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Abstract. We present an error analysis for two related quadrature methods
(the Delves-Lyness method and its modification by Kravanja, Sakurai and Van
Barel) for computing all the zeros of an analytic function that lie inside the
unit circle. We consider the forward as well as the backward approximation
error in case the integrals are computed via the trapezoidal rule on the unit
circle. Contrary to the Delves-Lyness method, the quadrature error that arises
from the zeros located inside the unit circle does not affect the results of the
approach of Kravanja et al. Numerical experiments illustrate our main results.
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1 Introduction

Let the complex function f be analytic in a simply connected region W of the
complex plane that includes the closed unit disk. Assume that f has no zeros
on the unit circle T. We consider the problem of computing all the zeros of f
that lie inside T, together with their respective multiplicities.

Methods for the determination of zeros of analytic functions that are based
on the numerical evaluation of integrals are called quadrature methods [8]. Our
approach to this problem can be seen as a continuation of the pioneering work
by Delves and Lyness [4].

Let N denote the total number of zeros of f that lie inside T, i.e., the num-
ber of zeros where each zero is counted according to its multiplicity. Suppose



that NV > 0. The value of N can be calculated via numerical integration or
by applying the principle of the argument [6, 21]. We may therefore assume
that N is known.

Let n denote the number of mutually distinct zeros of f that lie inside T.
Let z,..., z, be these zeros and 14, ..., v, their respective multiplicities.

Define the associated polynomial Py of degree N as

Py(z) == H(z — 2)"*.

Let the complex function g : W — C be defined by f = Pyg. Then g is
analytic in W and ¢ has no zeros inside and on T. The following holds:

fliz)  Py(z) g <~ wu | d®)
f(2) N Py(2)  g(2) ;Z—Zk * 9(z)

The second term in the right-hand side, ¢'/g, is analytic inside and on T. It
follows that f'/f is meromorphic inside and on T, with simple poles at the z
and corresponding residues equal to v.

Define the moments p, as

1 » /'(2)

Mo ) T

The residue theorem implies that the p,’s are equal to the Newton sums of the

dz, p=0,1,2,....

unknown zeros,
o= wah,  p=0,1,2,. ... (1)
k=1

Delves and Lyness calculated the coefficients of Py in the standard monomial
basis,
Py(2) = 2N 40,2V - oy,

via Newton’s identities.

Theorem 1 (Newton’s identities)

p1+op =0
po+p101+209=0

PN +pN-101+ -+ oy + Noy =0.

Proof. An elegant proof was given by Carpentier and Dos Santos [1]. a

In this way Delves and Lyness reduced the problem to the easier problem
of computing the zeros of a polynomial. First, the moments puq, ..., uy are
approximated via numerical integration along T and then Newton’s identities
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are used to obtain approximations for the coefficients o¢,...,05 by solving
a triangular linear system of equations. Unfortunately, the map from the
Newton sums to the coefficients of Py is usually ill-conditioned. Also, the
associated polynomials that arise in practice may be such that small changes
in the coefficients produce much larger changes in some of the zeros.

As some of the authors of the present paper have argued elsewhere, what
is wrong with the approach taken by Delves and Lyness is that it considers
the wrong set of unknowns. One should consider the mutually distinct zeros
and their respective multiplicities separately. This is the approach that was
proposed by Kravanja et al. in [9, 10, 11, 13]. It leads to a quadrature method
that generalizes the approach of Delves and Lyness. The mutually distinct
zeros are given by the eigenvalues of a generalized eigenvalue problem involving
the following Hankel matrices:

Mo M1 - Hp— M1 M2 - Hp
H,=| M S and HZ:= | 1"

/Ll’nfl ... - .. /LL2’I'L72 /—’[/’I'L - .. ... /J/2n71
Theorem 2 The eigenvalues of the pencil Hy> — AH,, are given by z1,. .., 2.
Note that the n mutually distinct zeros zq,..., 2, are determined by the 2n
moments Mo, s -+ -5 H2n—1-

The value of n is determined indirectly. Once n and zq,..., z, have been
found, the problem becomes linear and the multiplicities vq,...,v, can be

computed by solving a Vandermonde system, cf. Equation (1). As the multi-
plicities are known to be integers, this system does not need to be solved very
accurately.

