
MULTIPLIERLESS LIFTING BASED FFT VIA FAST HARTLEY TRANSFORM

Taizo Suzuki1, Seisuke Kyochi2, Yuichi Tanaka3, Masaaki Ikehara4, and Hirotomo Aso5

1Faculty of EIS, Univ. of Tsukuba, 2IME Dept., The Univ. of Kitakyushu,
3Graduate School of BASE, TUAT, 4EEE Dept., Keio Univ., 5EEE Dept., Nihon Univ., Japan

Email: 1taizo@cs.tsukuba.ac.jp, 2s-kyochi@kitakyu-u.ac.jp,
3ytnk@cc.tuat.ac.jp, 4ikehara@tkhm.elec.keio.ac.jp, 5aso@ee.ce.nihon-u.ac.jp

ABSTRACT

The multiplierless fast Fourier transform (FFT) with dyadic-valued
(rational) coefficients is important for many signal processing tools.
The proposed lifting based FFT (L-FFT) based on fast Hartley trans-
form (FHT) has a simpler structure than existing ones because fewer
lifting steps need to be approximated. In addition, it has a structure
of real-valued calculation followed by complex-valued parts, thereby
it requires fewer memories for the internal implementation than the
conventional FFTs.

Index Terms— Dyadic-valued coefficient, fast Fourier trans-
form (FFT), fast Hartley transform (FHT), lifting structure

1. INTRODUCTION

The fast Fourier transform (FFT) [1], which is a fast algorithm of
discrete Fourier transform (DFT) [2], is one of the most fundamen-
tal and common tools in signal processing [3–5]. Generally, the
FFT consists of floating-point coefficients and yields floating-point
output signals even if the input signals are integer-valued. In this
calculation, floating point multipliers waste computational cost and
power consumption which cannot be neglected. To efficiently im-
plement the FFT, floating-point coefficients are often approximated
to dyadic-valued (rational) coefficients. It is the most important is-
sue to reduce its power consumption. Ideally, such approximation
should be carried out without losing perfect reconstruction (PR) or
near PR property.

Lifting structure [6] is a key technology to efficiently approxi-
mate floating-point coefficients by dyadic-valued coefficients while
keeping near PR [7]. Oraintara et al. introduced the lifting factoriza-
tion of a traditional (split-radix based) FFT and realized a multipli-
erless lifting based FFT (L-FFT) with dyadic-valued coefficients [8].
However, the structure does NOT consider minimizing the number
of lifting steps for fewer adders and bit shifters, and thus it has re-
dundant operations. Moreover, it requires many memories for the
internal implementation because there are many complex-valued op-
erations everywhere.

In this paper, we propose a multiplierless L-FFT based on the
fast Hartley transform (FHT) [9] for one and two dimensional (1-D
and 2-D) signals. The FHT is a fast algorithm of discrete Hartley
transform (DHT) [10] which is a DFT like real-valued transform.
The conventional and proposed multiplierless FFTs are named sprit-
radix based L-FFT (L-‘S’FFT) and FHT based L-FFT (L-‘H’FFT),
respectively, to distinguish them throughout this paper. The L-HFFT,
which has a different structure from the traditional radix based FFTs,
has a simpler structure than that of the L-SFFT. Specifically, it can
reduce the number of lifting steps which need to be approximated.

In addition, since it has a structure of real-valued calculation fol-
lowed by complex-valued parts, it requires fewer memories for the
internal implementation than the conventional ones. In the simula-
tions, we evaluate the L-HFFT and numerically show its comparable
performance to the L-SFFT in spite of fewer operations.

Notations: I, J, MT , M†, MN and j are an identity matrix, a
reversal identity matrix, transpose of a matrix M, conjugate trans-
pose of a matrix M, a matrix M with N ×N size and an imaginary
number defined as j2 = −1, respectively.

2. REVIEW

2.1. DFT and DHT

The (m,n)-element of M -channel DFT matrix FM is defined as [2]

[FM]m,n =
1√
M

exp

(
−j2mnπ

M

)
where 0 ≤ m,n ≤ M−1. The inverse DFT (IDFT) is the conjugate
transpose of the DFT matrix, i.e., F−1

M = F†
M . For simplicity, let

M be defined as M = 2k (k ∈ N).
The DHT [10] is a DFT like real-valued transform. The (m,n)-

element of M -channel DHT matrix HM , which is the symmetric
orthogonal matrix as H−1

M = HT
M = HM , is defined as

[HM]m,n =
1√
M

(
cos

(
2mnπ

M

)
+ sin

(
2mnπ

M

))
. (1)

These DFT and DHT have many fast algorithms, i.e., FFT [1]
and FHT [9], respectively, which are usually used in practical imple-
mentation.

