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Abstract—This paper proposes a directional and shift-invariant
transform based on M -channel rational-valued cosine-sine mod-
ulated filter banks (R-CSMFBs) for the practical implementation
on hardware devices. M -channel CSMFBs can be easily designed
by the modulation of a prototype filter and achieve a good
stopband attenuation. In addition, in our previous work, the
directionality and the shift-invariance of CSMFBs have been
theoretically clarified. Thus, they can be an alternative choice of
the dual-tree complex wavelet transform (DTCWT) which is one
of the most popular directional and shift-invariant transforms. In
this paper, it is shown that the proposed lifting-based structure
of the R-CSMFB can also achieve rich directional selectivity and
the shift-invariance even if the lifting coefficients are rounded
to rational values. Finally, the R-CSMFB can provide better
stopband attenuation and image denoising performance than that
of the conventional M -channel rational-valued DTCWT in the
simulation.

I. INTRODUCTION

The dual-tree complex wavelet transform (DTCWT), con-
ventionally, have been introduced to achieve “rich directional
selectivity” and “shift-invariance” which discrete wavelet
transforms (DWTs) cannot satisfy [1]. It can achieve better
performance than DWTs in various kinds of image processing,
such as image denoising [1].

In this paper, we address on the design of the directional
and shift-invariant complex WT (CWT) satisfying the number
of channel M > 2 and the rational value constraint simultane-
ously. Conventionally, an efficient design method for 2-channel
rational-valued DTCWT (R-DTCWT) has been proposed for
the hardware implementation (add/bit-shift operations) [2].
However, it has not been proposed yet for the M -channel
ones. Although M -channel R-DTCWT can be realized by
using the dual-tree complex wavelet packet (DTCWP) [3],
a cascade of the 2-channel R-DTCWT suffers from poor
stopband attenuation owing to the small number of the design
parameters, especially in the case of the short filter length
constraints on the entire system.

In our previous work, the directional selectivity and
the shift-invariance of cosine-sine modulated filter banks
(CSMFB) [4] have been theoretically clarified [5]. Thus, it can
be considered that CSMFBs are in the same class of the direc-
tional and shift-invariant CWTs where the DTCWT belongs
to. In this paper, the rational-valued CSMFB (R-CSMFB)
is proposed by introducing the lifting factorization and the

Fig. 1. M -channel DTCWTs and CSMFBs

rounding operation into the CSMFB. Unlike the DTCWP, R-
CSFMB can be designed directly as a M -channel system, and
thus it can obtain better stopbband attenuation even if lifting
coefficients are rounded. In the simulation, the directionality
and the shift-invariance of the R-CSMFB are demonstrated.
Moreover, the R-CSMFB is applied to image denoising as a
practical application and shown its better performance than
that of the R-DTCWT.

Notations: I and J are the identity and the reversal iden-
tity matrices, repectively. j :=

√−1. α is the conjugate
of α ∈ C. H(z), H∗(z) and H̃(z), H(ω) are defined
as H(z) :=

∑
n h(n)z−n, H∗(z) :=

∑
n h(n)z−n, and

H̃(z) := H∗(z−1). The M × L FB means the M channel
filter bank with the filter length of L.

II. REVIEW

A. Dual-Tree Complex Wavelet Transform and Dual-Tree
Complex Wavelet Packet

The DTCWT is constructed by two maximally decimated
perfect reconstruction FBs, as illustrated in Fig. 1. In this case,
the pair {H(1)

k (z), H(2)
k (z)} (0 ≤ k ≤ M − 1) is designed to

satisfy the following equations [1]:

H
(2)
k (ejω) =e−jθk(ω)H

(1)
k (ejω), (1)
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(

d +
1
2

)
(M − 1)ω − pω,

where d ∈ Z denotes the delay between the primal FB and the
dual FB, ∀p ∈ {

0, . . . ,
⌈

M
2

⌉ − 1
}

, ∀ω ∈ [
2π
M p, 2π

M (p + 1)
)
,



(a) Primal FB

(b) Dual FB

Fig. 2. Example of 2r-band DTCWT (r = 2)

and

θk(ω) =

{
π
2 − (

d + 1
2

)
ω ω ∈ (0, 2π)