For further details about the algorithm, in particular concerning the use
of formal orthogonal polynomials to improve the numerical stability, we refer
to [9, 11, 13], in which also the case of clusters of zeros is considered and in
which the connection with rational interpolation at roots of unity is explored.
A Fortran 90 implementation of the algorithm is available (software package
ZEAL) [15]. In [12] Kravanja and Van Barel presented a further generalization
of this approach that does not require the derivative f’. In [14] they considered
the related problem of computing all the zeros and poles (together with their
respective multiplicities and orders) of a meromorphic function that lie inside
a Jordan curve.

Torii and Sakurai [20] proposed a method to find zeros of an analytic func-
tion by using the extended Euclidean algorithm for polynomials constructed
from the moments j,. Sakurai et al. [19] applied this method in case f has
dense clusters of zeros inside the unit circle. In these methods the Fast Fourier
Transform was used to evaluate the moments.



Clustering methods for finding multiple or close zeros as clusters can be

used to evaluate initial approximations and to improve convergence of factoring
methods [2, 17, 18].

The integral that defines p, is an integral along a closed curve and hence,
once the curve is parametrized and the integral is written as a Riemann integ-
ral, it is the integral of a periodic function along one period. The trapezoidal
rule is therefore an appropriate quadrature rule [3, 5, 7, 16]. Delves and Lyness
as well as Kravanja et al. used this rule to calculate approximations for the
moments.

In both quadrature methods it was considered that the quadrature error
directly affects the computed approximations of the zeros, and that hence it
is necessary to evaluate the integrals sufficiently accurately. In this paper we
present a detailed (forward and backward) error analysis in case the integrals
are computed via the K-point trapezoidal rule on the unit circle. We show
that, contrary to the Delves-Lyness method, the quadrature error that arises
from the zeros located inside the unit circle does not affect the results of
the approach of Kravanja et al. Numerical experiments illustrate our main
conclusions.

2 Quadrature error of the moments

We will write p,(f) instead of simply 1, whenever we want to emphasize the
dependence on f. With obvious definitions of j,(Py) and p,(g), the following
holds:

pp(f) = bp(Pn) + 11p(g),  pp(g) = 0.

In other words, only the contribution of Py counts. Indeed, f and Py have
exactly the same zeros and corresponding multiplicities inside (and on) T.

Let K be a positive integer. Then the Kth roots of unity are given by

2mi

wj=exK7, j=0,1,..., K — 1.

By approximating the integral that defines 1, via the K-point trapezoidal rule
(after having rewritten this integral as a Riemann integral over the interval
[0,1]), one obtains the following approximation for /i,

K-1
N N 1 +1 [ (wy)
fiy = fip(f) = - ) W}
P p(f) K po 7 f(w)
Note that fi, = ji,1x for all p and hence only fi, ..., fix_1 are relevant.

How good is this approximation? In the following pages we will present a
forward and backward error analysis.



Let us consider Py /Py and ¢'/g in more detail. One can easily verify that
the Laurent series at infinity of Py /Py is given by

Py(z) g o p2
PN(Z)_Z+Z2+Z3+ '

The series converges for |z| > pr where

pr = @?gﬂm < 1L

(The subscript I stands for interior.) In other words, py is equal to the modulus
of the zero(s) of f that lie(s) inside T and that is (are) closest to T. As ¢'/g is
analytic inside and on T, it has a Taylor series expansion at the origin,
g'(2)
9(2)
The series converges for |z| < pg where pg > 1 is defined as the modulus of
the zero(s) or the singularity of f that lie(s) outside T and that is (are) closest

::fyo+fylz+’ygz2+----

to T. (The subscript E stands for ezterior.) By combining these two series
expansions, we obtain the following important equation:

Flz) k2
flz) +z3+z2+z

for p; < |2| < pg. The series converges in a ring around the unit circle. In

+ Y%+ mNz+ 7+

particular, it converges on T itself, for example for z equal to one of the Kth
roots of unity.

