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ABSTRACT

This paper presents a novel lifting factorization of discrete cosine
transform type-II and IV (DCT-II and IV). Although some conven-
tional integer DCT-IIs (IntDCT-IIs) with block size 8 have been
proposed, they are not generalized as arbitrary block size M . Us-
ing block lifting factorization which has an efficient structure for
lossless-to-lossy image coding, we present IntDCT-IIs and IVs with
arbitrary block sizeM that is called block lifting-based DCT-IIs and
IVs (BLDCT-IIs and IVs). Finally, the validity of our method is
proved by showing the results of lossless-to-lossy image coding in
the most general case of the block size 8 and the extended size 16.

Index Terms— discrete cosine transform (DCT), block lifting
factorization, lossless-to-lossy image coding

1. INTRODUCTION

The discrete cosine transform (DCT) [1] is used to image, video
and audio coding (compression) standards such as JPEG [2] and
MPEG [3], because it has excellent property and many fast algo-
rithms. There are several types in DCT. DCT type-II (DCT-II) and
DCT type-III (DCT-III) which is the inverse transform of DCT-II are
adapted to image and video coding. And DCT type-IV (DCT-IV) is
also important for some fast algorithms of DCT-II or modified DCT
(MDCT) [4] in audio coding. In JPEG, DCT-II is applied to lossy
image coding, and a linear prediction is applied to lossless image
coding [5]. We have to prepare both lossy and lossless compressed
data because DCT-II and linear prediction do not have correlation
each other.

Recently, higher quality data is demanded by the spread of
broadbands and the development of multimedia contents. Some
integer DCT-IIs (IntDCT-IIs) have been proposed for lossless-to-
lossy image coding [6–8]. However the conventional methods are
described about only block size 8.

This paper presents a general block lifting factorization of M -
channel DCT-II and IV. We call themM -channel block lifting-based
DCT-II and IV (BLDCT-II and IV). Finally, the validity is shown
by the comparison of our methods and conventional methods in
lossless-to-lossy image coding.

Notations: I, J,MT andM[N ] are an identity matrix, a reversal
matrix, a transpose of matrixM and a N × N square matrix.

2. REVIEW

2.1. Discrete Cosine Transform (DCT)

The m column and n row element of M -channel DCT-II matrix
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where 0 ≤ m, n ≤ M − 1 and cm = 1/
√

2 (m = 0) or 1 (m �= 0).
DCT can be factorized to some matrices for a fast algorithm.

Chen et. al., present a fast algorithm of DCT-II [1] as follows:
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(1)

Using C
[M ]
III = C

[M ]
II

T
, we can easily obtain a matrix factorized

DCT-III.
Next, note that the matrix of DCT-IV can be presented as
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2.2. Lifting Structure

2.2.1. Basic Lifting Structure

Lifting structure [9] with rounding operators which quantize input
signals can achieve lossless-to-lossy image coding. Fig.1(a) shows
basic lifting structure. Analysis input signals xi and xj , analysis out-
put and synthesis input signals yi and yj , synthesis output signals zi
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(a)

(b)

Fig. 1. Lifting structure: (a)basic lifting structure, (b)block lifting
structure.

and zj , lifting coefficient P and rounding operatorR are represented
as

yi = xi + R[Pxj ]

yj = xj

zi = yi − R[Pyj ] = xi

zj = yj = xj

where R[.] is rounding operation. In this case, the lifting matrix and
its inverse matrix are as follows:[

1 P
0 1

]
,

[
1 P
0 1

]−1

=

[
1 −P
0 1

]
.

2.2.2. Block Lifting Structure

Block lifting structure [10] is an efficient structure for lossless-to-
lossy image coding. The structure achieves higher compression ratio
because it can merge many rounding operators. Fig.1(b) shows block
lifting structure. Analysis input signal vectors xi and xj , analysis
output and synthesis input signal vectors yi and yj , synthesis output
signal vectors zi and zj , N × N lifting coefficient matrix P and
rounding operator R are represented as

yi = xi + R[Pxj ]

yj = xj

zi = yi − R[Pyj ] = xi

zj = yj = xj

where R[.] is rounding operation. In this case, the block lifting ma-
trix and its inverse matrix are as follows:[

I P
0 I

]
,

[
I P
0 I

]−1

=

[
I −P
0 I

]
.

