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ABSTRACT

Walsh-Hadamard transform (WHT) based multiplierless integer dis-
crete cosine transform (IntDCT) has structural regularity even in
short word length lifting coefficients. It, however, cannot apply to
image coding without the quantization part because WHT was im-
plemented by only ±1 adder operations without the normalization
scaling factors. Although we have already presented a normalized
integer WHT (IntWHT) as its solution, it also has many adder oper-
ations. In this paper, using a two-dimensional (2-D) separable trans-
form of one-dimensional (1-D) normalized WHT is applied to each
lifting coefficient, we present a more simplified realization of nor-
malized IntWHT with structural regularity for short word length lift-
ing coefficients. Finally, in lossless-to-lossy image coding, IntDCT
based on the proposed IntWHT is validated.

Index Terms— Integer discrete cosine transform (IntDCT), in-
teger Walsh-Hadamard transform (IntWHT), lossless-to-lossy image
coding

1. INTRODUCTION

JPEG [1] based on discrete cosine transform (DCT) is the first stan-
dard for still image coding and is limited to only lossy image cod-
ing. Although lossless JPEG [2] based on differential pulse code
modulation (DPCM) has been proposed for lossless image coding,
each algorithm is required to obtain both lossy and lossless data due
to incompatibility between DCT and DPCM, respectively. On the
other hand, JPEG2000 [3] and JPEG XR [4] achieve the unification
of lossy and lossless image coding, which is called lossless-to-lossy
image coding, by a discrete wavelet transform (DWT) and a hierar-
chical lapped biorthogonal transform (HLBT) constructed by lifting
structures [5] and rounding operations. Nevertheless, these next gen-
eration standard cannot decode the existing JPEG data because they
do not have the compatibility with JPEG standard.

Then, an integer DCT (IntDCT) compatible with DCT in JPEG
is required and several IntDCTs have been already proposed [6–9].
However, the conventional IntDCTs generate checker-board artifacts
in short word length lifting coefficients, k/2n (k, n ∈ N), and low
bitrate coding. Such coefficients are extremely desired for a realiza-
tion of software/hardware of IntDCT.

In this paper, we present a more simplified realization of nor-
malized IntWHT with structural regularity for short word length
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Fig. 1. A lifting structure (white circles: rounding operations).

lifting coefficients. Our previous work [10] has already achieved
by using a transposition of normalization factors and considering a
two-dimensional (2-D) separable transform of one-dimensional (1-
D) normalized WHT. This paper improves coding performance by
direct application of a 2-D separable transform of 1-D normalized
WHT to each lifting structure in IntWHT. As result, our IntDCT is
validated in lossless-to-lossy image coding.

Notations: I is an identity matrix, MT is a transpose of matrix
M and M[N ] is an N × N square matrix, respectively. Also, for
simplicity, M = 2m (m ∈ N).

2. REVIEW

2.1. Multiplierless Lifting Structure

The lifting structure [5], also known as the ladder structure, is a
special type of lattice structure, a cascading construction using
only elementary matrices - identity matrices with single nonzero
off-diagonal element.

Fig. 1 shows a basic lifting structure. In this case, the lifting
matrix and its inverse matrix are as follows:[

1 T
0 1

]
,

[
1 T
0 1

]−1

=

[
1 −T
0 1

]

where T is lifting coefficient. Then, they are represented by

yi = xi + round[Txj ]
yj = xj

→ zi = yi − round[Tyj ] = xi

zj = yj = xj

where round[.] is a rounding operation. Thus the lifting structure
with rounding operation can achieve lossless-to-lossy coding.

For high-speed implementation, lifting coefficients are required
to approximate floating-point to hardware-friendly dyadic values
such as k/2n (k, n ∈ N) which can be implemented by only bit
shift and addition operations. It performs fast implementation in a
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Fig. 2. An approximation from floating multiplication to bit shift
and addition operations.

real time software encoder and reduces the circuit size. The multi-
plications are expressed by k/2n which is n-bit word length. For
example, a coefficient 49/28 = 49/256 can be operated as

49

256
=

32

256
+

16

256
+

1

256
=

1

23
+

1

24
+

1

28
. (1)

From (1), we can replace the multiplier by 49/256 to sum results
from 3-bit shift, 4-bit shift and 8-bit shift operations as illustrated in
Fig. 2. We can find that the perfect reconstruction in lifting structure
is always kept even if lifting coefficients are approximated.

