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Abstract—This paper aims to design a new two-dimensional
(2D) non-separable implementation of dyadic-valued cosine-sine
modulated filter banks (2D D-CSMFBs) for low computational
complexity. CSMFBs satisfy rich directional selectivity (DS) and
shift-invariance (SI), and they can be easily designed by the
modulation of a prototype filter. In addition, our previous work
introduced a one-dimensional (1D) D-CSMFBs (1D D-CSMFBs).
By restricting real-valued filter coefficients to rational-valued
ones, they can save computational cost while keeping DS and SI.
The proposed 2D implementation in this paper can further reduce
the computational cost by unifying the conventional 2D separable
structure into a 2D non-separable one directly. Furthermore,
experimental results of image non-linear approximation show
that the proposed 2D D-CSMFBs are comparable or even better
than the 1D D-CSMFBs.

I. INTRODUCTION

For decades, various extensions of discrete wavelet trans-
form, which satisfy “rich directional selectivity1” (DS), have
been widely studied and presented, such as Contourlet [1],
Curvelet [2], Shearlet [3], and so on. Among them, dual-tree
complex wavelet transforms (DTCWTs) have been paid much
attention due to their low redundancy and low computational
complexity [4]. While directional selectivity usually increases
redundancy or computational complexity, DTCWTs can re-
strict their redundancy ratio to 2 and save computational com-
plexity by two-dimensional (2D) separable implementation
of parallel DWTs, i.e., cascading the filtering along vertical
and horizontal directions. Furthermore, it also satisfies “shift-
invariance2” (SI). Thanks to DS and SI, it can be successfully
applied to various kinds of practical image processing, such
as image denoising, image analysis, image compression.

As well as the DTCWT, another DS and SI transforms,
cosine-sine modulated filter banks (CSMFBs), have been
shown recently [5]. DTCWT is difficult to design M -channel
cases with good filter performances, e.g., stopband attenua-
tion or coding gain, due to the fractional delay requirement
imposed on parallel DWTs, which degrades design degree of
freedom. On the other hand, because CSMFBs require NO

1Directional selectivity means sparse representation capability for direc-
tionally oriented components of images, e.g., lines and edges. For that, basis
functions should be oriented along various kinds of directions [4].

2Shift-invariance means the stability of wavelet coefficients under the shift
of input signals [4].

fractional delay requirement (just the modulation of prototype
filter), M -channel CSMFBs can be better performance than
M -channel DTCWTs and effectively work in application.

In this paper, we address on finding a simplified structure
of CSMFBs for low computational complexity. In [6], one-
dimensional dyadic-valued CSMFBs (1D D-CSMFBs) based
on lifting structure have been introduced. Despite of real-
rational conversion, 1D D-CSMFBs can still keep DS and SI
properties and show better performance compared with 1D
rational-valued DTCWTs (D-DTCWT) [7]. However, since
the previous structure does NOT consider removing redundant
lifting steps, there is possibility to exist much simpler structure
of 1D D-CSMFBs.

This paper presents a new 2D non-separable implementation
of D-CSMFBs (2D D-CSMFBs) for lower computational
complexity. While the conventional 2D transform of 1D D-
CSMFBs is based on separable implementation, the proposed
implementation consists of a 2D non-separable structure via
Kronecker product. Due to this 2D unification, redundant lift-
ing steps can be removed and lower computational complexity
can be achieved. Moreover, in spite of the simplification,
experimental results of image non-linear approximation (NLA)
show that 2D D-CSMFBs has the comparable or even better
performance than 2D separable structure.

Notations: j :=
√
−1. H(z) is defined as H(z) :=∑

n h(n)z−n. The (M,L) FB means the M -channel filter
bank with the filter length of L. The (M ×M,L × L) 2D
FB means the M × M -channel filter bank with the filter
size of L× L. I, J, and diag(a0, . . . , aN−1) are the identity,
the reversal identity, and the diagonal matrices, respectively.
Γ = diag(1,−1, . . . , 1,−1).

