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ABSTRACT

Some adaptive image interpolation methods have been pro-
posed to create higher visual quality images than traditional
interpolation methods such as bicubic interpolation. These
methods, however, often suffer from high computational costs
and unnatural texture interpolation. This paper proposes a
novel edge-adaptive image interpolation method using an
edge-directed smoothness filter. Our approach estimates the
enlarged image from the original image based on an observa-
tion model. The estimated image is constrained to have many
edge-directed smooth pixels which are measured by using
the edge-directed smoothness filter introduced in this paper.
Simulation results show that the proposal method produces
images with higher visual quality, higher PSNRs and faster
computational times than the conventional methods.

Index Terms— image processing, adaptive image inter-
polation, edge-directed smoothness.

1. INTRODUCTION

Image interpolation is useful in many applications, for ex-
ample, video upconversion is well-known as one of the most
common ones. In recent years, conversion from SDTV sig-
nals to HDTV signals is especially performed with the spread
of high definition devices. Several image interpolation meth-
ods have been developed because such upconversion requires
higher quality image with faster implementation and lower
cost. For example, there are convolution-based interpola-
tion, polynomial interpolation and spline interpolation. The
biggest advantage of these methods is low computational
complexity. However, produced images using these methods
sometimes suffer from visual artifacts such as unsmooth and
blurred edge.

To improve these artifacts, adaptive interpolation methods
have been proposed in recent years. They are classified into
explicit and implicit methods. Implicit methods tend to create
higher visual quality images compared with explicit methods.
In [1], missing HR pixels are interpolated based on HR local
covariance estimated from LR local covariance. To interpo-
late missing HR pixels to fit the local pixel structures, Zhang
and Wu use a 2-D piecewise autoregressive model whose pa-
rameters are estimated in a moving window in the LR image
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Fig. 1. Filtering results: (a)original image, (b)Laplacian filter,
(c)edge-directed smoothness filter with σ = 0.5, s = 3 and
β = 0.01.

[2]. Dong et al.[3] use the iterative back-projection technique
which is regularized by a non-local regularizer to minimize
the reconstruction error. Although these methods create high
visual quality images, they require high computational cost
and large memory to calculate. Also in some cases, textures
which differ from ones in original images are produced.

This paper proposes a new edge-adaptive interpolation
method to improve above problems. To estimate the HR
image from its LR counterpart, our proposal method solves
a constrained least squares problem based on an observa-
tion model and edge-directed smoothness measured by the
edge-directed smoothness filter introduced in this paper. In
addition, to obtain the HR image with faster implementation
and lower cost, the problem is solved as a linear least squares
problem.

2. EDGE-DIRECTED SMOOTHNESS FILTER

In this section, we introduce a new filter to quantify the degree
of edge-directed smoothness in a local area. When the filter is
applied in areas where are not smooth along edge directions,
the filtering result has large energy. To obtain an interpolated
image with edge-directed smoothness, we constrain the en-
larged image applied the filter to have low energies.

Local smoothness in an image is evaluated by measuring
high-frequency energy in the local area. Such energy mea-
surement methods have been researched widely. As a repre-
sentative example, Laplacian filter is simple and useful oper-
ator to measure it. Fig. 1(b) shows the energies of the image
applied Laplacian filter to Fig. 1(a). As shown in Fig. 1(b),
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edge and texture areas have large high-frequency energies and
smooth areas have small energies.

The second spatial derivative of intensity values in edge
direction is one of the simplest measures of edge-directed
smoothness. This is calculated by the difference between a
pixel and the average of its neighboring pixels in edge direc-
tion. This calculation, however, is highly sensitive to noise.
Additionally, it is not work well in an area with slight edge
intensities, whose smoothness should be measured by cal-
culating the difference between a pixel and the average of
its neighboring pixels like Laplacian filter. We introduce a
new edge-directed smoothness filter which solves the prob-
lem. The filter calculates the difference between a pixel and
the weighted average of its neighboring pixels whose weights
are determined by a 2D Gaussian function and vary with the
condition of an edge. In an area with larger edge intensities,
the weights in an edge direction become larger than in the
direction perpendicular to the edge. In an area without edge,
the weight distribution becomes isotropic like Laplacian filter.
This weight control is achieved by changing a spread param-
eter σ of a Gaussian function in the direction perpendicular to
the edge depending on edge intensities.