2.2. Multiplierless Lifting Structure

The lifting structure [6], also known as the ladder structure, is a spe-
cial type of lattice structure. It is implemented by cascading elemen-
tary matrices ― identity matrices with a single nonzero off-diagonal
element.

Fig. 1 shows a basic lifting step. It is expressed by

yj(n) = xj(n), yi(n) = xi(n) + round{Txj(n)}
zj(n) = yj(n), zi(n) = yi(n)− round{Tyj(n)}

where round{·} and T are a rounding operation and a lifting co-
efficient, respectively. Thus the lifting structure with the rounding

5603978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

Fig. 1. A basic lifting step (white circles: rounding operations)

Fig. 2. An approximation from multiplier with dyadic-valued coef-
ficients to bit-shifter and adder in a lifting structure (≫ β means β
bit-shifter).

operation can achieve integer-to-integer transform. Also, the lifting
and its inverse matrices in this case are represented as[

1 T
0 1

]
and

[
1 T
0 1

]−1

=

[
1 −T
0 1

]
,

respectively.
For a high-speed and circuit-size saving implementation, lifting

coefficients are required to approximate floating-point coefficients to
software/hardware-friendly dyadic-valued coefficients such as α/2β

(α, β ∈ N) which can be implemented by only adders and bit-
shifters [7]. The dyadic-valued representation enables to perform
fast implementation in a software and reduce the circuit size. For
example, a coefficient 25/128 can be operated as

25

128
=

24 + 23 + 20

27
=

1

23
+

1

24
+

1

27
.

Hence, the lifting with its coefficient 25/128 and a rounding oper-
ation is replaced to the summation of 3, 4 and 7 bit-shifters illus-
trated in Fig. 2. It is clear that the PR in lifting is always kept even
if floating-point coefficients are approximated to dyadic-valued co-
efficients. When a floating-point coefficient is allocated β bit, the
dyadic-valued coefficient is presented as α/2β .

3. MULTIPLIERLESS L-FFT VIA FHT (L-HFFT)

In this section, we derive a realization of multiplierless FFT for var-
ious signal processing tools by the following procedures.

1. An FFT factorization is derived based on FHT.

2. Several obtained rotation matrices are approximated to mul-
tiplierless lifting structures, and the scaling factors are moved
to the last part.

(For 2-D signals, e.g., images)

3. It is completed by using 2-D separable block transform.

3.1. FFT based on FHT

FHT in (1) is simplified by rotation matrices as the following recur-
sive algorithm and its 16-channel case is shown in Fig. 3.

ĤM =

[
ĤM/2 0

0 ĤM/2

]
RMWM

Fig. 3. The 16-channel FHT Ĥ16

where ĤM is an FHT permutated frequency band order of HM , i.e.,
HM = PT

MĤM = ĤT
MPM where PM is a permutation matrix.

Also, RM and WM are expressed as

RM =

IM1 0 0 0
0 CM2 0 JM2SM2

0 0 1 0
0 SM2JM2 0 −JM2CM2JM2

for M1 = M/2 + 1 and M2 = M/4− 1, and

WM =
1√
2

[
IM/2 IM/2

IM/2 −IM/2

]
,

respectively. The (l, l)-elements of CM2 and SM2 are presented by

[CM2]l,l = cos

(
2(l + 1)π

M

)
and [SM2]l,l = sin

(
2(l + 1)π

M

)
,

respectively, for 0 ≤ l ≤ M/4− 2.
A representation of M -channel FFT FM is constructed by only

one FHT HM and the matrix GM with real- and complex-valued
coefficients as follows [9]:

FM = QMGMHM = QMGMĤT
MPM (2)

where

GM =

1 0 0 0
0 1−j

2
IM/2−1 0 1+j

2
JM/2−1

0 0 1 0
0 1+j

2
JM/2−1 0 1−j

2
IM/2−1

and QM is a permutation matrix. Also, the inverse of GM is pre-
sented by the conjugate transpose of GM , i.e., G−1

M = G†
M .

5604

3.2. Multiplierless Lifting Factorization and Moving Scaling
Factors to The Last Part

First, the rotation matrices in RM and the complex matrices in GM

are factorized into the lifting structures as[
cos θ sin θ
sin θ − cos θ

]
=

[
1 0

1−cos θ
sin θ

−1

] [
1 sin θ
0 1

] [
1 0

cos θ−1
sin θ

1

]
and

1− j

2

[
1 j
j 1

]
=

[
1 0
1 −j

] [
1 1+j

2
0 1

] [
1 0
−1 1

]
,

respectively. Next, floating-point coefficients in the lifting rotation
matrices in RM are approximated to dyadic-valued coefficients.
Note that the lifting steps in GM already have only dyadic-valued
coefficients.

