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Abstract. An interval method for finding a polynomial factor of an analytic function f(z) is

proposed. By using a Samelson-like method recursively, we obtain a sequence of polynomials

that converges to a factor p∗(z) of f(z) if an initial approximate factor p(z) is sufficiently close

to p∗(z). This method includes some well known iterative formulae, and has a close relation to

a rational approximation. According to this factoring method, a fixed point relation for p∗(z)
is derived. Based on this relation, we obtain a polynomial with complex interval coefficients

that includes p∗(z).

Key words: Factoring method, zeros of analytic function, interval method.

1 Introduction

The purpose of this paper is to present a method for finding a set of polynomials which

includes a factor of an analytic function f(z) defined for |z| < R, where R > 0.

For the determination of multiple or close zeros of f(z), iterative methods usually require

large number of iterations, or fail by a jump of an approximation. Factoring methods can find

such zeros as a polynomial. The computation of coefficients of a polynomial of which zeros are

close is more stable than the determination of locations of close zeros.

Bauer and Samelson [2] have proposed a method to find a zero of a polynomial f(z) by con-

sidering Newton’s method for f(z)/q(z) at an approximation z0, where q(z) is a polynomial of

degree less than deg f . Jenkins and Traub [10] improved the order of convergence by modifying

q(z) in each iteration step. These methods can be regarded as a combination of two iterations

for approximations p(z) = z− z0 and q(z). Stewart [17] generalized these methods for the case

that the degree of p(z) is arbitrary. When p(z) is quadratic, it contains Bairstow’s method [1].

In [18], the relation of this method with qd-algorithm and König’s theorem is also considered.

A factorization of an analytic function by reducing a problem to a solution of infinite block

Toeplitz matrix is proposed in [3].

Grau’s method [7] improves approximate factors p1(z), . . . , pN(z) for a polynomial simulta-

neously. When all the approximate factors are linear, this method is just the Durand-Kerner

method [6]. When N = 2, Grau’s method is equivalent to the method in [17]. This method

can be extended to a simultaneous factoring method of arbitrary order of convergence by using

a rational Hermite interpolation ([4]).

† The author was partly supported by Grant-in-Aid for Scientific Research of the Ministry of Education,
Science, Sports and Culture, Grant No. (A)10740046.
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For the estimation of initial approximations, global methods to find zeros or poles in a given

domain ([5, 12, 19]) are used. When there exist dense clusters of zeros in the domain, the prob-

lem to find all the zeros in the domain is numerically extremely ill-conditioned. The location

and multiplicity of a cluster of zeros in a certain domain is a stable phenomenon. Clustering

methods ([9, 11, 15]) that find centers of clusters provide appropriate initial approximations for

factoring methods.

In Section 2, we show a method to generate a sequence of polynomials that converges to a

factor of an analytic function f(z). In Section 3, we derive a fixed point relation for a factor.

Based on this relation, a method for finding a set of polynomials that includes a factor of f(z)

is considered. In Section 4, an algorithm with circular arithmetic is proposed. Some examples

illustrate numerical features of the presented method in Section 5.

2 A factoring method

First, we consider the case that f(z) is a polynomial of degree m+ n. Suppose that f(z) =

p∗(z)q∗(z), where p∗(z) is a monic polynomial of degree m, and q∗(z) is a polynomial of degree

n having no zeros in common with p∗(z). Let p(z) and q(z) be approximations for p∗(z) and

q∗(z), respectively. Samelson’s method ([17]) defines an improved approximation p(z) + s(z)

for p∗(z) by calculating polynomials s(z) and t(z) satisfying

sq + tp = r, deg s < m, deg t < n, (1)

where r(z) = f(z)− p(z)q(z). The polynomials s and t are uniquely determined if p and q are

mutually prime. (1) is translated into a linear equation for the coefficients of s and t. These

coefficients are also calculated via the extended Euclidean algorithm for p and q ([16, 20]).

Let g be a function defined on zeros of a polynomial p. Let v be a polynomial of degree at

most deg p− 1 such that g − v is divisible by p. Then we denote v by v = mod(g, p). If g is a

polynomial then mod(g, p) is just a polynomial remainder of g divided by p. From (1) we have

(
r

q

)
− s = p

(
t

q

)
, deg s < deg p.