With obvious definitions of fi,(Py) and fi,(g), the following holds:
[y (f) = iw(Pn) + fip(9)-

(Note that fi,(g) is an approximation of zero.) We consider the contributions
of Py and g separately.

Let us first consider fi,(Py).

Theorem 3 .
fip(Pn) = ppiric,  0<p< K—1.
r=0

Proof. The following holds:

ﬂp(PN) = W



for 0 < p < K — 1. The last step follows from the fact that

1 _ 1, ifp—I1l=rK forr e Z;
p—I ) p )
_ —l _ 2
K ;wﬂ { 0, otherwise. 2)
This proves the theorem. O

The forward approximation error related to Py is thus given by

fip(Px) = pp(Pn) = f1p(PN) = pp = ppric + fpror + fpyzre + - (3)

Note that the terms in the series in the right-hand side indeed converge to
zero, which is a necessary condition for the series to converge. Also,

fip(PN) — pp = O(pI;JrK) (4)

as follows from Equation (1) and the definition of p;. The approximation
improves as K increases, as is to be expected, and the larger p or the smaller
pr, the better.

Let us now turn our attention to fi,(g).

Theorem 4

+00
ip(9) =Y Yrk—p-1,  0<p< K -1
r=1

Proof. The following holds:

N 1 11 9'(w))
() = 7=
' K im0 T g(wy)
1 K-1 +00
1
= 22wt ()
7=0 =0
+00 1 K-1
_ p+i+1
= 2ol )
1=0 =0
+oo
= Z’VTK—p—l
r=1
The last step follows form the relation (2). This proves the theorem. O

Note that 0 < p < K — 1 and that the summation starts with index r = 1.
This formula can be interpreted as follows. As ¢'/g is analytic inside and
on T, all its “negative” Laurent coefficients are equal to zero, in particular
Y_p_1, the coefficient belonging to the term 1/2P'. This is the coefficient that
the trapezoidal rule approximates. The approximation error is obtained by
summing all the Laurent coefficients whose index is a (positive or negative)



multiple of K away. The forward approximation error related to g is therefore
given by

~

Hp(g) - Hp(g) = ﬂp(g) —-0= YK —p—1 + V2K —p—1 + V3K —p—1 + -

Since ¢'/g is analytic in the closed disk {z € C : |z] < p}, 1 < p < pp, it
follows that M
|7]|§_7 j2071727"'7
pi

where ,
M := max g (Z)
z=p | 9(2)
It follows that ke
400 —p—
M (5)
fip(g)] < T~ M2
’ Z prrrt T (R
Therefore kg
e
o) = in(9) = () =0( () ). )

By combining Equations (4) and (5), we obtain our result concerning the
forward approximation error.

Theorem 5 For every p € R such that 1 < p < pg, the following holds:
fip(f) — pp = O(pIIH—K) + O(ppHiK)-

Both Py (via p;) and ¢ (via p < pg) contribute to the approximation error.
Note that, in a certain sense, these contributions work in opposite ways. More
specifically, as far as the contribution of Py is concerned, for fixed K, the
larger p, the more accurate, while, as far as the contribution of ¢ is concerned,
again for fixed K, the smaller p, the more accurate. To obtain H,, and H>
the moments g, i1, ..., pion—1 are needed. Hence, the order of magnitude of
i and yx_o, determine the overall error.

3 Error analysis of the Kravanja-Sakurai-Van
Barel method

In this section, we give an error analysis of the approach of Kravanja et al. The
following theorem shows that, as far as the contribution of Py is concerned, the
fact that the moments are approximated via the trapezoidal rule has no effect
at all, i.e., the generalized eigenvalues are still given by the zeros zi,..., 2z,
(cf. Theorem 2). The corresponding multiplicities are obtained by solving a
Vandermonde like linear system.

Define

n—1 n—1

[A{n(PN) = [ ﬂk+l(PN) ]k,l:() and [A{E(PN) = [ /&“1+k+l(PN) ]k,lzo .