II. REVIEW

A. Dual-Tree Complex Wavelet Transform
DTCWTs are constructed by two maximally decimated

perfect reconstruction (PR) FBs, as illustrated in Fig. 1. In
this case, the pair {H(1)

k (z),H(2)
k (z)} (0 ≤ k ≤ M − 1) is

designed to satisfy the following equations [4]:

H
(2)
k (ejω) = e−jθk(ω)H

(1)
k (ejω), (1)

θ0(ω) =
(
d+

1
2

)
(M − 1)ω − pω,



Fig. 1. M -channel DTCWTs and CSMFBs

where d ∈ Z denotes the delay between the primal FB and the
dual FB, ∀p ∈

{
0, . . . ,

⌈
M
2

⌉
− 1

}
, ∀ω ∈
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2π
M p, 2π

M (p+ 1)
)
,

and

θk(ω) =

{
π
2 −

(
d+ 1

2

)
ω ω ∈ (0, 2π)

0 ω = 0,
(2)

where 1 ≤ k ≤ M − 1. Practically, M -channel DTCWTs are
designed by the dual-tree complex wavelet packet (DTCWP)
[8] which cascades 2-channel DTCWTs and 2-channel PRFBs.

B. Cosine-Sine Modulated Filter Banks
As well as DTCWTs, a CSMFB also consists of two maxi-

mally decimated filter banks as in Fig. 1. Its filter coefficients
of {H(1)

k (z),H(2)
k (z)} are expressed as [5]:{

h
(1)
k (n) := 2p(n) cos

(
(k + 1

2 ) π
M

(
n− N−1

2

)
+ θk

)
h

(2)
k (n) := 2p(n) sin

(
(k + 1

2 ) π
M

(
n− N−1

2

)
+ θk

) (3)

where k = 0, . . . ,M − 1, θk = (−1)k π
4 and p(n) is

the prototype filter. In the paraunitary CSMFB, h(2)
k (n) =

(−1)kf
(1)
k (n) = (−1)kh

(1)
k (N − 1 − n). Thus, if the primal

FB satisfies the PR property, the dual FB system also satisfies
it. Our previous work clarified the relationship of cosine and
sine modulation derived both DS and SI [5].

The polyphase matrices E(1)(z) and E(2)(z) corresponding
to the CMFB and the SMFB can be decomposed as lattice
structures. They can be expressed by [9]:

E(1)(z) =CIVWΛ(z)D(1)
0

K−1∏
k=1

(
Λ(z2)D(1)

k

)
D(1)

k =
[
−Ck SkJ
JSk JCkJ

]
,Λ(z) =

[
z−1I 0
0 I

]
, (4)

E(2)(z) =SIVWΛ(z)D(2)
0

K−1∏
k=1

(
Λ(z2)D(2)

k

)
D(2)

k =
[
Ck SkJ
JSk −JCkJ

]
=

[
I 0
0 −I

]
D(1)

k

[
−I 0
0 I

]
.

(5)

where Ck = diag
(
cos θk0, . . . , cos θk M/2−1

)
, Sk =

diag
(
sin θk0, . . . , sin θk M/2−1

)
, W =

[
0 I
I 0

]
, and CIV

and SIV denote the type-IV DCT and DST, respectively. The
structure is depicted in Fig. 2 (a).

C. Dyadic-Valued Implementation of CSMFB and DTCWT

In general, the rotation matrix can be factorized into lifting
steps as follows [10]:[

cos θ − sin θ
sin θ cos θ

]
=

[
1 p
0 1

] [
1 0
u 1

] [
1 p
0 1

]
, (6)

where p = cos θ−1
sin θ , u = sin θ are called lifting coeffi-

cients. The lifting factorization enables us to design rational-
valued transformation simply by rounding lifting coefficients
rp = round(p × 2N )/2N , ru = round(u × 2N )/2N , while
preserving PR condition. By converting each rational-valued
multiplication with rounding operation to additions and bit-
shifters, for example,

rp =
P

2N
= α`2` + α`−12`−1 + · · · , (7)

where P, ` ∈ Z, and αk = 1 or 0 (k ≤ `), a multiplierless
CSMFB can be achieved. As shown in Fig. 2 (b), each D(1)

k

can be reduced as

D(1)
k =

[
−I 0
0 I

] [
I PkJ
0 I

] [
I 0

JUk I

] [
I PkJ
0 I

]
, (8)

where Pk = diag
(
pk0, . . . , pkM/2−1

)
and Uk =

diag
(
uk0, . . . , ukM/2−1

)
. Since CIV is constructed by some

rotation and butterfly matrices [11], it can also be converted
to a lifting-based factorization. Similarly, according to the
relationship of D(1)

k and D(2)
k , and SIV = ΓCIVJ, both

D(2)
k and SIV can be expressed by a lifting factorization.