Therefore s = mod(r/q, p).

The following lemma shown in [16, 20] is essential for the factoring method described below.

The similar result is also given in [18]. The symbol ‖ · ‖ for a polynomial denotes the vector

1-norm for a vector of coefficients of the polynomial.

Lemma 2.1 Let p and q be mutually prime polynomials of degree m and n, respectively. Let

r be a polynomial of degree at most m + n. If ‖p‖ = O(1), ‖q‖ = O(1), and ‖r‖ = O(ε) with

sufficiently small ε > 0, then ‖s‖ = O(ε) and ‖t‖ = O(ε).

By applying (1) recursively, we obtain polynomial sequences {s(k)} and {t(k)} as follows.

s(k)(q + t(k−1)) + t(k)p = r, k = 1, 2, . . . , (2)

where t(0) ≡ 0. The polynomials s(k) and t(k) have the following property.
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Lemma 2.2 Let s(k) and t(k) be defined by (2). Under the same assumption with Lemma 2.1,

we have

‖s(k) − s(k−1)‖ = O(εk) and ‖t(k) − t(k−1)‖ = O(εk), (3)

for k = 1, 2, . . ., where s(0) ≡ 0 and t(0) ≡ 0.

Proof. In case of k = 1, (3) is obvious by Lemma 2.1. Assume that (3) is valid up to k − 1.

Then ‖s(k−1) − s(k−2)‖ = O(εk−1) and ‖t(k−1) − t(k−2)‖ = O(εk−1). It follows form (2) that

(s(k) − s(k−1))q + (t(k) − t(k−1))p = s(k)(t(k−1) − t(k−2)). (4)

Since ‖r‖ = O(ε), by Lemma 2.1 we have ‖s(k)‖ = O(ε). Hence ‖s(k)(t(k−1) − t(k−2))‖ = O(εk).

Therefore from (4) we obtain (3).

✷

Next theorem implies that the procedure (2) defines a factoring method.

Theorem 2.3 If ‖r‖ = O(ε), then for s(k) defined by (2),

‖p+ s(k) − p∗‖ = O(εk+1). (5)

Proof. Form (2) and f = p∗q∗, we have

(p+ s(k) − p∗)(q + t(k)) + (q + t(k) − q∗)p∗ = s(k)(t(k) − t(k−1)). (6)

By Lemma 2.2 we have

‖s(k)(t(k) − t(k−1))‖ = O(εk+1).

Since ‖t(k)‖ = O(ε), we can regard that q + t(k) and p∗ are mutually prime with sufficiently

small ε. Hence by (6) we have (5). ✷

If q and r are chosen so that f = qp + r, deg r < deg p, and if ‖p − p∗‖ = O(ε), then

‖r‖ = O(ε). Therefore the polynomial sequence p+ s(k) converges to p∗, provided the starting

factor p is sufficiently near p∗. When k = 0 and m = 2 this method is just Bairstow’s method.

Hereafter we denote p(k) := p+ s(k) and q(k) := q + t(k).

Now let us consider the case that f is given by a power series f(z) =
∑∞

k=0 ckz
k. Let R be a

fixed positive number. Let f be analytic for |z| < R with zeros ζi, i = 1, 2, . . . ordered so that

|ζ1| ≤ · · · ≤ |ζm| < |ζm+1| ≤ · · ·, and let ‖f‖ = O(1). Define p∗ =
∏m

i=1(z − ζi), and let q∗ be

an analytic function such that f = p∗q∗.
Suppose that ζ1, . . . , ζm form a cluster covered by a small disk with the radius δ < R around

the origin. Then p = zm can be regarded as a good initial approximation for p∗. In this case,

we can calculate s(k) and t(k) that satisfy (2) easily by setting

r(z) =
m−1∑
k=0

ckz
k and q(z) =

n+m∑
k=m

ckz
k−m. (7)

Moreover let

h(z) =
∞∑

k=m+n+1

ckz
k−m−n−1 (8)

then

f = p∗q∗ = r + pq + zm+n+1h. (9)
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Define

s(k)(z) = σ
(k)
0 + σ

(k)
1 z + · · ·+ σ(k)

m−1z
m−1,

and

t(k)(z) = τ
(k)
0 + τ

(k)
1 z + · · ·+ τ (k)

n−1z
n−1.