2.2. Regularity

In filter bank (FB) included DCT theory, the regularity is an impor-
tant property for image compression [11]. An M -channel DCT has
one regularity condition if DCT matrix C[M ] satisfies

C[M ]

⎡
⎢⎢⎢⎣

1
z−1

...
z−(M−1)

⎤
⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣
z=1

= C[M ]

⎡
⎢⎢⎢⎣
1
1
...
1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
√
M
0
...
0

⎤
⎥⎥⎥⎦ . (2)

The conventional IntDCTs generate checker-board artifacts in short
word length lifting coefficients, k/2n, and low bitrate coding due to
losing regularity condition. However, IntDCT by Chen [8] generates
no artifacts even in such case because it has structural regularity.

3. SIMPLIFIED MULTIPLIERLESS INTDCT BASED ON
NORMALIZED INTWHT

3.1. Multiplierless IntDCT based on WHT

As well known, WHT has interesting relationships with other dis-
crete transforms such as DCT. It is expressed by

W[1] =
[
1
]
, W[2] =

[
1 1
1 −1

]

W[M ] =W[2] ⊗W[M
2

] =

[
W[M

2
] W[M

2
]

W[M
2

] −W[M
2

]

]
(3)

where ⊗ is Kronecker product. Note that (3) is still not normalized
by the scaling factor 1/

√
M . Let us normalize W such that Ŵ =

(1/
√
M)W is an orthonormal matrix: Ŵ−1 = ŴT . Then one can

prove that [8]

C[M ] = Q̂[M ]Ŵ[M ] = P[M ]TQ[M ]P[M ]Ŵ[M ] (4)

Fig. 3. 8-channel IntDCT based on WHT (white circles and white
triangles: rounding operations and −1 operations, respectively).

Table 1. Lifting coefficients of 8-channel IntDCT based on WHT.
floating-point k/23 k/24 k/25 k/26

α0 0.1989123674. . . 1/4 3/16 3/16 13/64
β0 -0.3826834324. . . -3/8 -3/8 -3/8 -3/8
α1 -0.6681786379. . . -5/8 -11/16 -21/32 -43/64
β1 0.9238795326. . . 7/8 15/16 15/16 59/64
α2 -0.6681786379. . . -5/8 -11/16 -21/32 -43/64
β2 0.9238795326. . . 7/8 15/16 15/16 59/64
α3 -0.8206787908. . . -7/8 -13/16 -13/16 -53/64
β3 0.9807852804. . . 1 1 31/32 63/64
α4 -0.3033466836. . . -1/4 -5/16 -5/16 -19/64
β4 0.5555702330. . . 1/2 9/16 9/16 9/16

where P is a permutation matrix and Q is an orthogonal matrix.
Using this factorization, Chen has proposed an IntDCT [8]. Fig. 3
and Table 1 show 8-channel IntDCT based on WHT by Chen and
its lifting coefficients, respectively. In this regard, however, this
IntDCT by Chen is ill-suited for lossless image coding because it
needs a quantization part due to use of unnormalized WHT. On the
other hand, we find that (2) is represented by

C[M ]

⎡
⎢⎢⎢⎣
1
1
...
1

⎤
⎥⎥⎥⎦ = Ŵ[M ]

⎡
⎢⎢⎢⎣
1
1
...
1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
√
M
0
...
0

⎤
⎥⎥⎥⎦

where Ŵ[M ] is the pre-processing part in DCT. This means that
WHT satisfies all regularity condition in DCT. Hence, similar to our
previous work [10], this paper solves the normalization problem of
WHT: Ŵ[8] = (1/

√
8)W[8], in IntDCT by Chen while keeping the

other part as it is.

3.2. A Realization of Normalized IntWHT

We have presented a multiplierless IntDCT based on normalized In-
tWHT [10]. First, a 2-D separable transform of 1-D DCT C is con-
sidered. When we apply C into a 2-D input signal x in column- and
row-wise separately, the 2-D separable transform is expressed by

y = (C(Cx)T )T = CxCT (5)
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Fig. 4. 1-D transform of normalized IntWHT (white circles: round-
ing operations).

where y is the output signal. Since the transformC can be factorized
as C = Q̂Ŵ in (4), (5) is represented by

y = Q̂Ŵx(ŴQ̂)T = Q̂ŴxŴT Q̂T .

