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ABSTRACT

This paper presents a realization of integer fast lapped biorthogo-
nal transform (FLBT) via applications of discrete cosine transform
(DCT) matrices and dyadic-valued factors for lifting coefficient
blocks. It is obtained by using the block-lifting factorization as our
previous work and easy matrix manipulations. The proposed FLBT
has higher coding performance and fewer rounding operations than
the conventional methods. The practicality of the proposed FLBT
is validated through lossy-to-lossless image compression (coding)
simulation which unifies lossy and lossless image coding.

Index Terms— Block-lifting structure, discrete cosine trans-
form (DCT), dyadic-valued factor, fast lapped biorthogonal trans-
form (FLBT), lossy-to-lossless image coding

1. INTRODUCTION

The discrete cosine transform (DCT) and discrete sine transform
(DST) [1] have found wide signal processing applications, espe-
cially image/video compression (coding) standards such as JPEG
and H.26x series [2,3]. Both of DCT and DST are classified into
several different types. The type-II DCT (DCT-II) and its inverse
transform, type-III DCT (DCT-III), are usually adopted to the trans-
form and inverse transform part in image/video coding standard, re-
spectively, because the DCT-II has high energy compaction capa-
bility and DCTs have many fast implementations. However, the
DCT-II generates an unpleasant artifact, i.e., blocking artifact, for
a reconstructed image in low-bitrate compression. The M -channel
M = 2 ke N, k> 2) lapped transform (LT) [4] has been
proposed to overcome the problem. In particular, an M -channel
fast lapped orthogonal transform (FLOT) reduces the blocking ar-
tifacts while keeping comparatively fast implementation, because
it is composed of only the postprocessing part, which is also con-
structed by the M /2-channel DCT-III, M /2-channel type-IV DST
(DST-IV) and some 2-channel Hadamard transforms, after the M-
channel DCT-II implementation.

On another front, several integer LTs [5, 6] based on lifting
structure [7] have been researched for lossy-to-lossless image cod-
ing which unifies lossy and lossless image coding. As part of
this trend, a 4-channel hierarchical lapped biorthogonal transform
(HLBT) [8], which was developed FLOT to achieve higher coding
performance and composed of lifting structures, was adopted to the
newest image coding standard JPEG XR [9]. However, the HLBT is
a transform researched to seek faster implementation while keeping
coding performance moderately. And then [10] has proposed an in-
teger FLOT with bigger block size, e.g., M = 8 and 16, and higher
coding performance than the HLBT. But, since the FLOT must be
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implemented by two parallel systems, it increases the complexity.
Thereby a transform with more higher coding performance than the
conventional methods and as little complexity as possible should be
innovated for the further future in image/video coding.

This paper designs an integer fast lapped biorthogonal trans-
form (FLBT) with big block size and higher coding performance/less
complexity than the conventional methods. In this regard, the oper-
ations such as multipliers and adders are increased if the block size
is just simply extended, and it is undesired. The proposed FLBT
focuses on the block-lifting structure in our previous work [11, 12].
By using the structures and easy matrix manipulations, the FLBT
can be fast implemented because its most of lifting coefficients are
composed of DCT matrices and dyadic-valued factors.

Notations: 1, J, D and M7 are an identity matrix, a reversal
identity matrix, a diagonal matrix with (—1)k (k € N) in the (k, k)-
element and a transpose of the matrix M, respectively.

2. REVIEW

2.1. M-Channel FLOT and FLBT

An M -channel FLOT can be constructed in polyphase structure from
components with well-known fast-computable algorithms such as
DCT and DST. One of the most elegant solutions is the FLOT whose
polyphase matrix is [4]

I 0 0
CIV:| Wi

— Cir
B(z) = {0 SrvCir

|waew [

where
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and Crr, Crr, Crv and Spv are DCT-II, DCT-III, type-IV DCT
(DCT-1V) and type-IV DST (DST-IV) matrices with (M/2) X
(M/2) size, respectively. The (m,n)-element of N-channel
(N = 2, k € N, k > 1) DCT-II and DCT-IV matrices are
defined as

Cuth = Zrom cos (montimn)
(. :\/%COS ((m + 1/2)]5;1 +1/2) ﬂ)

where ¢, = 1/v2 (m = 0)or 1 (m # 0), Cur = Cp;* = Cf},
Cnt = Cly = Crv and Spy = D CpvJ are established, respec-
tively. Also, the HLBT [8] adopts the scaling factor s. In this paper,
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tively): (top) lattice structure, (bottom) block-lifting structure.
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Fig. 2. Block-lifting structures.

the FLBT inspired by the HLBT as
E(z) = LI) SWOCHJ WA(2)W {S%” %gw} wi o

is used and shown in the top of Fig. 1.