0 ω = 0,
(2)

where 1 ≤ k ≤ M − 1.
Conventionally, the dual-tree complex wavelet packet

(DTCWP) which is the design method of 2r-channel DTCWT
has been proposed [3]. Specifically, it is obtained by cascad-
ing a 2-channel DTCWT {H(1)

k (z), H(2)
k (z)}k=0,1 , and 2-

channel perfect reconstruction FBs (PRFBs) {F0(z), F1(z)}
and {H(1)

0f (z), H(1)
1f (z)}, as shown in Fig. 2. The 2-channel

DTCWT can be designed by the several methods, such as
“q-shift solution” and “common factor solution” (spectral
factorization) in [1]. The problem of the DTCWP is that good
stopband attenuation cannot be obtained if the filter length of
the whole system is restricted to be short. It is because the
design degree of freedom for filter optimization remains only
in the cascaded 2-channel FBs with the limited filter length.

B. Cosine-sine modulated filter banks

A CSMFB also consists of two maximally decimated filter
banks as in Fig. 1. Its filter coefficients of {H(1)

k (z), H(2)
k (z)}

are expressed as follows [4]:{
h
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M
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)
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)
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(3)

where k = 0, . . . , M − 1, θk = (−1)k π
4 and p(n) is the

prototype filter. Let E(1)(z) and E(2)(z) be the polyphase
matrices of the primal and the dual FBs, respectively, then,
from (3), it follows that E(2)(z) = ΓẼ(1)(z), where Γ is
the diagonal matrix Γ := diag((−1)k) (0 ≤ k ≤ M − 1).
Therefore, if the primal FB satisfies the perfect reconstruction
(PR) property Ẽ(1)(z)E(1)(z) = I, the dual FB E(2)(z)
system also satisfies the PR property. In our previous work, the
directionality and the shift-invariance of CSMFBs are derived

according to the relationship of cosine and sine modulation
between two FBs [5].

III. RATIONAL-VALUED COSINE SINE MODULATED
FILTER BANKS BASED ON THE LIFTING FACTORIZATION

In this section, the R-CSMFB is proposed. First, we con-
sider a lattice strucutre corresponding to the CMFB. It is
known as the extended lapped transform [6] expressed by:

E(1)(z) = CIVWΛ(z)D(1)
0

K−1∏
k=1

(
Λ(z2)D(1)

k

)

D(1)
k =

[−Ck SkJ
JSkJ JCkJ

]
,Λ(z) =

[
z−1I 0
0 I

]
, (4)

where Ck = diag
(
cos θk0, . . . , cos θk M/2−1

)
, Sk =

diag
(
sin θk0, . . . , sin θk M/2−1

)
and CIV denotes the type-

IV DCT. The structure is depicted in Fig. 3 (a). Then, we
convert the lattice structure into lifting steps.

In general, the rotation matrix can be factorized into lifting
steps as follows:[

cos θ − sin θ
sin θ cos θ

]
=

[
1 p
0 1

] [
1 0
u 1

] [
1 p
0 1

]
, (5)

where p = cos θ−1
sin θ , u = sin θ are called lifting coeffi-

cients. The lifting factorization enables us to design rational-
valued transformation simply by rounding lifting coefficients
round(p × 2N )/2N , round(u × 2N )/2N , while preserving
the perfect reconstruction condition. In fact, the 2-channel R-
DTCWT is designed based on the lifting (or butterfly matrices)
factorization [2].

As shown in Fig. 3 (b), each D(1)
k can be reduced as

D(1)
k =

[−I 0
0 I

] [
I PkJ
0 I

] [
I 0

JUk I

] [
I PkJ
0 I

]
, (6)

where Pk = diag
(
pk0, . . . , pkM/2−1

)
and Uk =

diag
(
uk0, . . . , ukM/2−1

)
. Since CIV is constructed by some

rotation and butterfly matrices [7] (described in Fig. 4), it can
also be converted to the lifting-based factorization.

On the other hand, the lifting coefficients of E(2)(z)
can be determined immediately by using the relationship of
E(2)(z) = z−KΓẼ(1)(z) = z−KΓ(E(1)(z))−1. Specifically,
the lifting factorization of E(2)(z) is expressed as follows:

E(2)(z) =Γ
1∏

k=K−1

((
D(1)

k

)−1

z−2Λ(z−2)
)

×
(
D(1)

0

)−1

z−1Λ(z−1)WCIV (7)

According to the above expression, it can be verified that

D(2)
k =

(
D(1)

k

)−1

=
[
I −PkJ
0 I

] [
I 0

−JUk I

] [
I −PkJ
0 I

] [−I 0
0 I

]
.

