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ABSTRACT

In this paper, we propose a two dimensional (2D) non-separable
adaptive directional lifting (ADL) structure of discrete wavelet trans-
form (DWT) and its image coding application. Conventionally, we
have proposed a polyphase representation of a 2D non-separable lift-
ing structure of DWT. We generalize the polyphase representation in
this paper and one structure of the class has been proven to reduce
errors due to the rounding operations and improve a compatibility
of the irreversible 9/7 DWT, compared with a 2D separable lift-
ing structure of DWT. Adding the adaptive directional transforming
property to the generalized structure, our proposed method improves
the lossy image coding performance with maintaining the compati-
bility.

Index Terms— two dimensional non-separable lifting structure,
discrete wavelet transform, adaptive directional transform, lossy to
lossless image coding.

1. INTRODUCTION

The discrete wavelet transform (DWT) has been a fundamental tool
for image and video processing for the last few decades. It is applied
to the JPEG 2000 international image coding standard [1]

The irreversible 9/7 DWT utilized by the JPEG 2000 is efficient
for the lossy image coding. However, it can not be applied to the
lossless image coding. For the lossless image coding, the lifting
structure of 9/7 DWT has been proposed [2]. It realizes the integer-
to-integer transform, but it introduces a mismatching error due to the
rounding operations when the 9/7 DWT is connected to the lifting
structure of 9/7 DWT. Iwahashi et al. have proven that the two di-
mensional (2D) non-separable lifting structure of 9/7 DWT requires
less rounding operators than the conventional one and improves the
compatibility.

These structures of DWT are efficient for the image coding ap-
plication. However, since they can only transform images along the
vertical and horizontal direction, they fail to provide sparse represen-
tation of transforming images when images contain rich directional
high frequency component, such as edges and contours, and the cod-
ing efficiency is degraded. To avoid this degradation, an adaptive
directional transform has been proposed [3–5]. The adaptive direc-
tional transform can flexibly switch the filtering direction according
to the direction of edges and contours and compression efficiency
is improved. Especially, one dimensional (1D) adaptive directional
lifting (ADL) based wavelet transform [4] achieves high compres-
sion efficiency for the lossy image coding. However, since 1D ADL
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has to be applied twice for the separately implementation of 2D sig-
nals, it is redundant and provides a degradation of desired filtering
directions due to the downsampling between the first and second
filtering. Therefore, we have proposed the 2D ADL [5]. The 2D
ADL is simpler than the 1D one and can select the filtering direc-
tions which are different from 1D ADL. It is efficient for the lossless
image coding, but it is only 5/3 DWT.

In this paper, we propose a 2D non-separable ADL structure
of DWT. We generalize the polyphase representation of 2D non-
separable lifting structure of DWT. For the adaptive directional trans-
form, the proposed method is realized by changing the sampling ma-
trix by sub-regions of images. Therefore, with advantages of the
non-separable structure and the adaptive directional transform, the
proposed structure improves the performance of the lossy-to-lossless
image coding application. Finally, lossy and lossless image coding
results of the proposed structure are shown to validate the advantage
of the proposed structure.

Notations：AT denotes the transpose of the matrixA. I and
0 are identity and the null matrices, respectively. M is an 2 × 2
nonsingular integer matrix. ↓ M and ↑ M also represent the down-
and up-samplers withM, respectively. Using vectors z = [zx, zy]

T

and k = [kx, ky]
T , a multiplication of vectors is defined as zk =

zkx
x z

ky
y . diag(·) denotes the block diagonal matrix.

