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ABSTRACT

This paper presents an effective signal boundary solution in lossy-
to-lossless image coding which is the unification of lossy and loss-
less image coding. Although M -channel filter banks (FBs) for lossy
image coding have several effective signal boundary solutions, M -
channel lifting based FBs (L-FBs) for lossless image coding do not
have such an effective signal boundary solutions due to rounding er-
ror in each lifting step. This paper proposes reversible non-expansive
symmetric convolution forM -channel lifting based linear-phase FBs
(L-LPFBs) to apply lossy-to-lossless image coding. Our proposal
is validated by comparing with the periodic extension in lossy-to-
lossless image coding.

Index Terms— M -channel lifting based linear-phase filter bank
(L-LPFB), lossy-to-lossless image coding, reversible non-expansive
symmetric convolution

1. INTRODUCTION

Filter bank (FB) [1] technologies are frequently found in the field of
signal processing applications. Especially, M -channel linear-phase
FBs (LPFBs) [2], include lapped transforms (LTs) [3], are well-
known as one of the most useful transforms for image compression
(coding). It is a reason that LPFBs can adopt the symmetric exten-
sion [4] to overcome the signal boundary distortion problem. In this
approach, the input signals are extended symmetrically in order to
maintain the continuity at the signal boundaries. The output signals
are reconstructed without the signal boundary distortion by using
symmetry even if the extended signals are not transmitted. Since
the symmetric extension improves the performance of image coding
applications, most works in the field of FB systems are focused on
LPFBs.

Meanwhile, lifting based LPFBs (L-LPFBs) composed of lift-
ing structures [5] and rounding operations are required for lossy-to-
lossless image coding, which is the unification of lossy and lossless
image coding, such as JPEG 2000. However, L-LPFBs (M > 2)
generate the signal boundary distortion because the symmetric ex-
tension cannot be applied directly to L-LPFBs due to rounding error.
Because of that, the periodic extension is often used for lossy-to-
lossless image coding even if the FB without rounding operations
has symmetry [6].

In this paper, the signal boundary problem in lossy-to-lossless
image coding is solved by focusing on symmetry in each building
block of a particular class of M -channel L-LPFBs again. The pro-
posed reversible symmetric extension can obtain similar smoothness
to the symmetric extension at the signal boundaries even if round-
ing operations are used. Moreover, the computational cost is less

Fig. 1. M -channel FB (↓, ↑ and z−1 means downsampling, upsam-
pling and delay operation, respectively).

due to use of non-expansive convolution [7], i.e., the number of in-
put signals does not increase even temporarily. Our proposal, which
this paper calls the reversible non-expansive symmetric convolution,
is validated by comparing with the periodic extension in lossy-to-
lossless image coding.

Notations: I, J and {·}T are an identity matrix, a reversal iden-
tity matrix and transpose of a matrix, respectively.

2. REVIEW

2.1. Linear-Phase Filter Banks (LPFBs)

The polyphase representation of a typical structure of a FB is shown
in Fig. 1. Using the lattice structure, the type-II analysis polyphase
matrix E(z) in an M ×MK LPFB can be presented as [8]

E(z) = E0G1(z) · · ·GK−2(z)GK−1(z) (1)

where

E0 = Φ0W, Gk(z) = Λ(z)Ξk = Λ(z)WΦkW,

Φk =

[
Uk 0
0 Vk

]
, W =

1√
2

[
I J
J −I

]
, Λ(z) =

[
I 0
0 z−1I

]

and Uk and Vk are M/2 × M/2 arbitrary nonsingular matrices
when M is even, respectively. (1) is shown in Fig. 2. Also, Uk is
usually replaced by Iwhen k ≥ 1. IfE(z) is invertible, the synthesis
polyphase matrix R(z) can be chosen as the inverse of E(z), i.e.,
perfect reconstruction (PR) R(z) = ET (z−1) is achieved.

2.2. Lifting Structure

The lifting structure [5], also known as the ladder structure, is a spe-
cial type of lattice structure. It is implemented by cascading elemen-
tary matrices - identity matrices with a single nonzero off-diagonal
element.
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Fig. 2. General lattice structure for M ×KM LPFB (drawn for M = 8).

Fig. 3. A lifting structure (white circle: rounding operation).

Fig. 4. Analysis part of the symmetric extension by M × 4M LPFB
(dashed line means signal boundary).

Fig. 3 shows a basic lifting structure. It is expressed by

yj(n) = xj(n), yi(n) = xi(n) + round{Pxj(n)}
zj(n) = yj(n), zi(n) = yi(n)− round{Pyj(n)}

where round{·} and P are rounding operation and a lifting coeffi-
cient, respectively. Thus the lifting structure with rounding operation
can achieve integer-to-integer transform. Also, the lifting matrix and
its inverse matrix in this case are represented as

[
1 P
0 1

]
and

[
1 P
0 1

]−1

=

[
1 −P
0 1

]
,

respectively.