This equation means that 2-D separable transform by Q̂ is applied
after 2-D separable transform by Ŵ.

Next, we consider to process two individual signals xi and xj

by normalized WHT Ŵ as shown in the left part of Fig. 4. The
output signals are transformed by[

yi

yj

]
=

[
Ŵ 0

0 Ŵ

] [
xi

xj

]
. (6)

diag{Ŵ,Ŵ} in (6) can be factorized into the complete lifting
structures such as[

Ŵ 0

0 Ŵ

]
=

[
0 I
−I 0

] [
I 0

Ŵ I

] [
I −Ŵ
0 I

] [
I 0

Ŵ I

]
(7)

where ŴŴ = I.
Thus the parallel block system of normalized WHTs can be im-

plemented as shown in the right part of Fig. 4. However, if Ŵ is a
normalized WHT with nonideal coefficients, the system in (7) can-
not be consisted because of ŴŴ �= I. It means short word length
allocation cannot be applied to lifting coefficients. In [10], using a
transposition of normalization factors and considering a 2-D sepa-
rable transform of 1-D normalized WHT as shown in Fig. 5(a), the
problem has been solved.

3.3. A More Simplified Realization of Normalized IntWHT

In this paper, we consider that Ŵ is applied to an M × M input
signal x in column- and row-wise separately in each lifting structure.
If W(x) is defined as

W(x) � ŴxŴT =
1

M
WxWT ,

(7) is represented by[W(x) 0
0 W(x)

]

=

[
0 I
−I 0

] [
I 0

W(x) I

] [
I −W(x)
0 I

] [
I 0

W(x) I

]
.

As result, the normalized IntWHT can be constructed by only
log2 M -bit shifts and ±1 adder operations without losing structural
regularity. Also, since lifting structures are reduced by half in case
of our previous work [10] as shown in Fig. 5(b), it is obvious that
3M2 adder operations are eliminated.

Table 2. Comparison of coding gain (CG [dB]).
Lifting coefficients k/23 k/24 k/25 k/26 float

Tran’s [6] 6.14 6.21 6.23 6.22 6.23
Hao’s [7] 7.98 8.41 8.75 8.75 8.83

Chokchaitam’s [9] 8.08 8.61 8.72 8.75 8.76
Previous work [10] 8.73 8.82 8.82 8.82 8.83

Prop. IntDCT 8.73 8.82 8.82 8.82 8.83

3.4. Expansion from Normalized IntWHT to IntDCT

Finally, the normalized IntWHT is applied to the pre-processing part
in IntDCT. In that time, Q̂[M ] as post-processing is implemented as
it is. This IntDCT has structural regularity because the normalized
IntWHT has structural regularity. In this paper, M is 8 and all trans-
form coefficients exclusive of ones in WHT are used ones in [10].

4. RESULTS

4.1. Coding Gain and Frequency Response

Coding gain is one of the most important factors to be considered
in compression applications. A transform with higher coding gain
compacts more energy into a fewer number of coefficients. As a re-
sult, higher objective performances such as PSNR would be achieved
after quantization. Since coding gain of the DCT approximates the
optimal KLT closely, it is desired that the our IntDCT has similar
coding gain to that of the original DCT. The biorthogonal coding
gain CG is defined as [11]

CG [dB] = 10 log10
σ2
x∏M−1

k=0 σ2
xk

‖ fk ‖2

where σ2
x is the variance of the input signal, σ2

xk
is the variance of

the k-th subbands and ‖ fk ‖2 is the norm of the k-th synthesis
filter. Table 2 shows the comparison of coding gain of the proposed
IntDCT and the conventional ones. It is clear that coding gains of
the conventional IntDCTs are not kept in short word length lifting
coefficients, but the proposed IntDCT almost kept it even in 4-bit
word length lifting coefficients.

Frequency responses of the proposed and conventional IntD-
CTs are shown in Fig. 6. It is clear that the conventional IntD-
CTs have DC leakage which may generate a checker-board artifact
in low bitrate coding. The proposed IntDCT does not have DC leak-
age because regularity in the proposed normalized IntWHT as pre-
processing in IntDCT can be always kept in short word length lifting
coefficients. Also, although Tran’s BinDCT [6] without the scaling
factors do not have DC leakage, it shows worse coding gain than oth-
ers. Thus, it is deselected from a target for comparison in lossless-
to-lossy image coding.

