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ABSTRACT
Several lifting-based filter banks (LBFBs) are proposed for lossless-
to-lossy image coding. However, the conventional methods can not
achieve good coding performance due to many rounding operations,
and they may have wide dynamic range of lifting coefficients due
to inverse matrix. This paper presents a more practical lifting fac-
torization ofM-channel perfect reconstruction filter bank (PRFB).
Using the block parallel system of PRFBs with an imposed condi-
tion, we can factorize them into a novel lifting structure which is
called the parallel lifting. The validity of our structures is shown by
applying them to lossless-to-lossy image coding.

Index Terms— Perfect reconstruction filter bank (PRFB), block
parallel system, parallel lifting, lossless-to-lossy image coding.

1. INTRODUCTION

Image coding has lossy and lossless mode. Lossy image coding
is adopted to Internet contents and mobile etc., and lossless image
coding is adopted to medical and art field etc. Then lossless and
lossy compressed data are usually independent each other. For ex-
ample, in the international standard JPEG [1], discrete cosine trans-
form (DCT) [2] is applied to lossy image coding and DCM is ap-
plied to lossless image coding.

With the rapid development of Internet and multimedia tech-
nology, the unification of lossy and lossless compressed data is
demanded to obtain higher quality and compression ratio such
as JPEG2000 [3] with 9/7 and 5/3-tap discrete wavelet transform
(DWT) for lossy and lossless image coding, respectively. Several
lifting-based filter banks (LBFBs) which are filter banks (FBs) with
the lifting structure [4] are widely researched for the unification of
lossy and lossless data [5–7]. This coding is called lossless-to-lossy
image coding. However, they are not practical because [5, 6] can
not achieve good coding performance due to many rounding oper-
ations, and [7] may have wide dynamic range of lifting coefficients
due to inverse matrix.

In this paper, using the block parallel system of perfect recon-
struction FBs (PRFBs) with an imposed condition, we can factorize
them into a novel lifting structure which is called the parallel lifting.
The every building blocks have more practical structure which con-
sists of three block lifting matrices with same lifting coefficient ma-
trix without an inverse operation. Finally, the validity of our struc-
tures is shown by applying them to lossless-to-lossy image coding.

Notations: I, MT andM[M] are an identity matrix, a transpose
of a matrixM and anM×M matrixM, respectively.

2. REVIEW

2.1 Perfect Reconstruction Filter Bank (PRFB)

Fig. 1 shows anM-channel FB which consists of parallel analysis
filters Hk(z), synthesis filtersFk(z), decimaters and interpolators.
Fig. 2 illustrates its equivalent polyphase representation whereE(z)
andR(z) are the polyphase matrices, respectively. The polyphase
representation is formulated as follows [8]:

[H0(z) H1(z) · · · HM−1(z)]
T = E(zM)e(z)T

[F0(z) F1(z) · · · FM−1(z)] = e(z)R(zM)
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Figure 1: AnM-channel filter bank.
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Figure 2: A polyphase structure of filter bank.

where e(z) =
[
1 z−1 · · · z−(M−1)

]
. If perfect reconstruction is

achieved, the synthesis polyphase matrixR(z) can be chosen as the
inverse ofE(z). The obtained FB is called a perfect reconstruction
FB (PRFB). IfET(z−1)E(z) = I andR(z) = ET(z−1), the FB be-
longs to a special class of PRFBs called a paraunitary FB (PUFB).
PRFB without PUFB is called a biorthogonal FB (BOFB).

Therefore,M-channel PRFBs can be implemented by the lattice
structure that consists of the product of the first and several building
blocks. In this paper, we assume that the filter length isMK(K ∈N).
The polyphase matrixE(z) of the PRFB is expressed by [8]

E(z) = WLΛL(z) · · ·W1Λ1(z)W0 (1)

whereL = K −1, Wk is arbitraryM ×M nonsingular matrix and
Λk(z) is expressed as

Λk(z) =
[
I[M−γk] 0

0 z−1I[γk]

]
.

Although γk is arbitrary integer 1≤ γk < M, we setγk = M/2
andΛ(z) , Λk(z) for simplicity whenM is even. Fig. 3 shows
a lattice structure of PRFB. WhenWk is an orthogonal matrix,
W−1

k = WT
k , it is a PUFB.

2.2 Block Lifting Structure

Lifting structure [4] is researched widely. Since the structure
achieves integer-to-integer transform, lossless-to-lossy image cod-
ing can be realized. Fig. 4 shows a lifting structure. In Fig. 4,
analysis input signalsxi andx j , analysis output and synthesis in-
put signalsyi andy j , synthesis output signalszi andzj and a lifting
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Figure 3: A lattice strcture of PRFB.