Interestingly, the lifting coefficients for E(1)(z) can be reused
for E(2)(z).

On the other hand, M -channel D-DTCWT is designed based
on the lifting factorization of all 2-channel DTCWTs and 2-
channel FBs used in wavelet packets [7].

III. TWO-DIMENSIONAL RATIONAL-VALUED COSINE-SINE
MODULATED FILTER BANKS BASED ON THE LIFTING

FACTORIZATION

A. The Proposed Structure

This section derives a non-separable structure of 2D D-
CSMFB from separable 2D implementation. In general, a 1D
FB is applied to images in separable way. Specifically, each
building block, e.g., D(1)

k in a lattice structure (4), is applied
to a local block X in a image as:

Y = D(1)
k X(D(1)

k )T , (9)

where Y is the output block. The separable (lifting) imple-
mentation for (9) is illustrated in Fig. 3.

Here, by letting x be the 1D vector by rearranging the 2D
block X, the operation (9) can be reformulated as

y = D(1)
k ⊗ D(1)

k x, (10)

where ⊗ denotes Kronecker product. Since multiplication of
D(1)

k is essentially based on 2 × 2 matrices as shown in Fig.



(a) (b)

Fig. 2. The structure of the 4 channel CMFBs. (a) rotation-matrix-based structure, (b) lifting-based structure
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Fig. 3. An example of the separable lifting implementation for (11).

2(a), (10) can be reduced to several submatrix multiplications
expressed as follows:

yi =

[
R(k)

m

R(k)
m

]
P0

[
R(k)

n

R(k)
n

]
xi (11)

= R(k)
m ⊗ R(k)

n xi (0 ≤ m,n ≤M/2 − 1),

R(k)
m =

[
R

(k,m)
00 R

(k,m)
01

R
(k,m)
10 R

(k,m)
11

]
=

[
− cos θkm sin θkm

sin θkm cos θkm

]
,

where P0 denotes the permutation matrix corresponding to
Fig. 3 and xi (0 ≤ i ≤M/2−1) is the part of x. For example
in Fig. 3, xi = [X2, X3, X14, X15]T , where Xk denotes the
sample at the index of k in X. The Kronecker product of
R(k)

m ⊗ R(k)
n can be factorized as the following equation:

R(k)
m ⊗ R(k)

n = HΓ0R(k)
m,nΓ1H (12)

R(k)
m,n =


cosφm,n 0 sinφm,n 0

0 cosψm,n 0 sinψm,n

sinφm,n 0 − cosφm,n 0
0 sinψm,n 0 − cosψm,n

 ,
φm,n = θm − θn, ψm,n = θm + θn,

Γ0 = diag(1,−1,−1, 1), Γ1 = diag(1, 1,−1,−1),

H =
1√
2


1 0 0 1
0 1 1 0
0 1 −1 0
1 0 0 −1

 .
This factorization is analogous to the one for hierarchical
lapped biorthogonal transform (HLBT) employed in JPEG

XR [12]. Since Φm,n :=
[
cosφm,n sinφm,n

sinφm,n − cosφm,n

]
and

Ψm,n :=
[
cosψm,n sinψm,n

sinψm,n − cosψm,n

]
can be factorized into 3

lifting steps as in (6). Moreover, by moving some scaling
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Fig. 4. An example of the direct 2D lifting implementation for (12). pφ
k

, uφ
k

,
pψ
k

, and uψ
k

denote the lifting coefficients obtained from Φm,m and Ψm,m.

factors diag(
√

2, 1√
2
,
√

2, 1√
2
) of the right H to the left H

in (12) or vice versa, both H can be further decomposed into
lifting steps as shown in Fig. 4. Note that when indices m

and n are same, Φm,m becomes
[
1 0
0 −1

]
, the number of

multiplications can be reduced.
In the proposed method, a different lifting factorization of

type-IV DCT is used compared with [11], which is expressed
as follows [14]:

CIV = SP1

[
CII 0
0 CIIΓ

]
T,T =

[
Tcos TsinJ
JTsin −JTcosJ

]
,

[
Tcos

]
kk

= cos
(

(2k + 1)π
4M

)
,
[
Tsin

]
kk

= sin
(

(2k + 1)π
4M

)
,

S =


1

Rπ/4

. . .
Rπ/4

1

 ,Rπ/4 =
1√
2

[
1 1
−1 1

]
,

CII is the type-II DCT and P1 is a permutation matrix,
respectively. S and T can be decomposed into 2D lifting steps
with the same way.