2. REVIEW

The polyphase representation of 1D lifting structure of DWT can be
expressed as follows [2], [6].
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According to the separable implementation, the polyphase represen-
tation of the 2D separable lifting structure of DWT can be given by
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Fig. 1. 2D separable lifting structure of 9/7 DWT

where

M = diag(2, 2),

dM(z) = [z−k0 , z−k1 , z−k2 , z−k3 ]T ,

zM = [z
m0,0
x z

m1,0
y , z

m0,1
x z

m1,1
y ]T ,

z = [zx, zy]
T , zx and zy are the vertical and horizontal delay el-

ements, respectively, ki (i = 0, 1, 2, 3) is an integer vector within
Ξ(M), called as a delay vector, k0 is restricted to be [0, 0]T , Ξ(M)
is a set of integer vectors, which is defined as

Ξ(M) = {Mx | x ∈ [0, 1)},
x ∈ [0, 1) denotes a set of 2 × 1 real vectors x whose the ith com-
ponent satisfies 0 ≤ xi < 1 and mi,j denotes the (i, j) element of
M. The polyphase matrix E(z) is factorized as

E(z) =

[
Ey

1D 0
0 Ey

1D

] [
sI 0
0 1/sI

] 0∏
i=N−1

{[
I Ux

i I
0 I

] [
I 0

P x
i I I

]}

(3)

where Ey
1D, P

j
i and U j

i (j = x, y) denote E1D(zy), Pi(zj) and
Ui(zj). According to the polyphase matrix, the delay vectors are
decided as

dM(z) = [1, z−1
y , z−1

x , z−1
x z−1

y ]T

For example, fig.1 shows the 2D separable lifting structure of 9/7
DWT with rounding operators R in lifting steps. Fig.1 shows that
images are divided into four sets and transformed with maintaining
an integer.

The pair of scaling factors can be realized as a lifting structure
[2]. The scaling is factorized as[

s 0
0 1/s

]
=

[
1 s− s2

0 1

] [
1 0

−1/s 1

] [
1 s− 1

1

] [
1 0
1 1

]
. (4)

For simplicity, scaling is not represented as the lifting structure in
this paper.

3. 2D NON-SEPARABLE ADL STRUCTURE OF DWT

3.1. Basic structure

In [5], we have proposed the polyphase representation of the 2D non-
separable lifting structure of 5/3 DWT by factorizing the separable

one in (2). In this paper, we introduce the generalized polyphase
representation. Here, some matrices are defined as follows.
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]
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, Ŝ =

[
sI 0
0 1/sI

]
,

Uj
i = diag

([
1 U j

i

0 1

]
,

[
1 U j

i

0 1

])
, Ûj
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(5)

Using these matrices, (3) is rewritten as

E(z) = S
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Ŝ and Ûx
i P̂

x
i can be moved as follows.
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where p, q = 0, 1, . . . , N − 1. We have factorizedUy
pP

y
pÛ

x
q P̂

x
q as

Êp,q in [5], where
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(8)

Using (7) and (8), the any polyphase matrix E(z) of the 2D non-
separable lifting structure of DWT can be realized. For example, in
the case of 9/7 DWT, E(z) is designed as

E(z) = S̃Uy
1P

y
1Ê0,1Û

x
0P̂

x
0 (9)

where S̃ = SŜ = diag(s2, 1, 1, 1/s2). This structure is shown in
fig.2. Compared with fig.1, it is shown to require less rounding oper-
ators. Therefore, the non-separable structure has better compatibili-
ties to the irreversible 9/7 DWT in the JPEG 2000 than the separable
structure [7].
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Fig. 2. 2D non-separable lifting structure of 9/7 DWT

3.2. Directional sampling

By changing the sampling matrixM by sub-regions of images, 2D
non-separable ADL structure of DWT is realized. The arbitrary sam-
pling matrix whose absolute determinant is 4 can be selected. The
following sampling matricesMd (d = 0, 1, . . . , 6) are used in this
paper.{[

2 0
0 2

]
,

[
2 2
0 2

]
,

[
2 −2
0 2

]
,

[
2 0
2 2

]
,

[
2 0
−2 2

]
,

[
2 4
0 2

]
,

[
2 −4
0 2

]}

With changing the sampling matrix, the delay vectors have to
be changed. For maintaining the linear phase property of filters, we
define the delay vectors to be symmetry with respect to a point which
is a center ofMd. Table 1 shows the delay vectors corresponded to
Md and the filtering directions are represented in fig.3. It shows that
the proposed structure can transform along with various directions
besides vertically and horizontally shown in fig.3(a).