Figure 4: Lifting structure (White circles: rounding operations.)

coefficientT are represented as

yi = xi +R[Txj ]
y j = x j

→ zi = yi −R[Tyj ] = xi
zj = y j = x j

whereR[.] is rounding operation.
In other hand, the block lifting structure [7] is known as an effi-

cient one. The structure achieves higher compression ratio because
it can merge many rounding operations. Fig. 5(a) shows a block
lifting structure before merging the rounding operations, and Fig.
5(b) shows one afrer merged them. It is clear that the number of
rounding operations is reduced fromN2 to N when the size of the
lifting coefficient matrixT is N×N. In Fig. 5(b), analysis input
signals vectorxi andx j , analysis output and synthesis input signals
vectoryi andy j , synthesis output signals vectorzi andz j and a
lifting coefficient matrixT are represented as

yi = xi +R[Tx j ]
y j = x j

→ zi = yi −R[Ty j ] = xi
z j = y j = x j

whereR[.] is rounding operation.

3. PARALLEL LIFTING-BASED PERFECT
RECONSTRUCTION FILTER BANK (PLPRFB)

In this section, we propose an efficient lifting structure using the
block parallel systemof PRFB.

3.1 Block Parallel System

First, the lattice structure can be expressed as a time-series process-
ing such as Fig. 6 [9]. Two building blocksWk framed by dashed
line in Fig. 6 are expressed as
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Figure 6: A time-series processing of lattice strcture of PRFB.

Xk =
[
Wk 0
0 Wk

]
. (2)

A system in (2) is called the block parallel system. Then, ifXk in
(2) can be factorized into lifting structure, we can achieve lossless-
to-lossy image coding. In conclusion, a method of approach for
lossless-to-lossy image coding is boiled down to how to factorize
Xk into lifting structure.

3.2 Parallel Lifting Factorization

First, let defineX̃k as

X̃k ,
[
0 I
I 0

]
Xk =

[
0 Wk

Wk 0

]
. (3)

Second, the block lifting matrix is multiplied from the right sides of
(3) as

X̃k

[
I 0

W−1
k I

]
=

[
I Wk

Wk 0

]
. (4)

Next, the other block lifting matrix is multiplied from the right sides
of (4) as [

I Wk
Wk 0

][
I −Wk
0 I

]
=

[
I 0

Wk −W2
k

]
. (5)

Therefore, the block lifting matrix which is same as (4) is multiplied
from the right sides of (5) as[

I 0
Wk −W2

k

][
I 0

W−1
k I

]
=

[
I 0
0 −W2

k

]
. (6)

Consequentry,̃Xk in (3) can be factorized into the lifting structures
using (4)-(6) as

(a) (b)

Figure 5: Block lifting structure: (a)before merging, (b)after merging rounding operations. (White circles: rounding operations.)
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(a) (b)

Figure 7: A block parallel system of PRFB: (a)basic structure,
(b)parallel lifting structure. (White circles: rounding operations.)

Table 1: Comparison of the number of free parameters.
[6] [7] PLPUFB PLBOFB

8×16 44 96 32 72
8×24 60 144 48 108

Table 2: Comparison of the number of merged rounding opera-
tions.

[6] [7] PLPUFB PLBOFB
8×16 132→ 62 112→ 20 192→ 24 192→ 24
8×24 180→ 82 176→ 28 288→ 36 288→ 36

X̃k =
[
I 0
0 −W2

k

][
I 0

−W−1
k I

][
I Wk
0 I

][
I 0

−W−1
k I

]
. (7)

However, (7) is not the complete lifting structure due toW2
k.

Let impose a conditionW−1
k = Wk for the completion of lifting

factorization of PRFB. In case of PUFB,Wk must be a symmetric
orthogonal matrix whereW−1

k = WT
k = Wk as follows [10]:

Wk =
[
Uk,0 0
0 Uk,1

][
Ck Sk
Sk −Ck

][
UT

k,0 0

0 UT
k,1

]
(8)

whereUk,0 andUk,1 areM/2×M/2 arbitrary orthogonal matrices,
[Ck]ii = cosαki and[Sk]ii = sinαki(0≤ i < M/2), respectively. In
case of BOFB, (8) is extended as follows:

Wk =
[
Vk,0 0
0 Vk,1

][
Ck Sk
Sk −Ck

][
V−1

k,0 0

0 V−1
k,1

]
(9)

whereVk,0 andVk,1 areM/2×M/2 arbitrary nonsingular matrix,
[Ck]ii = cosαki and[Sk]ii = sinαki(0≤ i < M/2), respectively.

As a result,Xk in (2) can be factorized into the complete block
lifting structure such as

Xk =
[
0 −I
I 0

][
I 0

−Wk I

][
I Wk
0 I

][
I 0

−Wk I

]
. (10)

The block parallel systemXk and its lifting factorization in (10) are
shown in Fig. 7(a) and (b).

PRFB using (10) is called parallel lifting-based PRFB (PL-
PRFB). Especially, PLPRFB based on (8) and (9) are called paral-
lel lifting-based PUFB (PLPUFB) and parallel lifting-based BOFB
(PLBOFB). Table 1 shows the comparison of the number of free
parameters (PLPUFB:KM2/4, PLBOFB:KM(M +1)/2).