The 2D lifting implementation of the SMFB E(2)(z) can
be realized in the same way of the CMFB.

B. Computational Complexity

This section discusses about computational complexity of
1D and 2D D-CSMFBs in terms of the number of lifting
steps per block. As shown in Fig. 3, in order to process
an M × M block, the separable implementation requires
3 × 4 ×

(
M
2

)2
= 3M2 lifting steps. On the other hand, a

direct 2D implementation consists of 6×
(

M
2

)2 − 3×M/2 =
3
2 (M2 −M) lifting steps. The total number of additions and



TABLE I
THE NUMBER OF ADDITIONS AND BIT-SHIFTERS

Separable D-DTCWT (8 × 8-channel, 22 × 22-tap)
Word length 8 bit 7 bit 6 bit 5 bit 4 bit

additions 2464 2224 2096 1232 1232
bit-shifters 2464 2224 2096 1232 1232

Separable 1D D-CSMFB (8 × 8-channel, 16 × 16-tap)
Word length 8 bit 7 bit 6 bit 5 bit 4 bit

additions 2352 2096 1920 1584 1360
bit-shifters 2288 2032 1856 1520 1296

Non-separable 2D D-CSMFB (8 × 8-channel, 16 × 16-tap)
Word length 8 bit 7 bit 6 bit 5 bit 4 bit

additions 1477 1332 1242 1017 930
bit-shifters 1461 1316 1226 1001 913

(a) Real (b) Rational

Fig. 5. Frequency responses of the designed (4, 8) CSMFB. (a): Real-valued
CSMFB, (b) Rational-valued CSMFB with 5 bit lifting coefficients.

bit-shifters of a designed CSMFB depends on the number of
additions and bit-shifters allocated to each lifting coefficients.

IV. SIMULATION

In this section, practical computational complexity and
NLA performance of 2D D-CSMFBs are shown. In order
to construct 2D D-CSMFBs and 1D D-CSMFBs, M -channel
CSMFBs are firstly designed. As a comparison, M -channel
DTCWT is designed by using DTCWP [8] cascading a 2-
channel DTCWT [4] and 2-channel PUFBs. Both transforms
are optimized to minimize the stopband attenuation ∆ speci-
fied by

∆ =
M−1∑
k=0

∫
Ωs(k)

|H(1)
k (ejω)|2dω, (13)

where Ωs(k) is stoppband of the H(1)
k (ejω), (0 ≤ k ≤M−1).

In this paper, we set as Ωs(k) = [0, π
M (k−2)]∪ [ π

M (k+2), π].
If π

M (k−2) ≤ 0 or π
M (k+2) ≥ π, the corresponding interval

is ignored. Then, each optimized transform is decomposed via
lifting factorization and performed rounding for constructing
1D and 2D D-CSMFBs and D-DTCWT. Fig. 5 depicts the
frequency responses of the designed (4, 8) CSMFB and D-
CSMFB (# of channel, # of filter length). Note that, our pre-
vious work [6] shows that the results of stopband attenuation
of 1D CSMFBs are consistently superior to those of DTCWTs.
It is because the design degree of freedom of DTCWTs is quite
limited, due to the packet implementation. For example, the
number of the filter length of the cascaded 2-channel PUFBs
for the (4, 16) and (8, 22) D-DTCWTs is 4.

Fig. 6. 32 directional basis functions with size of 16 × 16 obtained by the
2D CSMFB whose lifting coefficents are rounded to 4 bit word length.

