity matrix, null matrix, determinant of a matrix, and
(block) diagonal matrix, respectively. Im is simply expressed
by I if its size is clear. Indexes x, y, w, and 2d in the ma-
trices mean to operate horizontally, vertically, horizontally or
vertically, and horizontally and vertically, respectively.

2. REVIEW AND DEFINITIONS

2.1. Block-Lifting Structure

We proposed the block-lifting structure [9], which is a special
class of standard lifting structure [5], as shown in Fig. 1. It
is good for lossy-to-lossless image coding because it reduces
the rounding error by merging many rounding operations. In
Fig. 1, the analysis input signal vectors xi and xj , the analysis
output (synthesis input) signal vectors yi and yj , the synthe-
sis output signal vectors zi and zj , and the lifting coefficient
blocks L(z) and U(z) are related as follows:

yj = xj + R(L(z)xi), yi = xi + R(U(z)yj)

zi = yi − R(U(z)yj) = xi, zj = yj − R(L(z)yi) = xj

where R(·) denotes a rounding operation. In these cases, the
matrices and their inverse matrices are expressed by[

yi

yj

]
= W(z)

[
xi

xj

]
,

[
zi
zj

]
= W−1(z)

[
yi

yj

]
=

[
xi

xj

]
where W(z) = BUBL, W−1(z) = B−1

L B−1
U ,

BU =

[
I U(z)
0 I

]
, B−1

U =

[
I −U(z)
0 I

]
BL =

[
I 0

L(z) I

]
, B−1

L =

[
I 0

−L(z) I

]
.

Note that the rounding operations are actually implemented
even if the lifting matrix expression omits the notation of

them. The block-lifting structure for a 1D implementation
is called “SBL” to distinguish it from the “NSBL” proposed
in this paper. When M = 2, they will also be called “SL” and
“NSL”.

2.2. SBL-BOFBs

We factorized the BOFBs composed of building blocks with
McMillan degree γk, where γk = M/2 for simplicity, into
the SBL in [9] as

E(z) =
1∏

k=K−1

{Ek(z)}G0 (1)

where

Ek(z) =

[
I 0

−Lk I

] [
I Uk

0 I

]
Λ(z)

[
I −Uk

0 I

] [
I 0
Lk I

]
,

Λ(z) = diag{I, z−1I}, and Lk and Uk are arbitrary M/2×
M/2 matrices if paraunitariness is not required. In addition,
the first block G0 is constrained to be det(G0) = ±n (n ∈
N) for the purpose of making a lifting factorization. To im-
prove coding performance, Eq. (1) can be rewritten as

E(z) = WK(z)
1∏

k=K−1

{Λ(z)Wk(z)}G0, (2)

where

Wk(z) =

[
I Ûk(z)
0 I

] [
I 0

L̂k(z) I

]
, WK(z) =

[
I 0

−LK−1 I

]
,

Ûk(z) = (z−1 − 1)Uk, and L̂k(z) = L1 (k = 1) or Lk −
Lk−1 (otherwise). In comparison with the SBL-BOFBs in Eq.
(1), the SBL-BOFBs in Eq. (2) are more effective at lossy-to-
lossless image coding because they reduce the rounding error
by merging more rounding operations.

2.3. NSL-DWTs

9/7-tap and 5/3-tap SL-based DWTs (9/7-SL-DWT and 5/3-
SL-DWT) [3] are used in the JPEG 2000 lossy and lossless
modes, respectively. Let EW (z) be a polyphase matrix of
SL-DWTs, expressed as

EW (z) = diag{s, s−1}
0∏

k=N−1

wk(z) (3)

where

wk(z) =

[
1 uk(z)
0 1

] [
1 0

lk(z) 1

]
.
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If an image is 2D-transformed by the NSL-DWT polyphase
matrix E2d

W,k(z2d) in Eq. (3), one can write[
Y T
LL Y T

HL Y T
LH Y T

HH

]T
= E2d

W,k(z2d)
[
XT

LL XT
HL XT

LH XT
HH

]T
where XLL, XHL, XLH , and XHH are the top-left, top-right,
bottom-left, and bottom-right pixels in 2× 2 blocks compos-
ing the image, YLL, YHL, YLH , and YHH are their output pix-
els, and

E2d
W,k(z2d) = diag{s2, 1, 1, s−2}

0∏
k=N−1

w2d
k (z2d).

The 2D implementation w2d
k (z2d) in E2d

W (z2d) is represented
as [10]

w2d
k (z2d) =

[
1

[
ux
k(zx) uy

k(zy) −u2d
k (z2d)

]
0 I3

]

×

1 [
lxk(zx)

T lyk(zy)
T
]

0
0 I2 0
0

[
uy
k(zy)

T ux
k(zx)

T
]

1

T

×
[

I3 0[
l2dk (z2d) lyk(zy) lxk(zx)

]
1

]
. (4)

The NSL is also more effective at lossy-to-lossless image cod-
ing than the SL is because it uses fewer rounding operations.