3. BLOCK LIFTING-BASED DISCRETE COSINE
TRANSFORM TYPE-II AND IV (BLDCT-II AND IV)

The block lifting structure is an efficient structure for lossless-to-
lossy image coding [10]. In this paper, LUL (lower-upper-lower tri-
angular matrix) and ULU (upper-lower-upper triangular matrix) de-
composition based block lifting factorization of DCT-II and IV are
proposed.

3.1. Block Lifting Factorization based on LUL Decomposition

A novel block lifting factorization of DCT-II based on LUL decom-
position is explained. First, the block lifting matrix are multiplied
from the right sides ofU in (1) as[

U0 U0

U1 −U1

] [
I 0

−S0 I

]
=

[
I U0
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]
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0
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And the other block lifting matrix is multiplied from the right side
of (3) as [
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Then, the other block lifting matrix is multiplied from the right side
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Consequently, U can be factorized into the lifting structures using
(3)-(5) as[
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]
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UsingU0 = 1√
2
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√
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2
CIV , (1) can

be factorized into the lifting structures as follows:
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Fig.2(a) showsM -channel BLDCT-II in (6).
Next, a novel block lifting factorization of DCT-IV is explained.

The block lifting matrix are multiplied from the right sides of (2) as[
V0 V1

VT
1 V2

] [
I 0

−Y00 I

]
=

[
I V1

−Y00 T0

]

where

{
Y00 = V−1

1 (V0 − I)
T0 = −V−1

1 V0V1
. (7)
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(a) (b)

Fig. 2. M -channel BLDCT-II: (a)based on LUL decomposition, (b)based on ULU decomposition.

(a) (b)

Fig. 3. 4-channel BLDCT-II: (a)based on LUL decomposition, (b)based on ULU decomposition.

And the other block lifting matrix is multiplied from the right side
of (7) as

[
I V1

−Y00 T0

] [
I −Y01

0 I

]
=

[
I 0
0 −I

] [
I 0

Y00 I

]
where Y01 = V1. (8)

Consequently, (2) can be factorized into the lifting structures using
(7) and (8) as follows:

C
[M ]
IV =
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I 0
0 −I

] [
I 0
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] [
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0 I

] [
I 0

Y00 I

]
. (9)

3.2. Block Lifting Factorization based on ULU Decomposition

Previous block lifting factorizations are based on LUL decomposi-
tion. We also propose another novel block lifting factorization of
DCT-II and IV based on ULU decomposition.

Computing three matrices without P, diag{I,−X03} and W
in (6), we can obtain the following matrix.

X �
[

I 0
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]
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The block lifting matrices are multiplied from the left side ofX as
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Hence, we can obtainM -channel BLDCT-II based on ULU decom-
position as follows:

C
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Fig.2(b) showsM -channel BLDCT-II in (11).
Similarly, we can obtainM -channel BLDCT-IV based on ULU

decomposition as follows:

C
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3.3. Completion of Lifting Factorization

Although (6) and (11) are not complete lifting structure due to X03

andX13 in (6) and (11), we can achieve the completeness by iterat-
ing lifting factorization of C[M ]

II and C
[M ]
IV with shrunk size shown

as Fig.2. Therefore,C[4]
II has special lifting structures as

X
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X
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[
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] [
1 0
β 1

] [
1 α
0 1

]

where α =
cos(−π

8
) − 1

sin(−π
8
)

, β = sin(−π

8
).

Fig.3(a) and (b) show 4-channel BLDCT-IIs in (6) and (11). The
white circles are rounding operators and the black ones are adders. It
is clear that 4-channel BLDCT-IIs have an efficient structure because
they have only five rounding operators, respectively.
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Table 1. Comparison of lossless image coding (Entropy [bpp]).
M = 8 M = 16

Image Komatsu’s Tran’s BLDCT-II BLDCT-II
(512 × 512) RDCT [6] BinDCT [8] LUL ULU LUL ULU
Baboon 6.275 6.896 6.273 6.273 6.257 6.239
Barbara 5.022 5.511 5.015 5.010 5.082 5.002
Boat 5.217 5.732 5.216 5.211 5.275 5.231
Elaine 5.248 5.913 5.249 5.244 5.289 5.250
Finger1 6.071 6.384 6.072 6.067 5.917 5.870
Finger2 5.869 6.145 5.866 5.859 5.702 5.624
Goldhill 5.189 5.711 5.183 5.179 5.248 5.195
Grass 6.179 6.679 6.178 6.177 6.148 6.129
Lena 4.686 5.217 4.676 4.676 4.830 4.754
Pepper 4.976 5.516 4.975 4.973 5.077 5.032
Ave. 5.473 5.970 5.470 5.467 5.483 5.433