Based on the designed lifting coefficients of CSMFBs, the
2D D-CSMFBs are constructed. Table I clearly shows that the
2D D-CSMFBs require fewer addition and bit-shifters than
the D-DTCWT and the 1D D-CSMFB. In addition, the 2-D
wavelet basis functions obtained by the 4 × 4-channel 2D D-
CSMFB are shown in Fig. 6. Clearly, the basis functions are
oriented under rounding operation.

A. Non-Linear Approximation

Non-linear approximation (NLA) [13] is often used as a
criteria of transform effectiveness for practical applications,
e.g., image coding, denoising, and so on. In this section,
NLA is demonstrated in the following way. Let f , c1,n and
c2,n be the input image and the transformed coefficients of
the primal FB and the dual FB, e.g., the CMFB and the
SMFB. In addition, fM is defined as the reconstructed signal
obtained from the M -largest coefficients within {c1,n}, {c2,n}
by performing the inverse transform. The accuracy of NLA
‖f − fM‖ indicates how well the transform compacts the
energy of the input signal.

Here we evaluated the (8, 22) D-DTCWT, the (8, 16) 1D D-
CSMFB, and the (8×8, 16×16) 2D D-CSMFB using typical
test images Lena and Barbara (512×512 pixels). For all the
transforms, the number of 2D decomposition level is set to 2.
Periodical extension is used for image boundary processing.
For reconstruction, 3% transformed coefficients of Lena and
6% transformed coefficients of Barbara are kept.

Table II shows the NLA PSNR results versus the number
of bit word length allocated to lifting coefficients in each
transform. Although the 1D D-CSMFB shows higher PSNRs
in the case of high bit word length, it suffers from degradation
of performance in low bit word length, and the proposed 2D
D-CSMFB can achieve comparable or even better performance
compared with D-DTCWT and 1D D-CSMFB in low bit word
length. Fig. 7 shows the 2D D-CSMFB provides the best visual
quality even the case of lowest bit word length (5 bit). Since
the 2D D-CSMFB has less lifting steps (rounding produces
filter perfromance degradation), it is more stable in low bit
word length than the 1D D-CSMFB.

V. CONCLUSION

In this paper we proposed the 2D implementation of D-
CSMFBs for low computational complexity. By unifying the
conventional 1D D-CSMFB via Kronecker product, redundant



TABLE II
NON-LINEAR APPROXIMATION

Lena (3% coeffs): D-DTCWT (8 × 8-channel, 22 × 22-tap)
Word length 5 bit 6 bit 7 bit 8 bit 32 bit
PSNR [dB] 29.200 29.361 29.367 29.384 29.381

Lena (3% coeffs): 1D D-CSMFB (8 × 8-channel, 16 × 16-tap)
Word length 5 bit 6 bit 7 bit 8 bit 32 bit
PSNR [dB] 27.668 28.064 30.912 31.023 31.035

Lena (3% coeffs): 2D D-CSMFB (8 × 8-channel, 16 × 16-tap)
Word length 5 bit 6 bit 7 bit 8 bit 32 bit
PSNR [dB] 30.168 30.335 30.363 30.472 30.599
Barbara (6% coeffs): D-DTCWT (8 × 8-channel, 22 × 22-tap)

Word length 5 bit 6 bit 7 bit 8 bit 32 bit
PSNR [dB] 28.972 29.084 29.0931 29.103 29.113
Barbara (6% coeffs): 1D D-CSMFB (8 × 8-channel, 16 × 16-tap)
Word length 5 bit 6 bit 7 bit 8 bit 32 bit
PSNR [dB] 28.502 28.697 31.471 31.542 31.543
Barbara (6% coeffs): 2D D-CSMFB (8 × 8-channel, 16 × 16-tap)
Word length 5 bit 6 bit 7 bit 8 bit 32 bit
PSNR [dB] 30.825 30.963 30.975 31.050 31.142

lifting steps can be removed from the entire transform. The
design examples in simulation require much fewer number
of additions and bit-shifters than the D-DTCWT and the 1D
D-CSMFB. Even if the 2D unification and rounding lifting
coefficients is introduced, simulation results show 2D D-
CSMFB keep good directional selectivity. Finally, in the NLA
simulation, it is clarified that the 2D D-CSMFB is robust
for low bit word length allocation, and thus provides better
numerical and visual reconstruction quality compared with D-
DTCWT and 1D D-CSMFB.
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