2.3. Symmetric Extension

In lossy compression without rounding operations, the symmetric
extension for LPFB in (1) can be implemented by using symmetry in
each building block. Fig. 4 shows the analysis part of the symmetric
extension in case of K = 4. Let l-th (l ≥ 1) M × 1 input signals
for Ξk be Xk,l = {sTk,l, tTk,l}T where sk,l and tk,l are M/2 × 1

vectors. If their reflected signals are JXk,l, symmetry is achieved as

ΞkXk,l = Ξk

[
sk,l
tk,l

]
� Yk,l (2)

ΞkJXk,l = Ξk

[
Jtk,l
Jsk,l

]
= JYk,l (3)

where

Yk,l =
1

2

[
Uk(sk,l + Jtk,l) + JVk(Jsk,l − tk,l)
JUk(sk,l + Jtk,l)−Vk(Jsk,l − tk,l)

]
.

Since sk,0 = Jtk,0 when the process is stepping over just signal
boundaries, i.e., l = 0, the input and output signals are expressed as

Xk,0 =

[
Jtk,0
tk,0

]
= JXk,0 and Yk,0 =

[
UkJtk,0
JUkJtk,0

]
= JYk,0,

respectively. In the synthesis part, perfect reconstruction is achieved
by using such symmetry without receiving redundant signals. As a
matter of course, the symmetric extension is also easily applied to
the opposite signal boundaries. Note that if the output signals of
the input signals Xk,l are Y′k,l when lifting structures and rounding
operations are used in Ξk, the output signals of the reflected input
signals JXk,l are NOT JY′k,l due to rounding error, i.e., symmetry
is not achieved. Hence, the symmetric extension cannot be directly
applied to L-LPFBs.

3. L-LPFBS AND REVERSIBLE NON-EXPANSIVE
SYMMETRIC CONVOLUTION

3.1. L-LPFBs

This paper presents L-LPFBs based on [8] and [9]. First, a building
block Gk(z) can be represented by

Gk(z) = Λ(z)Ξk � Λ(z)WLΦkWR

where

WL = W

[ 1√
2
I 0

0 −√
2I

]
=

[
I 0
J I

] [
I − 1

2
J

0 I

]

WR =

[√
2I 0
0 − 1√

2
I

]
W =

[
I 1

2
J

0 I

] [
I 0
−J I

]
.

The half top of Fig. 5 shows a building block Ξk of M × KM

L-LPFB. Then, if {̂·} means a matrix with rounding operations, Ûk
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Fig. 5. Building blocks of M × KM L-LPFB: (top) Ξk, (bottom)
JΞkJ for boundary area.

Fig. 6. Analysis part of the reversible symmetric extension by M ×
4M L-LPFB (dashed line means signal boundary).

and V̂k mean matrices factorized Uk and Vk into single-row ele-
mentary reversible matrices (SERMs) by [9] with the fewest round-
ing operations. Also, W in the last block E0 is factorized into lifting
structures by lifting factorization of Givens rotation matrix as1

W =

[
I (1−√

2) J
0 I

] [
I 0

1√
2
J I

] [
I (1−√

2) J
0 I

] [
I 0
0 −I

]
.

3.2. Reversible Symmetric Extension

The loss of symmetry due to rounding error can be solved by a simple
matrix manipulation. Fig.6 shows a realization of symmetry with
rounding operations.

Case 1 (l �= 0) :
If l-th input signals are Xk,l and rounding operations are con-
sidered, it is expressed as

Ξ̂kXk,l � Y′k,l �= Yk,l. (4)

According to (2) and (3), Ξk can be represented by

Ξk = JΞkJ.

This means that each building block Ξk for extended signals
can be replaced by JΞkJ. This relationship is preserved even
if Ξ̂k is used in place of Ξk, i.e.,

Ξ̂k = JΞ̂kJ.

1Although W in E0 of biorthogonal LPFB (BOLPFB) can be replaced
by WR, this paper uses paraunitary LPFB (PULPFB) for simplicity.

Fig. 7. Analysis part of the reversible non-expansive symmetric con-
volution by M ×4M L-LPFB (dashed line means signal boundary).

By the replacement of building blocks on boundary area and
(4), the implementation in case of the reflected input signals
JXk,l is similarly expressed as follows:

JΞ̂kJ · JXk,l = JΞ̂kXk,l = JY′k,l

where J·J = I. Fig. 5 shows symmetry in building blocks Ξ̂k

and JΞ̂kJ of M ×KM L-LPFB. As a result, it is clear that
symmetry can be satisfied by a simple matrix manipulation
even if the implementation has rounding operations in case of
l �= 0.

Case 2 (l = 0) :
This case structurally achieves symmetry. Let the input sig-
nals Xk,0 be [(Jtk,0)T , tTk,0]

T for simplicity. (4) is rewritten
as

Ξ̂kXk,0 =

[
ÛkJtk,0
JÛkJtk,0

]
= Y′k,0 = JY′k,0

It is clear that symmetry is also satisfied even if the implemen-
tation has rounding operations in case of l = 0.