On the other hand, the rotation matrices with the angles π/4 in
FHT part ĤT

M except for RM are presented by[
cos π

4
sin π

4
sin π

4
− cos π

4

]
=

1√
2

[
1 1
1 −1

]
.

Since all of the scaling factors 1/
√
2 can be moved to the last part of

FFT, the matrices can be implemented by only ±1. Let H̃M be ĤM

removed its scaling factors. Then, (2) is rewritten as

FM = QMDMGMH̃T
MPM (3)

where DM is the scaling factor matrix. The resulting FFT is shown
in Fig. 4.

3.3. Use of 2-D Separable Block Transform

Note that the structure obtained in the above subsection products
the non-dyadic-valued (floating-point) scaling factor 1/

√
2 when

log2 M is odd. Moreover, if the structure in Fig. 4 is directly ap-
plied to image, the complex-valued signals produced after the first
dimensional (i.e., column or row) implementation will be input to
the second dimensional (i.e., row or column) operation. Hence, the
structure requires many memories for the internal implementation.
To solve the problem, we change the order of the 2-D separable
block transform [7] for the proposed FFT. When we apply a block
transform matrix FM into a 2-D input signal x in column- and
row-wise separately, the 2-D output signal y is expressed by

y = (FM (FMx)T)T = FMxFT
M (4)

Since FM is factorized as DMGMH̃T
MPM as shown in (3), (4) is

represented by

y = QMDMGMH̃T
MPMxPT

MH̃MGT
MDT

MQT
M .

This equation means that the 2-D block transform by ĤT
M is firstly

applied after the 2-D block transform by PM , the 2-D block trans-
form by GM is secondly applied, the 2-D block transform by DM

is thirdly applied, and the 2-D block transform by QM is finally ap-
plied. Therefore, when log2 M is odd, the non-dyadic-valued scal-
ing factor 1/

√
2 in 1-D transform can be implemented as the dyadic-

valued scaling factor 1/2 in 2-D transform. Moreover, it is clear that
the FFT requires fewer memories for the internal implementation
because it can be completely separated to real- and complex-valued
parts.

Table 1. The FFTs for their transform performance comparison (The
split-radix based FFT with dyadic-valued coefficients without lifting
factorization is named ‘S’FFT).

Name Basement Lifting Dyadic-Value

(ideal) Split-Radix NA NA
SFFT Split-Radix NA ✓

L-SFFT Split-Radix ✓ ✓
L-HFFT FHT ✓ ✓

Table 2. The numbers of operations in FFTs with 8 bit word length
allocated coefficients (Lift., Add. and Shift. mean the numbers of
lifting steps which require finite word length allocation, adders and
bit-shifters, respectively).

Channel L-SFFT L-HFFT
M Lift. Add. Shift. Lift. Add. Shift.

16 24 178 106 15 151 73
32 78 518 332 51 424 234
64 216 1366 910 147 1098 652
128 486 3356 2298 387 2689 1667
256 1296 8114 5634 963 6395 4093
512 2430 18710 13292 2307 14836 9718
1024 6552 43116 30692 5379 33765 22503

*For simplicity, the scaling parts are NOT included in this table.

4. EXPERIMENTAL RESULTS

The FFTs for their transform performance comparison are shown
in Table 1. In Sec. 4.2 and 4.3, we used 256-channel FFTs and
256× 256 8-bit grayscale images Camera and Girl as test images.

4.1. Number of Operations in FFTs

Table 2 shows the number of lifting steps which must be approxi-
mated, adders and bit-shifters in the L-SFFT and the L-HFFT ap-
proximated by 8 bit allocation. It is clear that the L-HFFT has not
only no multiplier but fewer adders and bit-shifters than the L-SFFT.
It is no wonder that the L-HFFT is constructed by fewer lifting steps
than the L-SFFT. Let the numbers of operations in M -channel L-
SFFT and L-HFFT be defined as SM and HM , respectively. They
are recursively determined as follows:

SM =
3(M − 4)

2
+ SM

2
+ 2SM

4

HM =
3(M − 4)

4
+ 2HM

2

where S2 = S4 = H2 = H4 = 0.

4.2. Accuracy of FFT

The images Camera and Girl, which are reconstructed by the ideal
inverse FFT (IFFT) after they are transformed by each of SFFT, L-
SFFT and L-HFFT, are compared with peak-to-noise ratio (PSNR)
as

PSNR[dB] = 10 log10

(
2552

MSE

)

5605

Fig. 4. The 16-channel L-HFFT

Fig. 5. F-D curves of the images reconstructed by ideal IFFT after
they are transformed by each of SFFT, L-SFFT and L-HFFT: (left)
Camera, (right) Girl.

