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ABSTRACT
Integer lapped orthogonal transforms (LOTs) are vital technologies
for the unification of lossless and lossy image coding, called lossless-
to-lossy image coding. In this paper, we present an efficient realiza-
tion of integer fast LOT (FLOT) based on direct-lifting of discrete
cosine transforms (DCTs) which are type-II, III and IV. Although the
conventional integer FLOTs suffer from degradation of coding per-
formance due to much rounding error generated by cascading lifting
structures, this paper presents a realization of a simpler, faster and
more efficient transform with only some adders, 1-bit shifters and
direct use of DCTs for lifting coefficients. As result, the proposed
method is validated in lossless-to-lossy image coding.

Index Terms— Direct-lifting, discrete cosine transform (DCT),
fast lapped orthogonal transform (FLOT), lossless-to-lossy image
coding

1. INTRODUCTION

With the rapid development of hardware such as PCs and mobile
phones etc. and the continual expansion of broadband, lossless-to-
lossy image coding, which is the unification of lossy and lossless
image coding, is required to obtain higher quality and compression
ratio. Since JPEG [1], which is the international standard in im-
age coding, separately uses discrete cosine transform (DCT) [2] and
differential pulse code modulation (DPCM) for lossy and lossless
image coding, respectively, it cannot achieve lossless-to-lossy image
coding. In lossless-to-lossy image coding, lossy compression is ob-
tained by interrupting the scalable lossless data which is coded by
integer transform. Although 5/3-tap discrete wavelet transform (5/3-
DWT) by lifting structures [3] with integer coefficients and rounding
operations is used for lossless compression in JPEG2000 [4] which
is the next generation standard, its lossy performance is undesirable.
Also, a hierarchical lapped biorthogonal transform (HLBT) in JPEG
XR [5], which is the another next generation standard, has achieved
lossless-to-lossy image coding, but it does not have sufficient coding
performance.

On the other hand, DCT in JPEG is known as one of the fastest
and the most efficient transforms for image coding. HLBT in JPEG
XR is also a DCT-based lapped transform. As such DCT-based
lapped transform, fast lapped orthogonal transform (FLOT) [6] is
well-known. FLOT is constructed by cascading DCT type-II (DCT-
II), type-III (DCT-III), type-IV (DCT-IV), rotation matrices with
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π/4 angles, ±1 operations, a delay matrix and permutation matri-
ces. Although it is easy that FLOT is applied to lossless-to-lossy
image coding by lifting factorization of rotation matrices, called in-
teger FLOT, the obtained integer-to-integer transform is unsuitable
due to much rounding error by many rounding operations.

In this paper, we present an efficient realization of integer FLOT
based on direct-lifting of DCTs. The proposed FLOT is a simpler,
faster and more efficient transform with only some adders, 1-bit
shifters and direct use of DCTs for lifting coefficients. Finally, our
method is validated in lossless-to-lossy image coding simulation.

Notations: I, J, MT and D are an identity matrix, a reversal
identity matrix, transpose of a matrixM and a diagonal matrix with
alternating ±1 entries (i.e., D = diag{1,−1, 1,−1, · · · }), respec-
tively.

2. REVIEW

2.1. Discrete Cosine Transform (DCT)

DCT is basically classified into four types [2]. Among them, type-II,
type-III and type-IV (DCT-II, DCT-III and DCT-IV) are famous and
often used for image coding such as JPEG [1] and JPEG XR [5] etc.
and many devices and fast algorithms for DCT have been developed.
The m-column and n-row element of M -channel DCT-II, DCT-III
and DCT-IV matricesCII ,CIII andCIV are defined as

[CII ]m,n =

√
2

M
cm cos

(
m (n+ 1/2)π

M

)

[CIII ]m,n =

√
2

M
cn cos

(
(m+ 1/2)nπ

M

)

[CIV ]m,n =

√
2

M
cos

(
(m+ 1/2) (n+ 1/2)π

M

)

whereC−1
II = CT

II = CIII ,C−1
IV = CT

IV = CIV ,

cm =

{
1√
2

(m = 0)

1 (m �= 0)
, cn =

{
1√
2

(n = 0)

1 (n �= 0)

and 0 ≤ m,n ≤ M − 1, respectively. For simplicity, let us define
as thatM = 2n (n ∈ N). Also, when “cos” is replaced by “sin”, it
is called discrete sine transform (DST).