Let us denote the relation between a spatial filter c and the
image d applied c to an image h by

d(u) =
∑
v∈Ts

c(u,v)h(u + v). (1)

where Ts is a set of the spatial positions with their origin at the
center of the filter size s, u = [ux, uy]T and v = [vx, vy]T

indicate spatial positions in vector notation. In the case
of s = 3, for example, Ts = {[1, 1]T , [1, 0]T , [1,−1]T ,
[0, 1]T , [0, 0]T , [0,−1]T , [−1, 1]T , [−1, 0]T , [−1,−1]T }. The
edge-directed smoothness filter c(u,v) is given as

c(u,v)∈Ts
=

{ −1 v = [0, 0]T

α(u,v) otherwise
(2)

where

α(u,v) = ν exp(−‖p(u, v)‖2
2σ2

),

p(u, v) = G(u)R(θ(u))v,

G(u) =
[
1 0
0 E(g(u))

]
, Rθ =

[
cos θ sin θ
− sin θ cos θ

]
, (3)

ν is a normalization parameter satisfying
∑

c = 0, σ is a
spread parameter, g(u) and θ(u) are an edge intensity and
an edge direction at u, respectively, and E(g(u)) is a mono-
tonically increasing function satisfying E(0) ≥ 1. We use
E(g(u)) = βg(u) + 1 where β(> 0) is an edge intensity pa-
rameter. Scaling matrix G(u) makes pixel weights in an edge
direction larger than ones in a direction perpendicular to the
edge direction.

Here we show the calculation process of the coefficients
of the edge-directed smoothness filter. First, the edge inten-
sities and directions in local areas are calculated. These can

(a) (b) (c) (d)

Fig. 2. Zoomed images of part of the original image and
the image applied the edge-directed smoothness filter. (a)A
complex area in the original image. (b)The applied image of
(a). (c)An edge-directed smooth area in the original image.
(d)The applied image of (c).

be obtained by using the Sobel operator as follows. Let h′
x

and h′
y denote the results obtained by applying the Sobel op-

erator in the horizontal and vertical directions to an image h,
respectively. The edge directions θ and intensities g are given
by

θ = tan−1

(
−h′

x

h′
y

)
, g =

√
h′

x
2 + h′

y
2. (4)

Next, substitution of (4) in (3) gives the coefficients of the
edge-directed smoothness filter. Fig. 1(c) shows the result
of applying the edge-directed smoothness filter to Fig. 1(a)
with σ = 0.5, β = 0.01 and s = 3. The zoomed images of
the original image and the applied image are shown in Fig.
2. The applied image has low energies in an edge-directed
smooth area and high energies in a complex area.

3. INTERPOLATION ALGORITHM

In this section, we describe our new image interpolation algo-
rithm using the edge-directed smoothness filter introduced in
section 2. Our interpolation algorithm is based on an obser-
vation model, which formulates the relation between an HR
image and an LR image. We use the following model: an
LR image f of size N1 ×N2 results from warping, blurring,
subsampled on an HR image h of size L1N1 × L2N2, and
added noise [4]. L1 and L2 represent subsampling factors in
the horizontal and vertical directions, respectively. From the
view point of image interpolation, L1 and L2 are considered
as enlargement factors. For simplicity, we consider the case
that L1 and L2 are integers satisfying L1 = L2 = L ≥ 2.
Let f and h denote lexicographically ordered vectors of size
N1N2 × 1 and L2N1N2 × 1, respectively. Here f and h are
composed of pixel values of the image f and h, respectively.
The relation between f and h can be expressed as

f = Wh + n (5)

where W is a warping, blurring and subsampling matrix of
size N1N2 × L2N1N2 and n is a lexicographically ordered
noise vector.

In image interpolation, only subsampling and blurring
caused by the point spread function (PSF) of the sensor are
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considered since there is no need to consider a camera motion
between the HR image and the LR image. This blurring and
subsampling are accomplished by averaging a square block
of HR pixels. Here let Bfi denote a set of HR pixels which
are contained in the HR square block corresponding to the
position of the LR pixel fi. The relation between LR pixels
f(x, y) and HR pixels h(x, y) is represented by

f(u) =
1
L2

∑
v∈T ′

L

h(Lu + v). (6)

where v ∈ T ′
L is a set of the spatial positions satisfying 0 ≤

vx, vy < L. From (5) and (6), the interpolated image h is
expressed in matrix notation as

ĥ = arg min
h
‖f −Wh‖2 (7)

where entry wi,j of W satisfy wi,j = 1/L2 if hj ∈ Bfi

and otherwise wi,j = 0. However, the problem of solving
(7) is an ill-posed. To make the problem well-posed, (7) is
regularized by using the prior knowledge which is represented
by the edge-directed smoothness constraint. We regularize (7)
as

ĥ = arg min
h
‖f −Wh‖2 + λ‖Ch‖2 (8)

where λ is a regularization parameter and entry ci,j of C sat-
isfy ci,j = c(u,v) if u ∈ Ts and otherwise ci,j = 0, where
h(u) equals to the position hi and h(u + v) to hj . This reg-
ularization is to obtain an interpolated image which has many
edge-directed smooth pixels. In (8), λ controls the balance
between the fidelity to the LR image intensity and the smooth-
ness in edge directions.