Table 3. The comparison examples in the images reconstructed by
ideal IFFT after they are transformed by each of L-SFFT and L-
HFFT when M = 256.

Numbers PSNR[dB]
Adders Shifters Camera Girl

L-SFFT (4 bit alloc.) 5,138 3,090 41.69 44.58
L-HFFT (5 bit alloc.) 5,031 2,983 43.64 46.10

where MSE is the mean squared error. This simulation clarifies an
approximation accuracy of the dyadic-valued FFTs to the ideal FFT,
under the rounding operation. Fig. 5 shows F-D (finite word length
―distortion) curves at the case. Although the L-HFFT seemingly
shows lower PSNRs, the L-HFFT shows comparable performance
to the L-SFFT in spite of fewer operations in practice as shown in
Table 3. Also, the L-HFFT requires fewer memories for the inter-
nal implementation than the L-SFFT due to real-valued calculation
followed by complex-valued parts.

Fig. 6. F-D curves of the images reconstructed by each of the inverse
transforms of SFFT, L-SFFT and L-HFFT after they are transformed
by each of SFFT, L-SFFT and L-HFFT: (left) Camera，(right) Girl

4.3. Accuracy of Near PR

Test images Camera and Girl, which are reconstructed by each of
the inverse transforms of SFFT, L-SFFT and L-HFFT after they are
transformed by each of SFFT, L-SFFT and L-HFFT, are compared
with PSNR. This simulation clarifies an accuracy of reconstruction
of each dyadic-valued FFT because the complete PR is lost due to
error generated by bit-shifts in the last scaling part. Fig. 6 shows
F-D curves at the case. Although the SFFT degrades its PSNRs in
lower bit allocation, such degrading is NOT shown in the L-SFFT
and the L-HFFT. Hence, the FFTs with lifting structures always pre-
serve near PR.

5. CONCLUSION

This paper has proposed a realization of multiplierless fast Fourier
transform (FFT). It is composed of fast Hartley transform (FHT) and
multiplierless lifting structures, and has only adders and bit-shifters,
i.e., no multipliers. Moreover, it has fewer operations and requires
fewer memories for the internal implementation than the conven-
tional FFTs. In spite of such facts, the proposed FFT verified its
comparable performance to the conventional ones in the simulations.

5606

6. REFERENCES

[1] J. W. Cooley and J. W. Tukey, An algorithm for the machine
computation of complex Fourier series, Math. Comput., 1965.

[2] N. Ahmed and K. R. Rao, Orthogonal Transforms for Digital
Signal Processing, Berlin, Germany: Springer-Verlag, 1975.

[3] R. Hardie, “A fast image super-resolution algorithm using an
adaptive Wiener filter,” IEEE Trans. Image Process., vol. 16,
no. 12, pp. 2953–2964, Dec. 2007.

[4] M. Ghazal, A. Amer, and A. Ghrayeb, “Structure-oriented
multidirectional Wiener filter for denoising of image and video
signals,” IEEE Trans. Circuits Syst. Video Technol., vol. 18,
no. 12, pp. 1797–1802, Dec. 2008.

[5] D. Humphrey and D. Taubman, “A filtering approach to edge
preserving MAP estimation of images,” IEEE Trans. Image
Process., vol. 20, no. 5, pp. 1234–1248, May 2011.

[6] W. Sweldens, “The lifting scheme: A custom-design construc-
tion of biorthogonal wavelets,” Appl. Comput. Harmon. Anal.,
vol. 3, no. 2, pp. 186–200, Apr. 1996.

[7] T. Suzuki and M. Ikehara, “Integer discrete cosine transform
via lossless Walsh-Hadamard transform with structural regu-
larity for low-bit-word-length,” IEICE Trans. Fundamentals,
vol. E93-A, no. 4, pp. 734–741, Apr. 2010.

[8] S. Oraintara, Y. J. Chen, and T. Q. Nguyen, “Integer fast
Fourier transform,” IEEE Trans. Signal Process., vol. 50, no.
3, pp. 607–618, Mar. 2002.

[9] R. N. Bracewel, “The fast Hartley transform,” Proc. of the
IEEE, vol. 72, no. 8, pp. 1010–1018, Aug. 1984.

[10] R. N. Bracewel, “Discrete Hartley transform,” J. Opt. Soc.
Am., vol. 73, no. 12, pp. 1832–1835, Dec. 1983.

5607