2.2. Fast Lapped Orthogonal Transform (FLOT)

AnM -channel fast lapped transform can be constructed in polyphase
structure from components with well-known fast-computable algo-
rithms such as DCT and DST. One of the most elegant solution is
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Fig. 1. A direct-lifting (white circles represent rounding operations).

the type-II FLOT whose polyphase matrix is [6]

E(z) =

[
I 0
0 SIV CIII

]
WΛ(z)W

[
CII 0
0 CIV

]
WĨ (1)

where

W =
1√
2

[
I I
I −I

]
, Λ(z) =

[
I 0
0 z−1I

]
, Ĩ =

[
0 J
I 0

]

and SIV is type-IV (DST-IV) in DST. Since the following relation-
ship between DST-IV and DCT-IV matrix can be easily established:
SIV = DCIV J, (1) can be represented by

E(z) =

[
I 0
0 DCIV JCIII

]
WΛ(z)W

[
CII 0
0 CIV

]
WĨ. (2)

The FLOT with this polyphase matrix is implemented in the top half
in Fig. 2.

2.3. Direct-Lifting Structure

The lifting structure is cascading elementary matrices which are
identity matrices with one single nonzero off-diagonal element [3].
In [7], we have presented the direct-lifting. It is a breakthrough
structure because a combination of every block and its inverse one
can be directly applied to the lifting coefficient as shown in Fig.
1 where xi, xj , yi and yj are the input signals and their output
signals, respectively. It is also expressed by[

U 0
0 U−1

]
=

[
0 I
−I 0

] [
I 0
U I

] [
I −U−1

0 I

] [
I 0
U I

]

whereU is an arbitrary nonsingular matrix.

3. FLOT BASED ON DIRECT-LIFTING OF DCTS

In this section, a realization of FLOT for lossless-to-lossy image cod-
ing is presented. The system is implemented by the parallel process
of two different type FLOTs, direct-lifting of DCTs in the process,
some adders and some 1-bit shifters. It means that the proposed
FLOT is a simple, fast and efficient transform for lossless-to-lossy
image coding.

3.1. Application of Direct-Lifting of DCTs

First, we present another class of FLOT. DCT-II matrixCII in (2) is
moved to the last building block. Since

WΛ(z)W

[
CII 0
0 CII

]
=

[
CII 0
0 CII

]
WΛ(z)W,

(2) is rewritten as

E(z) =

[
CII 0
0 DCIV J

]
WΛ(z)W

[
I 0
0 CIIICIV

]
WĨ (3)

where CIICIII = CIIICII = I. The FLOT with this polyphase
matrix are implemented in the bottom half in Fig. 2. The filter prop-
erties of (3) completely accord with them of (2) because it is obtained
by only transposition ofCII .

Next, as already mentioned, we consider the parallel process of
two different type FLOTs in (2) and (3). It means that when a row
(column) signals are processed by (2), other row (column) signals
are processed by (3). However, each DCT matrix in both FLOT is
processed by direct-lifting between each system which is each com-
bination of DCT-II in (2) and DCT-III in (3), DCT-III in (2) and
DCT-II in (3) and DCT-IV in (2) and DCT-IV in (3). These combi-
nations are shown in dashed line area in Fig. 2 and factorized into
direct-liftings as follows:[

CII 0
0 CIII

]
=

[
0 I
−I 0

] [
I 0

CII I

] [
I −CIII

0 I

] [
I 0

CII I

]
[
CIII 0
0 CII

]
=

[
0 I
−I 0

] [
I 0

CIII I

] [
I −CII

0 I

] [
I 0

CIII I

]
[
CIV 0
0 CIV

]
=

[
0 I
−I 0

] [
I 0

CIV I

] [
I −CIV

0 I

] [
I 0

CIV I

]

3.2. More Multiplierless Structure

In above subsection, DCT parts were implemented with lifting struc-
tures. This subsection produces the lifting factorizations of Ws.
SinceW is constructed by rotation matrices with π/4 angles, it can
be simply factorized into lifting structures. But such case generates
many multipliers. To eliminate multipliers, the following matrices
are used in place ofWs.

