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ABSTRACT

Discrete cosine transform (DCT) is known as efficient frequency
transform, and when it is implemented on software/hardware, multi-
plier is undesirable for faster implementation. This paper presents a
realization of multiplierless fast DCT for lossy image/video coding
on arbitrary devices. First, the proposed DCT is constructed by us-
ing fast Hartley transform (FHT). Next, the redundancy of the struc-
ture is eliminated by using several characteristics of rotation matrix.
Then, multiplierless DCT is obtained by approximating rotation ma-
trices to multiplierless lifting structures with adders and bit-shifters.
Finally, the proposed DCT is validated by comparing with the con-
ventional DCTs in image coding.

Index Terms— Discrete cosine transform (DCT), fast Hartley
transform (FHT), multiplierless lifting structure

1. INTRODUCTION

The discrete cosine transform (DCT) [1] has satisfactory perfor-
mance in terms of energy compaction capability, and many fast
DCT algorithms with efficient software/hardware implementations
have been proposed. The DCT has found wide applications in im-
age/video processing and other related signal processing fields. It
has become the heart of many international standards such as JPEG,
MPEG and H.26x family [2–4].

Since the conventional DCT usually maps integer values to
floating-point ones, the computation cost and the power consump-
tion cannot be neglected, especially the cost of floating-point mul-
tipliers. When implementing the DCT in mobile devices, the issue
of power consumption is the most important. It is worth to come up
with new algorithms for the DCT so that the dependence on floating-
point multipliers can be reduced or completely eliminated [5–8].

In this paper, we proposes a fast DCT by using fast Hartley
transform (FHT) [9] and multiplierless lifting structures for lossy
image/video coding on any devices. The DCT can be implemented
using only adders and bit-shifters, i.e., no multipliers. Also, it in-
herits all desirable DCT characteristics such as high coding gain, no
DC leakage and symmetric basis functions, and has better coding
performance than the conventional methods, which are integer DCT
(IntDCT) based on Walsh-Hadamard transform (WHT) [5] and bi-
nary DCT (BinDCT) based on Chen’s factorization [6].

Notations: I, J and {·}T are an identity matrix, a reversal iden-
tity matrix and transpose of a matrix, respectively.
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Fig. 1. A lifting structure (white circle: rounding operation).

2. REVIEW

2.1. Discrete Cosine Transform (DCT)

This paper only describes types DCT-II and -III which are commonly
called DCT and inverse DCT (IDCT) [1], respectively. These are of-
ten used for the transform part in image/video coding such as JPEG,
MPEG and H.26x family [2–4]. The (m,n)-elements of M -channel
DCT and IDCT matrices C and D are defined as

[C]m,n =

√
2

M
cm cos

(
m (n+ 1/2)π

M

)

[D]m,n =

√
2

M
cn cos

(
(m+ 1/2)nπ

M

)

where D = C−1 = CT , 0 ≤ m,n ≤ M − 1,

cm =

{
1√
2

(m = 0)

1 (m �= 0)
and cn =

{
1√
2

(n = 0)

1 (n �= 0)
,

respectively. For simplicity, let us define M = 2n (n ∈ N).

2.2. Multiplierless Lifting Structure

The lifting structure [10], also known as the ladder structure, is a spe-
cial type of lattice structure. It is implemented by cascading elemen-
tary matrices - identity matrices with a single nonzero off-diagonal
element.

Fig. 1 shows a basic lifting structure. It is expressed by

yj(n) = xj(n), yi(n) = xi(n) + round{Pxj(n)}
zj(n) = yj(n), zi(n) = yi(n)− round{Pyj(n)}

where round{·} and P are rounding operation and a lifting coeffi-
cient, respectively. Thus the lifting structure with rounding operation
can achieve integer-to-integer transform. Also, the lifting matrix and
its inverse matrix in this case are represented as[

1 P
0 1

]
and

[
1 P
0 1

]−1

=

[
1 −P
0 1

]
,
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Fig. 2. An approximation from multiplier with dyadic value to bit-
shifter and adder in a lifting structure (� n: n bit-shifter).

respectively.
For a high-speed implementation, lifting coefficients are re-

quired to approximate floating-point values to software/hardware-
friendly dyadic values such as k/2n (k, n ∈ N) which can be
implemented by only adders and bit-shifters. The dyadic representa-
tion enables to perform fast implementation in a real time software
encoder and reduce the circuit size. For example, a coefficient
25/128 can be operated as

25

128
=

24 + 23 + 20

27
=

1

23
+

1

24
+

1

27
.