2.2. Block-Lifting Structure

The block-lifting structure [12], shown in Fig. 2, is to improve the
basic lifting structure [7] for an effective implementation of lossy-to-
lossless image coding. The structure achieves a higher compression
ratio due to fewer rounding operations. In Fig. 2, the analysis input
signal vectors x; and x;, the analysis output and synthesis input
signal vectors y; and y;, the synthesis output signal vectors z; and
z;, and the lifting coefficient blocks L and U are presented by

v; = x; + round{Lx;},
z; =y; — round{Uy;} = x;,

yi = x; + round{Uy;}
z; =y; —round{Ly;} = x;.

In this case, the matrices and its inverse matrices are expressed by
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Lattice structure of the FLBT and its block-lifting structure (white and black circles mean rounding operations and adders, respec-
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respectively.

3. THE PROPOSED FLBT

In this section, we introduce an integer FLBT composed of DCT
matrices and dyadic-valued factors for lifting coefficient blocks.
Theorem: The resulting structure is presented as

1 o I 0 1 ==cpicn
E(z)i[o D} [CIVJCIII I} Al) [0 : 1

y I o| I Crv I 0
CrvICrur —Crv I| |0 I ||s2J—Cpv 1

X[I le}[I O}{O I}
0 I soJ I||-1 O
where s = (ﬂ —8)/s, 81 = —s/ﬂ and so = (\@5 — 1)/32,
respectively, as shown in the bottom of Fig. 1. Since so, s1 and
s2, however, are non-dyadic-valued (floating-point) factors, they are
approximated to dyadic-values as o/ 2% (a, B € N) for faster imple-
mentation as shown in Table 1.

Proof: As the preparation for lifting factorization, (1) is factor-
ized into several matrices as

E(z) = LI, B} BI(2)ZESSWI @
where
o<fy ] vo-fp &l 2]
E= [Cél c?,,}’ = ﬁ,l fl] and W = % B _JI}



Table 1. Lifting coefficients of the scaling part.

Channel Lifting Coefficients
M Float. Dyad.

so  0.5747  147/256

8 s1 -0.6351 -163/256
s2  0.3349 43/128
so  0.5109 33/64

16 s1 -0.6619  -85/128
s2 0.3695 47/128

respectively. Also, the following equations are used to factorize into
lifting structures.

{ Lo H _:_LOJIrL1 (I)} 3
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where N is an arbitrary nonsingular matrix, and Ly and Uy, (k =
0, 1, 2) are arbitrary matrices, respectively. According to [11, 12],
the block-lifting factorizations of I'(z) and E in (2) are produced,
respectively, as

I o 1 l=="cy, I o
= A 2
|:CHI I} (2) {O I —Cmr 1
=_| T O I —Cu I oj|0 I
=7 |Cmr I||O0 I Cor I||-1I O
and the merged structure of I'(z) and E is simplified as
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2
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By using (3)-(6) and the block-lifting factorization in [11], (2) is
represented by
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The merged structure of I'(z) and & are simplified as
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Table 2. Coding gain (CG [dB]).

Channel | Conv. FLOTs [10] Prop. FLBTs
M Float. Dyad. Float. Dyad.
8 9.219 9.219 9.447  9.447
16 9.759 9.759 9.845 9.845

by using (3)-(6) again. Also, it is clear that

swa= L allo L 1l o)

®

J o
0o J

Consequently, the block-lifting factorization of FLBT in (1) is
achieved by substituting (8) and (9) to (7). O

4. EXPERIMENTAL RESULTS

This paper designed the 8 x 16 and 16 x 32 FLBTs." In this section,
the proposed FLBTs are compared with the HLBT for JPEG XR [8]
and the conventional FLOTs [10] by the coding gain, the number of
rounding operations and the lossy-to-lossless simulation results.

4.1. Coding Gain and Number of Rounding Operations

The coding gain is one of the most important and popular factors for
a transform in compression applications. A transform with higher
coding gain compacts more energy into a fewer number of coef-
ficients. As a result, higher objective performance such as PSNR
would be achieved after quantization. The coding gain (CG) is de-
fined as [13]

o2
CG [dB] = 10logy — &
[dB] S10 =T 02 [ fi |2
where o2 is the variance of the input signal, o2 . 1s the variance of
the k-th subbands and || fi ||* is the norm of the k-th synthesis
filter. Table 2 shows the comparisons of coding gain of the conven-
tional FLOTs [10] and the proposed FLBTSs with floating-point and
dyadic-valued factors for the lifting coefficients in the scaling part.?
It is clear that the most of coding gain are not lost even if the lifting
coefficients are approximated to dyadic-valued factors. Moreover,
the proposed FLBTs have higher coding gains than the conventional
FLOTs.
We also compare the number of rounding operations because
a transform with fewer rounding operations achieves more effec-
tive lossy-to-lossless coding due to reducing rounding error. Ac-
tually, the number is reduced from 90 /2 to 5M/2, i.e., the pro-
posed FLBTs have fewer rounding operations than the conventional
FLOTs [10].