W1 =

[ 1√
2
I 0

0
√
2I

]
W =

[
I 0
0 −I

] [
I 1

2
I

0 I

] [
I 0
−I I

]

W2 = W

[√
2I 0
0 1√

2
I

]
=

[
I 0
I I

] [
I − 1

2
I

0 I

] [
I 0
0 −I

]

W3 =

[√
2I 0
0 1√

2
I

]
W =

[
I 0
1
2
I I

] [
I −I
0 I

] [
I 0
0 −I

]

W4 = W

[ 1√
2
I 0

0
√
2I

]
=

[
I 0
0 −I

] [
I I
0 I

] [
I 0

− 1
2
I I

]

Note that a combination of an 1/2 multiplier and a rounding opera-
tion can be replaced by an 1-bit shifter [8]. Using these matrices, (2)
and (3) are represented as follows:

E1(z) �
[ 1√

2
I 0

0
√
2I

]
E(z)

=

[
I 0
0 DCIV JCIII

]
W1Λ(z)W2

[
CII 0
0 CIV

]
W1Ĩ

(4)

E2(z) �
[√

2I 0
0 1√

2
I

]
E(z)

=

[
CII 0
0 DCIV J

]
W3Λ(z)W2

[
I 0
0 CIIICIV

]
W1Ĩ

(5)

Fig. 3 shows the process of the two-dimensional transform of an
image by the proposed FLOTs. LetM (M = 2k, k ∈ N) be block
size, the i-th (1 ≤ ((i + 1) mod M) ≤ M/2) row signals and
the j-th ((M/2 + 1) ≤ ((j + 1) mod M) ≤ M ) row signals,
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Fig. 2. The parallel process of two different type FLOTs: (top) FLOT in (2), (bottom) FLOT in (3).

Fig. 3. The process of the two-dimensional transform of an image
by the proposed FLOTs.

i.e., the yellow and green areas in Fig. 3, are processed by FLOTs
in (4) and (5), respectively. Here, note that the scales in the one-
dimensionally-transformed output signals are risen to ×1/

√
2 and

×√
2 as compared with the output signals transformed by normal

FLOTs as shown in the dashed line area in Fig. 3. In this regard,
considering these scales 1/

√
2 and

√
2 for the next column process,

(2) and (3) are represented again as follows:

E3(z) � E(z)

[√
2I 0
0 1√

2
I

]

=

[
I 0
0 DCIV JCIII

]
W2Λ(z)W1

[
CII 0
0 CIV

]
W2Ĩ

(6)

Table 1. Comparison of lossless image coding (LBR [bpp]).
Test HLBT Conv. FLOTs Prop. FLOTs
images [5] 8× 16 16× 32 8× 16 16× 32
Barbara 4.95 5.00 4.95 4.95 4.85
Boat 5.21 5.22 5.22 5.19 5.16
Finger 5.89 5.91 5.79 5.89 5.75

E4(z) � E(z)

[ 1√
2
I 0

0
√
2I

]

=

[
CII 0
0 DCIV J

]
W4Λ(z)W3

[
I 0
0 CIIICIV

]
W4Ĩ

(7)

Similarly, the i-th column signals and the j-th column signals, i.e.,
the red and blue areas in Fig. 3, are processed by FLOTs in (6) and
(7), respectively.

4. LOSSLESS-TO-LOSSY IMAGE CODING RESULTS

In this paper, the proposed 8 × 16 and 16 × 32 FLOTs are vali-
dated in lossless-to-lossy image coding. As targets for comparison,
HLBT in JPEG XR [5] and 8 × 16 and 16 × 32 FLOTs, which are
applied the simple lifting factorizations of rotation matrices, were
chosen. To evaluate transform performance fairly, a very common
wavelet-based coder SPIHT [9] was adopted for all. Also, for image
boundaries, the periodic extension was used in all LOTs. Moreover,
we used 512× 512 gray scale test images such as Barbara.