3.3. Optimal direction decision

For the image coding application, the optimal directions are decided
according to the energy of highpass subband. Especially, we focus
on the energy of ”HH” subband in this paper. For all the sampling
matrixMd, the HH subband components are described as hd. The
optimal directionDir(m,n) is chosen such that it minimize the en-
ergy of hd(m,n),

Dir(m,n) = min
d

|hd(m,n)|. (10)

Practically, the direction information is assigned to not the pixels
but the blocks divided by the quad tree decomposition in order to
reduce the side information. For this purpose, R-D optimization is
processed as in the following. The full quad tree T is constructed by
applying the quad tree decomposition to the image until reaching the
predefined block size. B,D(B) and R(B) are defined as an arbitrary
subtree, a distortion and a rate of bits. The most suitable subtree B∗

with optimal direction is provided by minimizing the cost function
J(B) expressed by

B∗ = min
B

J(B) = min
B

(D(B) + λR(B)) (11)

where

D(B) =
∑
τ∈B

∑
m,n

|hτ,d(m,n)|,

R(B) =
∑
τ∈B

rC(τ) +
∑
v∈B

rT (v),

Table 1. Delay vectors
d k0 k1 k2 k3

0 [0, 0]T [0, 1]T [1, 0]T [1, 1]T

1 [0, 0]T [1, 1]T [1, 0]T [2, 1]T

2 [0, 0]T [−1, 1]T [1, 0]T [0, 1]T

3 [0, 0]T [0, 1]T [1, 1]T [1, 2]T

4 [0, 0]T [0, 1]T [1,−1]T [1, 0]T

5 [0, 0]T [2, 1]T [1, 0]T [3, 1]T

6 [0, 0]T [−2, 1]T [1, 0]T [−1, 1]T

Fig. 4. Simulation of directional selectivity

τ denotes a node of B, rC(τ) and rT (v) are defined as the rate of
the entropy encoding high pass coefficients in τ and coding the side
information in node in v, respectively. Applying the automatical de-
cision of optimal directions to a simulation image is shown in fig.4.
Along directions of stripes, the filtering directions are selected cor-
rectly.

4. SIMULATION

Here, we apply the proposed structure shown in fig.2 into the lossy-
to-lossless image coding application and compare the coding effi-
ciency with the conventional one shown in fig.1. The embedded ze-
rotree wavelet based on intraband partitioning (EZW-IP) [8] is used
as the encoder. Since transformed coefficients are integer and en-
coded images are lossless bit streams, lossy bit streams are produced
by discarding bits in the lower bit plane of the bit streams. The side
information is encoded by the arithmetic coding algorithm [9]. At
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Fig. 3. Sampling matrices

Table 2. Image coding results
Lossless [bpp]
Conventional Proposed

Entropy 4.81 4.76
Lossy [dB]

Rate [bpp] Conventional Proposed
0.25 27.23 27.47
0.5 30.45 30.78
1 34.84 35.16

the lossy image coding application, the peak signal-to-noise ratio
(PSNR) is used as a objective function measuring an image quality
of reconstructed images. As a test image, Barbara is used.

Table 2 indicates results of the lossless and lossy image cod-
ing application. From the table, the proposed structure improves the
lossy-to-lossless image coding application compared with the con-
ventional structure, because of the adaptive directional transform. In
fig.5, the original and reconstructed images are represented, where
the compression rate is 0.25 [bpp]. Compared with the conventional
structure, the proposed structure can represent various direction be-
sides vertically and horizontally. Especially, stripe textures in fig.5(f)
are represented clearly.

5. CONCLUSION

In this paper, we generalize the polyphase representation of the 2D
non-separable lifting structure of DWT and propose ADL of the
structure. With maintaining the advantage of the 2D non-separable
and the adaptive directional transform, the proposed structure achieves
better image coding results than the conventional one.
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