Theorem 6 The eigenvalues of the pencil H<(Py) — AH,(Py) are given by
Z1y ..y 2n. The corresponding multiplicities vy, ..., v, are the solution of the
linear system of equations

n

22 .
Z(l_sz)Vk:Mp(PN), p=20,...,n—1. (6)

k=1 k

Proof. Let V,, be the Vandermonde matrix

1 - 1
V, = “ Zn
2t 2nt
Note that V;, is nonsingular since 2y, ..., z, are mutually distinct.

From (1) and (3) it follows that

n

i(Py) = > wah (1428 + 25 +--)

k=1
- v,
= > () 4 (7)
— M=z
k=1
forp=0,1,.... Let
. Vg
= — k=1,...,n.
Vg 1_215(7 ) y 1

~

Define the diagonal matrices D,, and Z,, as
D, := diag (in, ..., 0n) and Zyn = diag (z1,. .., 2n)-

Then one can easily verify that

fp(Py) =Y on2p
k=1
implies that H,(Py) and HZ(Py) can be factorized as follows:
H,(Py) =V,D,V' and  HZ(Py)=V,D,Z,VL.
It follows that

H<(Py) — AH,(Py) = V,,D(Z, — M)V

n

This proves the first part of the theorem.
Equation (7) immediately leads to the second part of the theorem. O



Let us now investigate the influence of g in more detail. Define

on(2) == H(z — ) = 2" Uy 2" w2 g
k=1

and let C), € C"*" be the corresponding companion matriz

0 - 0 —up
1 0 --- 0 —u
C,=10 1 : :
: . .0 —Up—2
(0 0 - 1 —uy |

From Theorems 2 and 6 one can easily verify that
H:=H,C, and  HZ(Py)= H,(Py)C,.

The computed approximations Zi,..., 2, of the zeros are given by the eigen-
values of the pencil H<(f) — AH,(f). Let

on(2) = ][ (2 = 2)
k=1
and let C,, be the corresponding companion matrix. Then H=(f) = H,(f)C,.

Theorem 7 If H,(f) is nonsingular, then the following holds for every p € R
such that 1 < p < pg

6u(z)| = O™ 9),  k=1,...,n.

Proof. Since C,, and C,, are the companion matrices of ¢, and ¢, respectively,

Pn(21) 21
— _VnTCnen +
and
©n(21) 21
: — _VnTCnen + )
©n(2n) Zn
where ¢, := [ 0O --- 01 ]T. Hence

(pn(zl) (Pn(zl)
: - = VT(On - On)en

A~ ~



Since H<(P,) — H,(Py)Cr = 0 and @, (2) =0, k =1,...,n, it follows that

Therefore

[Gn (2| < Vi Moo 1H5 oo (1 (9) ol Crenlloo + I1H;5 (9)enlloo)

for k=1,...,n. As H, is nonsingular, the third factor in the right-hand side
determines the order of magnitude. Let us investigate the norm of H,,(g). The
following holds:

n—1
[Hn(9)|loe = max Z|ﬂk+z(g)

0<k<n—1

M
< k+l+1—-K
- 1—pK 0<k<n 1Zp

M p"=1, K
1—p K p-—1
= O™ ")

The last column of H<(g) can be estimated in a similar way. It follows that
| (2k)| = O(p* F), k=1,...,n.

This proves the theorem. O

Since the vector of the coefficients of ¢,, — ¢, is given by —C’nen + Che,, it
follows that

120 = @nll = (Cr = Caeall,

where the norm of a polynomial is defined as the (vector) norm of its vector

of coefficients. The following result can be easily proved in as similar way as
Theorem 7.

Theorem 8 If ﬁn(f) s nonsingular, then the following holds for every p € R
such that 1 < p < pg

16 = @ull = O(p™ ).
Corollary 9 K > 2n s a necessary condition to obtain a small approzimation
error.
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4 Numerical experiments

Let us now show the results of some numerical experiments. The algorithm
was implemented in Matlab with double precision arithmetic.