The HR edge information to calculate C in (8) is derived
not from an estimated HR image h but from the LR image f .
There are two reasons to do so. One is to preserve the LR edge
structure in the HR image. Another is to solve (8) as a linear
least squares problem. The process of obtaining the HR edge
information is as follows. First, the LR horizontal edge f ′

x and
vertical edge f ′

y are obtained by applying the Sobel operator
to the original image f . Next, the HR horizontal edge h′

x and
the vertical edge h′

y are estimated by interpolating f ′
x and f ′

y

to the HR image size by using bilinear interpolation method.
Last, substitution of h′

x and h′
y in (4) gives the estimated HR

edge information. Using the obtained C, (8) can be rewritten
as the linear least squares problem

Ah ≈ b (9)

where

A =
[

W√
λC

]
, b =

[
fT 0 · · · 0]T

.

Solving (9) gives an interpolated image.

(a) (b) (c) (d) (e) (f)

Fig. 3. Test images: (a)Lena, (b)Barbara, (c)Room, (d)Tank,
(e)Chart, (f)Airplane.

Table 1. PSNRs[dB] and average computation times[sec].
Name Bicubic NEDI[1] SAI[2] NLBP[3] Proposal
Lena 34.07 33.63 34.65 31.46 35.46

Barbara 25.40 24.67 25.34 24.51 25.66
Room 28.40 29.04 29.78 26.80 30.92
Tank 31.18 30.48 31.12 29.46 31.80
Chart 18.28 18.05 17.38 19.44 19.34

Airplane 31.26 29.64 31.13 28.88 32.72
time[sec] 0.012 20.28 ∗2.44 ∗5.74 2.03

*Computation times of SAI and NLBP are obtained with executable
files. The others are implemented with Matlab.

4. SIMULATION RESULTS

In this section, we compare the proposal method with bicu-
bic method, NEDI method [1], SAI method [2] and NLBP
method [3] to validate our proposal algorithm. Fig. 3 lists
six example images in our test set. We obtained simulated
LR images by using the function imresize in MATLAB Im-
age Processing Toolbox with a downsampling factor of 2. All
algorithms run using default parameters. In our method, we
found that σ = 0.5, β = 0.001, s = 3 and λ = 0.1 produce
sufficiently good results. We use these values in all our exper-
imental results. To solve the linear least squares problem (9),
we use the conjugate gradient method. All the experiments
were taken on an Intel Core i7 3.2GHz with 6GB of memory.

The PSNR and the average computational time for each
interpolation algorithm are shown in Table 1. The PSNR re-
sults of the proposal method show better performance than
other interpolation methods for most test images. The pro-
posal method has the advantage of computational speed over
the other adaptive interpolation methods. The bicubic inter-
polation method is faster than other methods. However, the
produced images have unsmooth and blurred edges more than
other methods as shown in Fig. 4(b). The NEDI method cre-
ates steep edges but suffers from noisy interpolation artifact
in areas which have multiple edges as shown in Fig. 4(c)
and Fig. 5(c). Additionally, texture regions are smoothed
and these details are lost as shown in Fig. 6(c). The SAI
method creates the smoothest edges in all methods. How-
ever, this method produces inadequate pixel structures which
do not exist in original images as shown in Fig. 4-6. In Fig.
4(d), some unconnected stripes in the original image are con-
nected due to over-smoothing. Loss of details can be seen in
Fig. 6(d). The NLBP method over-enhances edges as shown
in Fig. 4(e) and Fig. 6(e). This leads to some artifacts and re-
sults in lower PSNRs. Only in Chart image, which has sharp
edges and many flat regions, the method produces an image
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(a) (b) (c) (d) (e) (f)

Fig. 4. Comparison on Room image: (a)original image, (b)bicubic, (c)NEDI, (d)SAI, (e)NLBP, (f)proposal method.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Comparison on Chart image: (a)original image,
(b)bicubic, (c)NEDI, (d)SAI, (e)NLBP, (f)proposal method.

with the highest PSNR. The proposal method produces sharp
edges and edge-directed smoothness pixels as shown in Fig.
4(f). In Fig. 5(f), production of inadequate interpolated pix-
els is improved compared with other adaptive interpolation
methods. Keeping details can be seen in Fig. 6(f).

5. CONCLUSION

We propose an adaptive image interpolation method using the
edge-directed smoothness filter. Our method constrains the
interpolated image to have edge-directed smoothness and the
fidelity to the original image data based on the observation
model. Thereby our proposal method produces images with
high visual quality and improves some artifacts. Furthermore,
the proposed method also performs well on PSNRs and com-
putational times compared with other adaptive interpolation
methods.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Comparison on Tank image: (a)original image,
(b)bicubic, (c)NEDI, (d)SAI, (e)NLBP, (f)proposal method.
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