Hence, the lifting structure with its coefficient 25/128 and a round-
ing operation is replaced to the summation of 3, 4 and 7 bit-shifters
illustrated in Fig. 2. It is clear that the perfect reconstruction in
lifting structure is always kept even if floating-point values are ap-
proximated to dyadic values.

3. MULTIPLIERLESS FAST DCT VIA FHT

In this section, we derive a multiplierless fast DCT for lossy im-
age/video coding by the following procedures.

1. A novel DCT structure is introduced based on FHT.

2. All of redundant rotation matrices in the structure are elimi-
nated by using several characteristics of rotation matrix.

3. Multiplierless fast DCT is obtained by replacing several ro-
tation matrices to multiplierless lifting structures and moving
the scaling factors to the quantization part.

3.1. DCT via FHT

The FHT is a tool for the frequency analysis, design and imple-
mentation of digital signal processing algorithms and systems. It
is strictly symmetrical concerning the transformation and its inverse.
The (m,n)-elements of M -channel FHT matrix H, which is the
symmetric orthogonal matrix asH−1 = HT = H, are defined as [9]

[H]m,n =
1√
M

cas

(
2mnπ

M

)
where cas θ = cos θ + sin θ.

(1)

Since H in (1) is not according to the frequency band order, let H
with the correct order be Ĥ. In case of M = 8, it is simplified by
rotation matrices as shown in Fig. 3.

A new representation of DCT is constructed by only one FHT
and (M/2− 1) rotation matrices as follows:

C =

⎡
⎢⎣
1 0 0 0
0 JCJ 0 JS
0 0 1 0
0 −SJ 0 C

⎤
⎥⎦ ĤT (2)

Fig. 3. 8-channel FHT Ĥ.

where

[C]k,k = cos

(
(k + 1)π

2M

)
and [S]k,k = sin

(
(k + 1)π

2M

)

for 0 ≤ k ≤ M

2
− 2

as shown at the top of Fig. 4.

3.2. Redundant Rotation Matrices Elimination

Note that DCT via FHT in (2) has several redundant rotation ma-
trices. In case of M = 8, 3 rotation matrices can be eliminated as
shown in the middle of Fig. 4 by using the characteristics of rotation
matrix as

Θπ
4Θ

π
4 = I and diag{1,−1}Θπ

8Θ
π
4 = Θπ

8

where

Θa
b =

[
cos (a

b
) sin (a

b
)

sin (a
b
) − cos ( a

b
)

]
.

This non-redundant structure has 13 rotation matrices with π/4,
3π/16, π/8 and π/16 angles.

3.3. Multiplierless Approximation

Multiplierless DCT is achieved by the following procedures. First,
the rotation matrices marking angles in the middle of Fig. 4 are
factorized into the scaled lifting structures [6] as[

c(θ) s(θ)
−s(θ) c(θ)

]
=

[
c(θ) 0
0 1

c(θ)

] [
1 0

−s(θ)c(θ) 1

] [
1 t(θ)
0 1

]
(3)

where c(θ) = cos θ, s(θ) = sin θ and t(θ) = tan θ. However,
the only rotation matrix with π/4 angle drawn by bold lines in the
middle of Fig. 4 is factorized into the normal lifting structure as[

c(θ) s(θ)
s(θ) −c(θ)

]
=

[
1 0

1−c(θ)
s(θ)

1

] [
1 s(θ)
0 −1

] [
1 0

c(θ)−1
s(θ)

1

]
.

Next, all of the floating-point values in the lifting coefficients are
approximated to dyadic values such as k/2n. Then, rotation matrices
marking no angle in the middle of Fig. 4 are represented by[

c
(
π
4

)
s
(
π
4

)
s
(
π
4

) −c
(
π
4

)] =
1√
2

[
1 1
1 −1

]
. (4)

Finally, the scaling factors diag{c(θ), 1/c(θ)} and 1/
√
2 in (3)

and (4) are moved to the quantization part, respectively. Conse-
quently, the proposed DCT can be implemented by only adders and

3470



↓

↓

Fig. 4. The 8-channel proposed DCT: (top) DCT via FHT, (middle)
redundant rotation matrices elimination, (bottom) its multiplierless
approximation.

bit-shifters without multipliers as shown in the bottom of Fig. 4 and
Table 1.1 The dyadic values in Table 1 were empirically-determined.