(8)

It indicates that the lifting coefficients of E(2)(z) are just the
sign-altered versions of those of E(1)(z).



Fig. 4. The rotation-matrix-based structure of the type-IV DCT. (Example:
4 × 4, θ0 = π/16, θ1 = 5π/16, θ2 = π/4)

In [4], an another lattice structure of E(2)(z) based on type
IV DST has been presented. In that case, the lattice strucuture
can be expressed by

E(2)(z) =SIVWΛ(z)D(2)
0

K−1∏
k=1

(
Λ(z2)D(2)

k

)

D(2)
k =

[
Ck SkJ

JSkJ −JCkJ

]
=

[−I 0
0 I

]
D(1)

k

[−I 0
0 I

]
.

(9)

From the above equations and the relationship SIV = ΓCIVJ,
the lifting coefficients for E(1)(z) can also be reused for
E(2)(z).

IV. SIMULATION

We design M -channel R-CSMFBs (M > 2) based on
the lifting approach described in the previous section, and
evaluate its directional selectivity andshift-invariance. For
a comparison, M -channel R-DTCWT (M > 2) is de-
signed by the DTCWP [3] cascading the 2-channel spectral-
factorization-based R-DTCWT [2]. The cascaded 2-channel
FBs {F0(z), F1(z)} and {H(1)

0f (z), H(1)
1f (z)} described in Sec.

II-A are implemented by the lifting steps of the rotation
matrices given in (5) and the delay matrices. Both M -channel
transforms are optimized to minimize the stopband attenuation
Δ specified by

Δ =
M−1∑
k=0

∫
Ωs(k)

|H(1)
k (ejω)|2dω, (10)

where Ωs(k) is stoppband of the H
(1)
k (ejω), (0 ≤ k ≤ M−1).

In this paper, we set as Ωs(k) = [0, π
M (k−2)]∪[ π

M (k+2), π].
If π

M (k−2) ≤ 0 or π
M (k+2) ≥ π, the corresponding interval

is ignored.

A. Design Example

The design examples of the R-CSMFB and the R-DTCWT
are given in this section. First, the R-CSMFB and the R-
DTCWT are designed as a real-valued FB minimizing the
stopband attenuation. Then, the real-valued lifting coefficients
are rounded to the rational coefficients from 8 to 4 bit word
length. The results of the stopband attenuation Δ are listed
in Table I. The numbers of the filter length of the cascaded
2-channel PUFBs for the 4 × 16 (# of channel × # of filter
length) and 8× 22 R-DTCWTs and the 4× 22 and 8× 36 R-
DTCWTs are 4 and 6, respectively. Thus, the design degree of
freedom for optimization is quite limited. On the other hand,
since the CSMFBs with multiple channels can be designed

TABLE I
STOPBAND ATTENUATION

4-channel R-DTCWT
Word length 8 bit 7 bit 6 bit 5 bit 4 bit
Δ (L=16) 2.2315 2.2857 2.5866 3.4617 7.8892
Δ (L=22) 0.6356 0.5374 1.6500 1.3035 3.4647

4-channel R-CSMFB
Word length 8 bit 7 bit 6 bit 5 bit 4 bit

Δ (L=8) 0.2477 0.2278 0.3664 0.3069 1.5346
Δ (L=16) 0.3863 0.8409 0.9212 1.4547 1.7782

8-channel R-DTCWT
Word length 8 bit 7 bit 6 bit 5 bit 4 bit
Δ (L=22) 135.0658 135.0658 134.1306 143.3687 134.6823
Δ (L=36) 72.5471 71.3914 76.2479 77.1526 75.1663

8-channel R-CSMFB
Word length 8 bit 7 bit 6 bit 5 bit 4 bit
Δ (L=16) 2.2984 3.0656 36.1532 31.5684 42.0679
Δ (L=32) 1.3973 1.5174 1.5949 3.2597 11.3918

(a) Real (b) Rational

Fig. 5. Frequency responses of the designed 4× 8 CSMFB. (a): Real-valued
CSMFB, (b) Rational-valued CSMFB with 5 bit lifting coefficients.

directly, more design degree of freedom can be obtained, and
thus it can achieve better stopband attenuation.

Fig. 5 depicts the frequency responses of the designed
4 × 8 CSMFB and R-CSMFB. It can be observed that the
frequency responses of R-CSMFB in Fig. 5(b) are robustly
approximating those of the original CSMFB given in Fig. 5(a)
under rounding operation.