Consequently, the symmetric extension is applicable to L-
LPFBs in (1) by replacing Ξ̂k at boundary area to JΞ̂kJ.

3.3. Reversible Non-Expansive Symmetric Convolution

It is important that the input and output signals for Ξ̂k always have
symmetry as already indicated in Sec. 3.2. Additionally, note that
only half of the output signals processed by Ξ̂k is used in case of
l = 0, i.e., the signal boundaries. Consequently, the reversible sym-
metric extension in the above subsection can be replaced by the non-
expansive convolution [7] as shown in Fig. 7. This structure, which
this paper calls reversible non-expansive symmetric convolution, has
less computational cost because it does NOT need extension of the
input signals at the signal boundaries temporarily. Also, since Ûk

(k �= 0) usually adopts I as discussed in Sec. 2.1, JÛk and ÛkJ are
replaced by simple J.

4. RESULTS

8 × 16 paraunitary LPFB (PULPFB) and 8 × 24 PULPFB, which
have Uk = I (k �= 0), U−1

0 = UT
0 and V−1

k = VT
k , were designed

based on Sec. 3.1 for simplicity. We optimized design parameters by
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Table 1. Lossy image coding results (PSNR[dB]).
Test 9/7-DWT PULPFB (per.) PULPFB (prop.)

images [5] 8× 16 8× 24 8× 16 8× 24

bit rate: 0.25 [bpp]
Barbara 27.28 27.97 28.15 28.09 28.30
Elaine 31.62 31.01 31.08 31.27 31.35
Finger 23.52 23.60 23.68 23.63 23.70

bit rate: 0.50 [bpp]
Barbara 30.55 31.58 31.73 31.74 31.92
Elaine 33.13 32.42 32.56 33.12 33.17
Finger 26.02 26.44 26.48 26.49 26.53

bit rate:1.00 [bpp]
Barbara 35.16 35.77 35.75 35.95 35.91
Elaine 34.96 34.87 34.82 35.09 35.03
Finger 29.15 30.05 30.10 30.09 30.13

Table 2. Lossless image coding results (LBR [bpp]).
Test 5/3-DWT PULPFB (per.) PULPFB (prop.)

images [5] 8× 16 8× 24 8× 16 8× 24

Barbara 4.87 4.86 4.88 4.83 4.85
Elaine 5.11 5.12 5.12 5.08 5.08
Finger 5.84 5.71 5.70 5.70 5.69

the cost function, which is a weighted linear combination of coding
gain, DC leakage and stopband attenuation [1], and fminunc.m in
Optimization ToolBox of MATLAB. The resulting PULPFBs
were applied to lossy-to-lossless image coding. Integer-to-integer
transform can be obtained by using a rounding operation at each
lifting step. To evaluate transform performance fairly, a wavelet-
based coder EZW-IP [10] was used in the simulation. Also, the re-
versible non-expansive symmetric convolution and the periodic ex-
tension were used for signal boundaries in the designed PULPFBs.
In Table 1, we compared the lossy coding results in peak signal-to-
noise ratio (PSNR):

PSNR [dB] = 10 log10

(
2552

MSE

)

where MSE is the mean squared error, at 0.25, 0.50 and 1.00 bit per
pixel (bpp) for several 512×512 8-bit grayscale images as Barbara.
The bolds mean the best PSNRs. 9/7-tap discrete wavelet transform
(9/7-DWT) is used in JPEG 2000 lossy mode. Fig. 8 illustrates
the comparison of a particular area of the image Barbara. In signal
boundaries shown in each right side of Fig. 8, it is obvious that
the proposed non-expansive convolution is better than the periodic
extension.2

Since the proposed PULPFBs are integer-to-integer transforms,
we can also obtain lossless reconstructed images at high bit rate.
Lossless coding performance in lossless bit rate (LBR) [bpp]:

LBR [bpp] =
Total number of bits [bit]

Total number of pixels [pixel]

is shown in Table 2. The bolds mean the best LBRs. 5/3-tap DWT
(5/3-DWT) is used in JPEG 2000 lossless mode. Similar to the lossy
image coding results, the proposed L-LPFBs show the effectiveness
for the images with high frequency components.

2Fig. 8 shows a particular area of the image Barbara. The left side, top
and bottom of Fig. 8 are NOT boundaries.

Fig. 8. Comparison of a particular area of the image Barbara recon-
structed by 8×24 PULPFBs (bit rate: 0.25[bpp]): (left) the periodic
extension, (right) the proposed method.

5. CONCLUSION

This paper presented the reversible non-expansive symmetric con-
volution for M -channel lifting based linear-phase filter banks (L-
LPFBs) to apply lossy-to-lossless image coding. Since the proposed
method has similar smoothness to the symmetric extension at the sig-
nal boundaries, it does NOT generate the signal boundary distortion
even if rounding operations are used. Moreover, the computational
cost is less due to non-expansive convolution. As result, it achieved
better coding performance than the periodic extension.
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