In (10), it is clear that the each building blockXk is constructed
by using three block lifting matrices with same lifting coefficient
matrix without an inverse operation. This is a practical structure.

3.3 Merging Rounding Operations

Many rounding operations can be merged because the lifting coef-
ficient of PLPRFB can be expressed as a matrix (block). This is an
efficient for lossless image coding [7]. Table 2 shows the number of
rounding operations when the numbers are in one system. Although
the numbers in [7] are the least, PLPRFB can reduce it to the almost
same number.

4. RESULTS

4.1 Filter Bank Design

In this paper, we focus on image coding applications. The cost func-
tion to design the FBs is a weighted linear combination of coding
gainCCG, stopband attenuationCSTOPand DC leakageCDC [8].

C = −w1CCG+w2CSTOP+w3CDC

wherew1, w2 andw3 are weighting factors. We designed only 8×24
PLPUFB and PLBOFB because its filter size have better perfor-
mance than the other size. Their frequency responses are depicted
in Fig. 8.

4.2 Application to Lossless-to-Lossy Image Coding

In this subsection, our PLPRFBs are applied to lossless image cod-
ing by using the rounding operations in the each lifting structure.
We adopted the periodic extension at the image boundaries and
EZW-IP as a wavelet based coder [11]. The lossless image coding
results are compared by

Lossless bit rate[bpp] =
Total number of bits[bit]

Total number of pixels[pixel]

which indicate how the FBs efficiently reduce the spatial redun-
dancy of the input signals.

If lossy compressed data is required, it can be achieved by in-
terrupting the lossless bit stream obtained. The lossy image coding
results are compared by

PSNR[dB] = 10log10
2552

MSE

where MSE is the mean squared error. Table 3 and Fig. 9 show the
comparison of lossless bits rate and PSNRs between our PLPRFBs
and the conventional methods and lossy compressed images of ‘Bar-
bara’ when bit rate is 0.25[bpp]. 5/3-tap DWT [3], 8×24 PUFB [6]
and 8×24 BOFB [7] are selected as the conventional method for
lossless image coding. Similarly, 9/7-tap discrete wavelet transform
(DWT) [3], 8×24 PUFB [6] and 8×24 BOFB [7] are selected as the
conventional method for lossy image coding. Our PLPRFBs present
same or better performance than the conventional FBs in both loss-
less and lossy image coding.

5. CONCLUSION

In this paper, we proposed a more practical lifting factorization of
M-channel perfect reconstruction filter banks (PRFBs) using the
block parallel system. This PRFBs are called parallel lifting-based
PRFBs (PLPRFBs). The every building blocks can be factorized
into the three block lifting matrix with same lifting coefficient ma-
trix without an inverse operation. Although the condition for lift-
ing factorization is imposed, our PLPRFBs are comparable or even
better performance in comparison with the conventional FBs in
lossless-to-lossy image coding.
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Figure 8: Frequency responses of PLPRFBs: (a)8×24 PLPUFB, (b)8×24 PLBOFB(analysis), (c)8×24 PLBOFB(synthesis).

Table 3: Comparison of lossless-to-lossy image coding (Lossless
bit rate[bpp] and PSNR[dB]).

Lossless PSNR[dB]
FILTER bit rate 1.00 0.50 0.25

[bpp] [bpp] [bpp] [bpp]
‘Barbara’

5/3 and 9/7-tap DWT 4.87 34.88 30.49 27.25
8×24 PUFB [6] 4.82 36.07 31.98 28.38
8×24 BOFB [7] 4.77 36.18 32.03 28.40
8×24 PLPUFB 4.77 36.14 31.92 28.33
8×24 PLBOFB 4.76 36.21 31.99 28.36

‘Elaine’
5/3 and 9/7-tap DWT 5.11 34.61 32.94 31.51

8×24 PUFB [6] 5.06 35.24 33.29 31.34
8×24 BOFB [7] 5.04 35.32 33.24 31.26
8×24 PLPUFB 5.05 35.31 33.28 31.33
8×24 PLBOFB 5.03 35.38 33.33 31.33

‘Finger’
5/3 and 9/7-tap DWT 5.84 29.07 25.99 23.51

8×24 PUFB [6] 5.68 30.21 26.59 23.79
8×24 BOFB [7] 5.65 30.25 26.62 23.77
8×24 PLPUFB 5.66 30.26 26.58 23.71
8×24 PLBOFB 5.66 30.21 26.62 23.91

Average of 10 test images
5/3 and 9/7-tap DWT 5.31 32.95 30.06 27.62

8×24 PUFB [6] 5.32 33.46 30.33 27.68
8×24 BOFB [7] 5.29 33.53 30.31 27.65
8×24 PLPUFB 5.29 33.56 30.32 27.62
8×24 PLBOFB 5.29 33.56 30.37 27.70
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