4. EXPERIMENTAL RESULTS

4.1. Coding Gain and Frequency Response

Coding gain is one of the most important factors to be considered
for a transform used in compression applications. A transform with
higher coding gain compacts more energy into a fewer number of
coefficients. As a result, higher objective performances such as
peak signal-to-noise ratio (PSNR) would be achieved after quanti-
zation. Since the coding gain of the DCT approximates the optimal
Karhunen-Loéve transform (KLT) closely, it is desired that the mul-
tiplierless DCT has similar coding gain to that of the original DCT.
The biorthogonal coding gain is defined as [11]

Cg = 10 log10
σ2
x(∏M−1

k=0 σ2
xi

‖ fi ‖2
) 1

M

where σ2
x, σ2

xi
and ‖ fi ‖2 are the variances of the input signal, the

variance of the i-th subband signal and the norm of the i-th synthe-
sis basis function, respectively. In this paper, we assume that input

1According to [6], we use the floating-point values of the scaling factors,
which are always combined with the quantization steps and rounded to inte-
gers in practical implementations.

Table 1. Lifting coefficients of the proposed DCT.

floating-point value dyadic value

p0 tan ( 3π
16
) 1

21
+ 1

23

u0 − sin ( 3π
16
) cos ( 3π

16
) − 1

21
+ 1

25

p1 tan (π
8
) 1

22
+ 1

23
+ 1

25

u1 − sin (π
8
) cos (π

8
) − 1

21
+ 1

23
+ 1

25

p2 tan ( π
16
) 1

23
+ 1

24

u2 − sin ( π
16
) cos ( π

16
) − 1

22
+ 1

24

p3
cos(π/4)−1
sin(π/4)

− 1
21

+ 1
24

+ 1
25

u3 sin (π
4
) 1− 1

22
− 1

24

p4
1−cos(π/4)
sin(π/4)

1
21

− 1
24

Table 2. The comparison of the number of multipliers, adders and
bit-shifters and the coding gain Cg for 8-channel DCTs.

DCT IntDCT BinDCT DCT
[12] [5, 7] [6, 7] Prop.

multiplier 52 0 0 0
adder 26 45 40 38

bit-shifter 0 17 23 21
Cg 8.8259 8.7240 8.8244 8.8250

signal x(n) is the AR(1) process with the intersample autocorrela-
tion coefficient ρ = 0.95 in common use. Also, the comparison of
the number of multipliers, adders, bit-shifters and coding gain Cgs
is shown in Table 2 for 8-channel DCTs. Despite less adders, the
coding gain of our DCT is higher than the conventional methods Int-
DCT [5] and BinDCT [6] which have type-C1 coefficients in [7].
The float DCT is based on Chen’s factorization [12].2

Also, Fig. 5 compares the frequency responses of float DCT,
IntDCT, BinDCT and the proposed DCT. Briefly speaking, the char-
acteristics of the frequency responses of all of DCT are preserved
without loss of the regularity, which is an important property for im-
age compression [11].

4.2. Lossy Image Coding Performance

In this subsection, the proposed DCT is validated in lossy image
coding by PSNR:

PSNR [dB] = 10 log10

(
2552

MSE

)

where MSE is the mean squared error. The test images are 512×512
8-bit grayscale images, Barbara, Boat, Goldhill, Lena and Pepper.
The set partitioning in hierarchical trees (SPIHT) progressive image
transmission algorithm [13] was used to encode the transformed im-
ages.

In Table 3, we compare the lossy image coding results in PSNR.
Fig. 6 illustrates the comparison of a particular area of the image
Lena when the compression ratio is 1:32. In especially low bit rate,
it is obvious that the proposed DCT achieves comparable or even
better performance on perceptual visual quality of reconstructed im-
age against the conventional methods.3

2Since [8] is DCT for lossy-to-lossless mode, the proposed DCT for only
lossy mode is not compared with it in this paper.

3Since DCT in [12] is an ideal DCT structure, it basically shows the best
coding performance.
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Fig. 5. The frequency responses of 8-channel DCTs: (top-left) float
DCT [12], (top-right) IntDCT [5, 7], (bottom-left) BinDCT [6, 7],
(bottom-right) the proposed DCT.

Fig. 6. Comparison of a particular area of the image Lena when the
compression ratio is 1:32 : (left-to-right) float DCT [12], IntDCT
[5,7], BinDCT [6,7] and the proposed DCT.

5. CONCLUSION

We presented an efficient multiplierless fast algorithm for discrete
cosine transform (DCT). First, the DCT structure is introduced by
focusing on fast Hartley transform (FHT). Second, all of redundant
rotation matrices in the structure are eliminated by using the charac-
teristics of rotation matrix. Then, the proposed DCT is obtained by
replacing several rotation matrices to multiplierless lifting structures
and moving the scaling factors to the quantization part. As a result,
the proposed DCT achieves comparable or better image coding per-
formance in low bit rates in spite of its less adders and bit-shifters
than other multiplierless DCTs.
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