3. NSBL-BOFBS

3.1. Derivation of NSBL

We introduce NSBL in this subsection.
Theorem: Consider an image that has been 2D-transformed

by the set of lower and upper block-lifting matrices in Fig. 1
as follows (Fig. 2):[

YT
LL YT

HL YT
LH YT

HH

]T
= W2d(z2d)

[
XT

LL XT
HL XT

LH XT
HH

]T
(5)

where

W2d(z2d) =

[
Wx(zx) 0

0 Wx(zx)

]
P

[
Wy(zy) 0

0 Wy(zy)

]
P

P =


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I

 ,

and Ww(zw) = Bw
U (zw)B

w
L(zw). Also, XLL, XHL, XLH ,

and XHH are the top-left, top-right, bottom-left, and bottom-
right M/2×M/2 blocks of an M×M image, and YLL, YHL,
YLH , and YHH are their respective output blocks. W2d(z2d)

Fig. 2. 2D implementation of SBL (black and white circles
mean adders and rounding operations, respectively).

in Eq. (5) can be factorized into three NSBL matrices, as
follows (Fig. 3):

W2d(z2d) = W2d
2 (z2d)W

2d
1 (z2d)W

2d
0 (z2d) (6)

where

W2d
0 (z2d) =

[
I3M/2 0[

L2d(z2d) Ly(zy) Lx(zx)
]

I

]

W2d
1 (z2d) =

I [
Lx(zx)

T Ly(zy)
T
]

0
0 IM 0
0

[
Uy(zy)

T Ux(zx)
T
]

I

T

W2d
2 (z2d) =

[
I

[
Ux(zx) Uy(zy) −U2d(z2d)

]
0 I3M/2

]
.

It is clear that the NSBL is an extension of the NSL in [10]
because the NSBL with M = 2 in Eq. (6) is completely
equivalent to the NSL in Eq. (4).

Proof: When a matrix T = Tn−1 · · ·T0 (n ∈ N) is ap-
plied to a 2D input signal x in the horizontal and vertical di-
rections, the output signal y is expressed as [11]

y = TxTT = Tn−1 · · ·T0xT
T
0 · · ·TT

n−1. (7)

This Eq. (7) means that the 2D implementation of Tk is per-
formed after that of Tk−1 (1 ≤ k ≤ n− 1), i.e., the two SBL
matrices Bw

L(zw) and Bw
U (zw) in Eq. (5) can be operated

separately. The resulting representation of W2d(z2d) is

W2d(z2d) = B2d
U (z2d)B

2d
L (z2d) (8)

where

B2d
L (z2d) =

[
Bx

L(zx) 0
0 Bx

L(zx)

]
P

[
By

L(zy) 0
0 By

L(zy)

]
P

=


I 0 0 0

Lx(zx) I 0 0
Ly(zy) 0 I 0

L2d(z2d) Ly(zy) Lx(zx) I


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B2d
U (z2d) =

[
Bx

U (zx) 0
0 Bx

U (zx)

]
P

[
By

U (zy) 0
0 By

U (zy)

]
P

=


I Ux(zx) Uy(zy) U2d(z2d)
0 I 0 Uy(zy)
0 0 I Ux(zx)
0 0 0 I

 .

Since rounding operations will have inevitably be generated
in each process of the matrices, as described in Section 2.1,
we separate each of B2d

L (z2d) and B2d
U (z2d) into two NSBL

matrices:

B2d
L (z2d) = B2d

L1(z2d)B
2d
L0(z2d) (9)

B2d
U (z2d) = B2d

U1(z2d)B
2d
U0(z2d) (10)

where

B2d
L0(z2d) =

[
I3M/2 0[

L2d(z2d) Ly(zy) Lx(zx)
]

I

]
B2d

L1(z2d) =

[
I

[
Lx(zx)

T Ly(zy)
T 0

]
0 I3M/2

]T
B2d

U0(z2d) =

[
I3M/2 0[

0 Uy(zy)
T Ux(zx)

T
]

I

]T
B2d

U1(z2d) =

[
I

[
Ux(zx) Uy(zy) −U2d(z2d)

]
0 I3M/2

]
.

Consequently, W2d(z2d) is expressed as

W2d(z2d) = B2d
U1(z2d)B

2d
U0(z2d)B

2d
L1(z2d)︸ ︷︷ ︸

can be merged

B2d
L0(z2d)

from Eqs. (8)-(10). The resulting equation is completely the
same as Eq. (6). □

3.2. Application to BOFBs

Here, we will apply the NSBL in Eq. (6) to the conventional
SBL-BOFBs in Eq. (2). Let E2d(z2d) be a 2D separable
polyphase matrix based on a 1D separable polyphase matrix
E(z) in Eq. (2). Since the 2D implementation of the separa-
ble block transform allows us to change the order in which the
blocks are operated on, the polyphase matrix E2d(z2d) can be
expressed as