4.2. Lossy-to-Lossless Image Coding

Finally, the proposed FLBTs are validated in lossy-to-lossless image
coding. To evaluate transform performance fairly, a very common

10Of course, the FLBTs with bigger block size can be easily designed.

2The coding gain of the proposed method cannot be accurately compared
with one of the HLBT for JPEG XR because the dyadic-valued HLBT is im-
plemented by non-separable transform. In the floating-point case, its coding
gain is 8.447[dB].



Table 3. Comparison of lossless image coding (LBR [bpp]).

Test HLBT | Conv. FLOTs [10] Prop. FLBTs
Images [8] 8x 16 16x32 | 8x16 16 x 32
Barbara 4.96 4.95 4.85 4.86 4.80

Boat 5.20 5.19 5.16 5.14 5.13
Finger 5.89 5.89 5.75 5.82 5.73
Goldhill 5.12 5.18 5.15 5.12 5.12

Lena 4.64 471 4.69 4.62 4.64
Pepper 5.00 4.99 5.00 4.93 4.97

Table 4. Comparison of lossy image coding (PSNR [dB]).

Bitrate | HLBT | Conv. FLOTs [10] Prop. FLBTs
[bpp] [8] 8x16 16x32 | 8x16 16 x 32
Barbara
1.00 36.00 36.59 37.13 37.13 37.43
0.50 30.85 31.76 32.67 32.14 32.87
0.25 27.01 27.83 28.77 28.05 28.90
Boat
1.00 35.21 35.44 35.43 35.63 35.55
0.50 32.02 32.13 32.13 32.39 32.20
0.25 28.80 28.97 29.04 29.21 29.08
Finger
1.00 30.12 30.64 31.44 30.92 31.52
0.50 26.31 26.79 27.32 27.00 27.36
0.25 22.95 23.57 23.97 23.77 24.01
Goldhill
1.00 35.17 35.26 35.36 35.50 35.53
0.50 32.02 32.05 32.20 32.36 32.41
0.25 29.62 29.43 29.59 29.80 29.81
Lena
1.00 38.62 38.47 38.53 39.01 38.90
0.50 35.90 35.59 35.71 36.30 36.25
0.25 32.76 32.37 32.55 33.08 33.00
Pepper
1.00 36.39 36.50 36.44 36.77 36.68
0.50 34.71 34.29 34.02 34.88 34.48
0.25 32.52 31.68 31.84 32.52 32.29

wavelet-based coder SPIHT [14] was adopted for all after the trans-
formed coefficients were rearranged from subband mode to multires-
olution mode similar to wavelet transform. Also, the periodic exten-
sion was used for image boundaries. Moreover, we used 8-bit gray
scale test images with 512 x 512 size such as Barbara. After the pro-
posed FLBTs, the HLBT and the conventional FLOTs are applied to
lossless image coding, the lossy compressed data can be achieved
by interrupting the obtained lossless bitstream if it is required. The
lossy-to-lossless image coding results are compared by lossless bit
rate (LBR) and peak signal-to-noise ratio (PSNR) as

Total number of bits [bit]

Total number of pixels [pixel]

255
PSNR [dB] = 101 —
SNR [dB] = 10logy, o

LBR [bpp] =

where MSE is the mean squared error, respectively. The compar-
isons of LBR, PSNR and a particular area of the reconstructed im-
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Fig. 3. Comparison of a particular area of the reconstructed image
Barbara (bitrate is 0.25[bpp]): (top) original image and the HLBT
for JPEG XR [8], (middle) the conventional 8 x 16 and 16 x 32
FLOTs [10], (bottom) the proposed 8 x 16 and 16 x 32 FLBTs.

age Barbara (bitrate is 0.25[bpp]) are shown in Table 3, 4 and Fig.
3, respectively.

The proposed FLBTSs show better coding performance than the
conventional methods. It is considered that the reduction of rounding
operations is one of the most feasible reasons for achieving such
performance. On the other hand, note that the proposed FLBTs have
a simple and fast implementation due to the construction with DCT
matrices and dyadic-valued factors for lifting coefficient blocks.

5. CONCLUSION

In this paper, we have introduced a realization of integer fast lapped
biorthogonal transform (FLBT) via applications of discrete cosine
transform (DCT) matrices and dyadic-valued factors for lifting co-
efficient blocks. The proposed FLBTs have higher coding gain and
fewer rounding operations than the conventional fast lapped orthog-
onal transforms (FLOTs). They could achieve more effective cod-
ing performance for lossy-to-lossless image coding than the conven-
tional methods including a hierarchical lapped biorthogonal trans-
form (HLBT) for the newest image coding standard JPEG XR.
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