First, the proposed LOTs and the conventional methods are ap-
plied to lossless image coding. The comparison of lossless bitrate
(LBR):

LBR [bpp] =
Total number of bits [bit]

Total number of pixels [pixel]

in lossless image coding is shown in Table 1.
If lossy compressed data is required, it can be achieved by in-

terrupting the obtained lossless bitstream. The comparison of peak
signal-to-noise ratio (PSNR):

PSNR [dB] = 10 log10

(
2552

MSE

)

where MSE is the mean squared error in lossy image coding are
shown in Table 2. Furthermore, Fig. 4 shows the enlarged images of
Barbarawhich are lossy compressed images by the proposed FLOTs
and the conventional methods when bitrate is 0.25[bpp].
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Table 2. Comparison of lossy image coding (PSNR [dB]).
Test HLBT Conv. FLOTs Prop. FLOTs
images [5] 8× 16 16× 32 8× 16 16× 32

bitrate: 0.25 [bpp]
Barbara 27.01 27.80 28.72 27.83 28.77
Boat 28.80 28.93 28.98 28.97 29.04
Finger 22.95 23.65 23.94 23.57 23.97

bitrate: 0.50 [bpp]
Barbara 30.85 31.70 32.55 31.76 32.67
Boat 32.02 32.05 32.00 32.13 32.13
Finger 26.31 26.76 27.27 26.79 27.32

bitrate: 1.00 [bpp]
Barbara 36.00 36.33 36.65 36.59 37.13
Boat 35.21 35.20 35.07 35.44 35.43
Finger 30.12 30.57 31.29 30.64 31.44

Table 3. Comparison of number of rounding operations in each one-
dimensional transform ofM × 1 signals.

Conv. FLOTs Prop. FLOTs
8× 16 90 36
16× 32 240 72

Even though the proposed FLOTs and the conventional LOTs
have same transfer function, all proposed FLOTs showed better cod-
ing performance than the conventional methods, especially lossy im-
age coding results showed excellent performance. We consider that
this is mainly due to the reduction of rounding operations as shown
in Table 3. On the other hand, note that our FLOTs have a simple and
fast implementation due to the construction with only some adders,
some 1-bit shifters and direct use of DCTs for lifting coefficients.
Despite such fact, the results in this section showed good perfor-
mance. It means that the advantages in our methods were proved.

5. CONCLUSION

In this paper, we presented a fast lapped orthogonal transform
(FLOT) for efficient lossless-to-lossy image coding, which is based
on direct-lifting of discrete cosine transforms (DCTs) for lifting
coefficients, some adders and some 1-bit shifters. Due to merging
many rounding operations by use of direct-lifting, our proposals
show better coding performance than the conventional methods in
lossless-to-lossy image coding. However, the proposed method can-
not be applied the symmetric extension for image boundaries. If the
use will becomes possible, it should achieves more efficient cod-
ing performance. In addition, although has less blocking artifacts
than the conventional methods, generated ringing artifacts should be
improved.

6. REFERENCES

[1] ISO/IEC 10918-1, Information technology - Digital compres-
sion and coding of continuous-tone still images Requirements
and Guidelines.

[2] K. R. Rao and P. Yip, Discrete Cosine Transform Algorithms,
Academic Press, 1990.

Fig. 4. Enlarged images of Barbara in lossy image coding (bitrate:
0.25 [bpp]): (top-left) original image, (top-right) HLBT in JPEG
XR, (middle-left) conv. 8× 16 FLOT, (middle-right) conv. 16× 32
FLOT, (bottom-left) prop. 8×16 FLOT, (bottom-right) prop. 16×32
FLOT.

[3] W. Sweldens, “The lifting scheme: A new philosophy in
biorthogonal wavelet constructions,” in Proc. of SPIE 2569,
1995.

[4] ISO/IEC 15444-1, Information technology - JPEG 2000 image
coding system: Core coding system.

[5] ISO/IEC 29199-2, JPEG XR image coding system - Part 2: Im-
age coding specification.

[6] H. S. Malvar, Signal Processing with Lapped Transforms, Nor-
wood, MA: Artech House, 1992.

[7] T. Suzuki and M. Ikehara, “Integer DCT based on direct-lifting
of DCT-IDCT for lossless-to-lossy image coding,” IEEE Trans.
Image Process., vol. 19, no. 11, pp. 2958–2965, Nov. 2010.

[8] Y. J. Chen, S. Oraintara, T. D. Tran, K. Amaratunga, and
T. Q. Nguyen, “Multiplierless approximation of transforms with
adder constraint,” IEEE Signal Process. Lett., vol. 9, no. 11, pp.
344–347, Nov. 2002.

[9] A. Said and W. A. Pearlman, “A new, fast, and efficient im-
age codec based on set partitioning in hierarchical trees,” IEEE
Trans. Circuits Syst. Video Technol., vol. 6, no. 3, pp. 243–250,
June 1996.

1528