E2d(z2d) = W2d
K (z2d)

1∏
k=K−1

{
Λ2d(z2d)W

2d
k (z2d)

}
G2d

0

where

W2d
k (z2d) =

[
I

[
Ûx

k(zx) Ûy
k(zy) −Û2d

k (z2d)
]

0 I3M/2

]

×

I [
L̂x
k(zx)

T L̂y
k(zy)

T
]

0
0 IM 0

0
[
Ûy

k(zy)
T Ûx

k(zx)
T
]

I

T

×
[

I3M/2 0[
L̂2d
k (z2d) L̂y

k(zy) L̂x
k(zx)

]
I

]

Table 2. Lossless image coding results (LBR [bpp]): (A) 4×8
L-LT [4], (B) 5/3-NSL-DWT [10], (C-D) 8 × 16 and 8 × 24
SBL-BOFBs [9], and (E-F) 8×16 and 8×24 NSBL-BOFBs.

Images (A) (B) (C) (D) (E) (F)
Barbara 4.81 4.86 4.79 4.78 4.76 4.75

Boat 5.13 5.09 5.09 5.11 5.08 5.09
Elaine 5.17 5.11 5.06 5.05 5.05 5.03
Finger 5.71 5.83 5.66 5.65 5.65 5.64

Table 3. Lossy image coding results (PSNR [dB]): (A) 4 × 8
L-LT [4], (B) 9/7-NSL-DWT [10], (C-D) 8 × 16 and 8 × 24
SBL-BOFBs [9], and (E-F) 8×16 and 8×24 NSBL-BOFBs.

[bpp] (A) (B) (C) (D) (E) (F)
Barbara

0.25 26.85 27.24 28.04 28.64 28.05 28.65
0.50 30.43 30.46 31.63 32.18 31.67 32.20
1.00 35.05 34.85 35.88 36.26 35.94 36.38

Boat
0.25 27.62 28.45 28.26 28.62 28.25 28.63
0.50 30.87 31.38 31.35 31.61 31.36 31.63
1.00 34.31 34.48 34.66 34.85 34.70 34.91

Elaine
0.25 30.81 31.50 31.34 31.56 31.36 31.59
0.50 32.47 32.93 33.07 32.98 33.10 33.08
1.00 34.22 34.61 35.06 35.24 35.11 35.36

Finger
0.25 22.96 23.49 23.52 23.86 23.51 23.86
0.50 25.56 25.98 26.43 26.93 26.43 26.95
1.00 29.01 29.07 30.06 30.78 30.07 30.81

W2d
K (z2d) =

[
I

[
L̂x
K(zx)

T L̂y
K(zy)

T 0
]

0 I3M/2

]T
×
[

I3M/2 0[
L̂2d
K (z2d) L̂y

K(zy) L̂x
K(zx)

]
I

]
,

and Λ2d(z2d) = diag{I, z−1
x I, z−1

y I, z−1
2d I}. As is done

in [9], we use the single-row elementary reversible matrix
(SERM) presented in [6] for each initial block Gw

0 , where
any other SL factorization can be applied to Gw

0 .

4. EXPERIMENTAL RESULTS

By following the method presented in [9], 8× 16 and 8× 24
BOFBs with order-1 building blocks were designed. They
were compared in terms of the lossless bitrate (LBR) [bpp]
in lossless image coding and the peak signal-to-noise ratio
(PSNR) [dB] in lossy image coding. To evaluate transform
performance fairly, we employed 3, 6, and 2-level decom-
positions, respectively, on the L-LT [4], NSL-DWTs without
adaptive directionalities [10], and eight-channel BOFBs. The
SBL-BOFBs had the same transfer function as the proposed
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Fig. 3. NSBL (black and white circles mean adders and rounding operations, respectively).

FBs. The image set included several 512× 512 grayscale test
images, such as Barbara. A quadtree-based embedded im-
age coder EZW-IP [12] was used to encode the transformed
images. A periodic extension was used in the image bound-
ary processing of the BOFBs, whereas the extensions used in
JPEG XR and JPEG 2000 were used as the respective bound-
ary processing of the L-LT and NSL-DWTs.

Tables 2 and 3 show lossless and lossy image coding
results. Although NSL-DWTs sometimes performed better
on images with many low frequency components, overall,
the NSBL-BOFBs outperformed the conventional methods.
These results are considered to be due to the merging (re-
ducing) of many rounding operations in the NSBL-BOFBs.
Comparing Figs. 2 and 3, it is clear that the number of round-
ing operations of the NSBL is the almost half that of the
SBL.

5. CONCLUSION

We devised a NSBL and applied it to M -channel BOFBs in
lossy-to-lossless image coding. The NSBL is easily formu-
lated from the SBL and NSL methods and can be regarded as
an extension of the NSL because it is completely equivalent
to a NSL when M = 2. A lossy-to-lossless image coding ex-
periment confirmed the improvements that could be had with
NSBL.
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