Table 2. Comparison of lossy image coding (PSNR [dB]).
M = 8 M = 16

Image Bit rate Komatsu’s Chen’s Tran’s BLDCT-II BLDCT-II
(512 × 512) [bpp] RDCT [6] IntDCT [7] BinDCT [8] LUL ULU LUL ULU
Baboon 0.25 22.562 22.559 20.713 22.566 22.567 22.711 22.709

0.50 24.799 24.768 21.851 24.794 24.803 25.033 25.019
1.00 28.237 28.159 24.542 28.241 28.245 28.394 28.366

Barbara 0.25 26.928 26.903 23.702 26.935 26.936 27.900 27.904
0.50 30.653 30.548 27.141 30.657 30.660 31.625 31.600
1.00 35.882 35.827 31.183 35.893 35.895 36.180 35.979

Goldhill 0.25 29.355 29.360 27.352 29.354 29.364 29.607 29.606
0.50 31.920 31.938 29.274 31.927 31.926 32.112 32.064
1.00 35.195 35.307 31.306 35.210 35.210 34.898 34.744

Lena 0.25 31.834 31.797 29.028 31.832 31.836 32.522 32.508
0.50 35.452 35.414 32.254 35.459 35.458 35.658 35.501
1.00 38.702 38.951 35.515 38.774 38.765 36.815 36.980

Pepper 0.25 31.380 31.378 28.487 31.389 31.392 31.924 31.923
0.50 34.377 34.371 31.525 34.363 34.373 34.192 34.127
1.00 36.678 36.842 34.159 36.700 36.703 35.835 35.660

4. RESULTS

In this paper, we design four 8 and 16-channel BLDCT-IIs based on
LUL and ULU decomposition. They are compared to the conven-
tional methods, and the validity of them are shown in lossless-to-
lossy image coding.

4.1. Application to lossless image coding

Our BLDCT-IIs are applied to lossless-to-lossy image coding. The
set partitioning in hierarchical trees (SPIHT) progressive image
transmission algorithm [11] was used to encode the transformed
images. The comparison of

Entropy [bpp] =
Total number of bits [bit]

Total number of pixels [pixel]

in lossless image coding are shown in Table 1. We chose Komatsu’s
reversible DCT (RDCT) [6] and Tran’s binary DCT (BinDCT) [8]
as the conventional methods. Chen’s IntDCT [7] was not chosen
because it has so bad results for lossless image coding. In Table 1, it
is obvious that our BLDCT-IIs present better performance than the
conventional IntDCT-IIs in lossless image coding. Each of BLDCT-
II shows the different performance depending on an image.

4.2. Application to lossy image coding

If lossy compressed data is required, it can be achieved by interrupt-
ing the obtained lossless bit stream. The comparison of

PSNR [dB] = 10 log10

(
2552

MSE

)

where MSE is the mean squared error in lossy image coding are
shown in Table 2. We chose Komatsu’s RDCT [6], Chen’s Int-
DCT [7] and Tran’s BinDCT [8] as the conventional methods. In
Table 2, our BLDCT-IIs present better performance than the con-
ventional IntDCT-IIs in lossy image coding. In low bit rate, the
texture remained by using 16-channel BLDCT-II is more crear than
8-channel IntDCT-IIs because high frequency components can be
analyzed by bigger block size. Fig.4 shows the enlarged images of
‘BARBARA’ which are the original image and its lossy compressed
images by the conventional IntDCT-IIs and the proposed BLDCT-IIs
when bit rate is 0.25 [bpp].
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Fig. 4. Enlarged image of ‘Barbara’ (bit rate: 0.25 [bpp]): (a)original image, (b)compressed image by 8-channel Komatsu’s RDCT [6], (c)8-
channel Chen’s IntDCT [7], (d)8-channel Tran’s BinDCT [8], (e)8-channel BLDCT-II (LUL), (f)8-channel BLDCT-II (ULU), (g)16-channel
BLDCT-II (LUL), and (h)16-channel BLDCT-II (ULU) .

5. CONCLUSION

In this paper, we proposed a novel IntDCT-II and IV based on block
lifting structure. Our IntDCT-II and IV, called M -channel BLDCT-
II and IV, have arbitrary block sizeM that is not only 8. In addition,
our BLDCT-II included BLDCT-IV are more suitable for lossless-
to-lossy image coding, because it shows better performance than the
conventional IntDCT-IIs. Our BLDCT-II and IV can be easily ex-
tended into ones with different size which is more suitable.
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