B. Directional Selectivity

The 2-D wavelet basis functions obtained by the 4-channel
R-CSMFB are shown in Fig. 6. Clearly, the basis functions
are oriented, which indicates the R-CSMFB achieves rich
directional selectivity under rounding operation.

C. Evaluation of Shift Invariance

In this section, shift invariance of the R-CSMFB and the
R-DTCWT (4×16, 4 bit word length) are evaluated. First, we
apply the R-CSMFB and the R-DTCWT to the input impulse
and its shifted impulse independently. Then, compute the
correlation of the output subband signals. Specifically, let s

(1)
k,r

and s
(2)
k,r (0 ≤ k ≤ 3) be the k-th subband signals of the first

and the second system which are obtained from the r-sample
(0 ≤ r ≤ 3) shifted original signal (the original one is denoted
by r = 0). Then, we evaluate the shift invariant property
by the normalized correlation of s

(1)
k,r + s

(2)
k,r and s

(1)
k,0 + s

(2)
k,0

denoted by Φ(k, r) (0 ≤ Φ(k, r) ≤ 1). Table II shows the
averaged correlation values ΦA(k) = 1

4

∑3
r=0 Φ(k, r). As



Fig. 3. The structure of the 4 channel CMFBs. (Left: rotation-matrix-based structure, Right: lifting-based structure)

Fig. 6. 32 directional basis functions with size of 16 × 16 obtained by the
4 × 16 CSMFB whose lifting coefficents are rounded to 4 bit word length.

TABLE II
CORRELATION RESULTS

4-Channel R-DTCWT (filter length: 16)
Channel k = 0 k = 1 k = 2 k = 3
ΦA(k) 0.9505 0.9252 0.9477 0.9124

4-Channel R-CSMFB (filter length: 16)
Channel k = 0 k = 1 k = 2 k = 3
ΦA(k) 0.9962 0.9940 0.9948 0.9935

shown in Table II, the R-CSMFB satisfies the better shift
invariant property than the R-DTCWT.

D. Image Denoising

In this simulation, image denoising is demonstrated to
verify the performance of R-CSMFB. The gaussian random
noise with variance σ2 (σ = 15, 20, 25, 30) is added to the
test images Lena and Barbara. The noisy images are first
decomposed by 2-level 8-channel of the R-CSMFB and the
R-DTCWT, then performed by hard-thresholding with 3σ.
The lifting coefficients of both transfomations are allocated
8 bit word length. For the numerical metric of the denoising
performance, we use PSNR. As shown in Table III and Fig.
7, R-CSMFB shows better visual quality than those of the
R-DTCWT, thanks to the better stopband attenuation of the
R-CSMFB.

V. CONCLUSION

In this paper we proposed the directional and shift-invariant
transform based on M -channel R-CSMFB by the lifting fac-
torization and the rounding operation. It is clarified that the
lifting coefficients for the primal FB can be reused for the
dual FB. The R-CSMFB provides not only better stopband
attenuation than the R-DTCWT, but also the properties of shift
invariance and rich directional selectivity under the rational
value constraint. Finally, the R-CSMFB is applied to image
denoising as one of the application, and shown its better
performance than that of the R-DTCWT.

TABLE III
DENOISING RESULTS

Lena R-DTCWT (2 level, filter length: 22)
σ σ = 15 σ = 20 σ = 25 σ = 30

PSNR [dB] 30.4668 29.0718 28.0236 27.1358
Lena R-CSMFB (2 level, filter length: 16)

σ σ = 15 σ = 20 σ = 25 σ = 30
PSNR [dB] 31.0437 29.6159 28.4847 27.5970

Barbara R-DTCWT (2 level, filter length: 22)
σ σ = 15 σ = 20 σ = 25 σ = 30

PSNR [dB] 28.8703 27.3681 26.1581 25.2805
Barbara R-CSMFB (2 level, filter length: 16)

σ σ = 15 σ = 20 σ = 25 σ = 30
PSNR [dB] 29.8567 28.2664 26.9738 26.0463

(a) (b) (c)

(d) (e) (f)
Fig. 7. Denoising results. (a) and (d): Noisy images of Lena and Barbara
(sigma = 30) (b) and (e): R-DTCWT (8 × 22) (c) and (f): R-CSMFB
(8 × 16)
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