4.2. Lossless-to-Lossy Image Coding

The proposed IntDCT is applied to lossless-to-lossy image coding.
twenty test images, which have 512 × 512 size, were used. The set
partitioning in hierarchical trees (SPIHT) progressive image trans-
mission algorithm [12] was used to encode the transformed images.
The comparison of lossless bitrate (LBR)

LBR [bpp] =
Total # of bits [bit]

Total # of pixels [pixel]
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(a)

(b)

Fig. 5. 2-D separable transform of normalized IntWHTs (white circles and .T : rounding operations and a transpose of .): (a) our previous
work [10], (b) the proposed IntWHT.

Fig. 6. Frequency responses in 4-bit word length lifting coefficients: (left) Hao’s [7], (middle) Chokchaitam’s [9], (right) the proposed
IntDCT.

Table 3. Comparison of lossless image coding in 4-bit word length
lifting coefficients (LBR [bpp]).

Images [7] [9] [10] Prop.
Baboon 6.84 6.35 6.28 6.27
Barbara 5.88 5.14 5.02 4.97
Boat 6.19 5.34 5.22 5.19

Elaine 6.31 5.42 5.27 5.24
Finger1 6.48 6.10 6.08 6.07
Finger2 6.45 5.92 5.87 5.85
Goldhill 5.89 5.28 5.18 5.16
Grass 6.52 6.22 6.18 6.17
Lena 5.89 4.87 4.68 4.64

Pepper 6.05 5.13 4.98 4.95

Avg. 6.23 5.54 5.43 5.40

in lossless image coding is shown in Table 3 where Avg. is average
of LBRs in twenty images.

If lossy compressed data is required, it can be achieved by in-
terrupting the obtained lossless bit stream. The comparison of peak

signal-to-noise ratio (PSNR)

PSNR [dB] = 10 log10

(
2552

MSE

)

where MSE is the mean squared error in lossy image coding are
shown in Table 4. Furthermore, Fig. 7 shows the enlarged images of
“Lena” which are lossy compressed images by the proposed IntDCT
and the conventional ones with 4-bit word length lifting coefficients
when bitrate is 0.25[bpp].

In Table 3, 4 and Fig. 7, the proposed IntDCT presents better
performance than the conventional ones in lossless-to-lossy image
coding. Also, in Fig. 7, we can find that a checker-board artifact is
not generated in the proposed IntDCT due to structural regularity.

5. CONCLUSION

This paper presents a more simplified realization of normalized inte-
ger Walsh-Hadamard transform (IntWHT) for multiplierless integer
discrete cosine transform (IntDCT). It is obtained by considering that
normalized WHT is applied to an input signal in column- and row-
wise separately in each lifting structure. It has not only structural
regularity even in short word length lifting coefficients, but also less
adder operations and better performance than our previous work. It
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Fig. 7. Comparison of lossy reconstructed images “Lena” in 4-bit word length lifting coefficients (bitrate: 0.25 [bpp]): (left)-(right) Hao’s [7],
Chokchaitam’s [9], our previous work [10] and the proposed IntDCT.

Table 4. Comparison of lossy image coding in 4-bit word length
lifting coefficients (PSNR [dB]).

Images bitrate [bpp] [7] [9] [10] Prop.
Barbara 0.25 23.78 26.49 26.92 26.94

0.50 25.95 29.99 30.64 30.66
1.00 29.71 35.04 35.77 35.95

Boat 0.25 23.21 28.14 28.61 28.63
0.50 25.17 31.21 31.79 31.85
1.00 28.63 34.54 35.26 35.43

Finger1 0.25 20.96 22.19 22.53 22.53
0.50 22.90 25.28 25.53 25.54
1.00 26.43 29.31 29.55 29.60

Goldhill 0.25 25.37 28.88 29.34 29.37
0.50 27.20 31.42 31.87 31.94
1.00 30.69 34.56 35.11 35.29

Lena 0.25 24.14 31.37 31.79 31.84
0.50 26.31 34.22 35.45 35.50
1.00 30.17 37.03 38.54 38.98

Pepper 0.25 24.22 31.05 31.35 31.39
0.50 26.52 33.17 34.35 34.39
1.00 30.53 35.68 36.59 36.86

was proved by the comparisons of coding gains, frequency responses
and lossless-to-lossy image coding simulations.
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