Let 2%, ..., 2. denote the approximate zeros obtained by the Delves-
Lyness method where the moments are calculated via the K-point trapezoidal
rule (at the K'th roots of unity). Similarly, let 212", ..., 252" denote the ap-
proximate zeros obtained by calculating the eigenvalues of the pencil [—A[,f( f)—
A, (f). (The superscript K-S-V refers to the authors of [11].) The multipli-

cities were calculated by solving the linear system of equations

S (X Y n =), p=0.n—1
7—__ Vg = [ ) p=Y,...,n—1,
e el Ay !

cf. Equation (6) in Theorem 6.

Example 1 Suppose that
Pn(2) = (2 —0.2)*(z — 0.2+ 0.5i) (2 — 0.2 — 0.5i)(z — 0.9)?

and
g(z) = L.

Observe that p; = 0.9 and pp = oco. In Table 1 we show the results for various
values of K.

K-S-V
8

In case K = 8, the computed approximations of the zeros z;’ Ifés‘v

R 2
are given by
0.20000000000000 + 0.500000000000002
0.20000000000000 — 0.50000000000000¢
0.19999999999999 + 0.00000000000000¢
0.90000000000000 + 0.00000000000000z

and the corresponding approximations of the multiplicities are given by

1.00000000000000 — 0.00000000000001%
1.00000000000000 + 0.00000000000001%
2.99999999999999 — 0.00000000000000z
2.00000000000001 + 0.000000000000002

Since g = 1, only Py plays a role and the computed approximations are very
accurate, cf. Theorem 6.

Example 2 Suppose that
Py(2) = (2 — 0.2)*(z2 — 0.2 + 0.5i)(z — 0.2 — 0.5i)(z — 0.9)*

and
9(2) = (z = 2)(2 — 3) (2 — 4)(z — 5) exp(5z® + 22" + 2°).

11



Table 1: Approximation errors for various values of K in Example 1
K=8 K=16 K=32 K=64 K=128
Jmax i, = pp|  1.50e+00 4.55e-01 7.11e-02 2.36e-03  2.78e-06
Spsean—
max |22 — 2] 3.68¢-01 3.10e-01 1.53e-01 4.15e-02  4.19e-03
<j<n 7

max |20 — 2| 5.16e-15  2.66e-15 4.6le-15 6.49e-15  5.72e-15

1<j<n

Observe that p;y = 0.9 and pp = 2. In Table 2 we show the results for various
values of K. In case K = 16, the computed approximations of the zeros are
given by

0.20116264354169 + 0.50032172670692¢
0.20116264354169 — 0.50032172670692¢
0.19637048394944 + 0.000000000000007
0.89943464186948 + 0.000000000000007

and the corresponding computed approximations of the multiplicities are given
by

0.99381191467514 — 0.00479762188495:
0.99381191467514 + 0.00479762188495¢
3.00545283047740 — 0.000000000000002
2.01018978549059 + 0.000000000000007

In case K = 64, the computed approximations of the zeros are given by

0.20000000000000 + 0.500000000000007
0.20000000000000 — 0.50000000000000%
0.19999999999999 + 0.000000000000002
0.89999999999999 + 0.000000000000002

and the corresponding computed approximations of the multiplicities are given
by

0.99999999999999 — 0.00000000000001%
0.99999999999999 + 0.00000000000001¢
2.99999999999998 — 0.00000000000000:
1.99999999999992 + 0.000000000000002

Acknowledgements

This research was partially supported by the K.U.Leuven (Bijzonder On-
derzoeksfonds), project “SLAP: Structured Linear Algebra Package,” grant
#0OT/00/16.

12



Table 2: Approximation errors for various values of K in Example 2
K=8 K=16 K=32 K=64 K=128
Jmax i, = pp| 127401 4.55e-01 7.11e-02 2.36e-03  2.78e-06
Spsean—
max |22 — 2] 8.80e-01 3.13e-01 1.53e-01 4.15e-02  4.19e-03
<j<n 7

max |20 — 2| 1.57e+00 3.63e-03 5.32e-08 9.66e-15  2.1le-15

1<j<n
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