By comparing the coefficients in (2) we have the following relations.




c(k−1)
m

c
(k−1)
m+1 c(k−1)

m
...

. . .

c
(k−1)
2m−1 · · · · · · c(k−1)

m







σ
(k)
0

σ
(k)
1
...

σ
(k)
m−1


 =




c0
c1
...

cm−1


 (10)

and 


τ
(k)
0

τ
(k)
1
...

τ
(k)
n−1


 = −




c
(k−1)
2m c

(k−1)
2m−1 · · · c(k−1)

m+1

c
(k−1)
2m+1 c

(k−1)
2m · · · c(k−1)

m+2
...

...

c
(k−1)
2m+n−1 c

(k−1)
2m+n−2 · · · c(k−1)

m+n







σ
(k)
0

σ
(k)
1
...

σ
(k)
m−1


 , (11)

where c
(k−1)
m+j = cm+j + τ

(k−1)
j , j ≥ 0.

Let 1/f =
∑∞

k=0 dkz
k. In case of m = 1, we can verify that σ

(k)
0 = −dk−1/dk from (10) and

(11). Therefore p(k) = z + σ
(k)
0 is just the numerator of the [1/k − 1]-Pade approximant for f

at z = 0.

When f is not a polynomial, we should take account of influence of zm+n+1h to discuss the

convergence order of the method.

Theorem 2.4 Let p = zm, and let r, q and h be defined by (7) and (8). Let n = mK − 1. If

‖∆p‖ := ‖p− p∗‖ = O(ε), then

‖p(k) − p∗‖ = O(εk̂+1)

where k̂ = min(k,K).

Proof. Since

f = p∗q∗ = (p−∆p)q∗ = zmq∗ −∆pq∗

and ‖q∗‖ = O(1), it follows that

‖r‖ = O(‖∆p‖) = O(ε).

From (2) and (9) we have

(p(k) − p∗)q(k) + (q(k) − q∗)p∗ = s(k)(t(k) − t(k−1))− zm+n+1h. (12)

Since h is analytic for |z| < R, and all the zeros of p∗ lie in the disk with the radius δ < R,

w = mod(zm+n+1h, p∗) is well defined. Let u = (zm+n+1h− w)/p∗, then

zm+n+1h = w + p∗u.

Substituting it for (12) derives

(p(k) − p∗)q(k) + (q(k) − q∗ + u)p∗ = s(k)(t(k) − t(k−1))− w. (13)
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Since mod(zm+n+1, p∗) = mod((∆p)K+1, p∗),

‖w‖ = ‖mod(zm+n+1h, p∗)‖ = O(εK+1).

Moreover, by Lemma 2.2 we have

‖s(k)(t(k) − t(k−1))‖ = O(εk+1).

These relations conclude the theorem. ✷

Therefore the polynomial p(k) approaches p∗, provided the starting factor p is sufficiently near

p∗, and the degree of q is sufficiently large.

3 Validation for an approximate factor

In this section we show a method to give a validation for coefficients of a factor obtained by

the method given in the previous section.

From (13) we have a fixed point relation for p∗.

Theorem 3.1 Let w = mod(zm+n+1h, p∗). If q(k) has no zeros in common with p∗, then

p∗ = p(k) −mod

(
s(k)(t(k) − t(k−1))− w

q(k)
, p∗

)
. (14)

Let p be a set of polynomials so that p∗ ∈ p, and let w be a set of polynomials so that

w ∈ w.

Theorem 3.2 Let ‖r‖ = O(ε) with sufficiently small ε > 0. If q has no zeros in common with

any polynomial p̃ ∈ p, then

p∗ ∈ p(k) −mod

(
s(k)(t(k) − t(k−1))−w

q(k)
,p

)
. (15)

Proof. Since ‖t(k)‖ = O(ε), and q has no zeros in common with any polynomial p̃ ∈ p, we can

assume that q(k) = q + t(k) has no zeros in common with p̃ for sufficiently small ε. Therefore

mod

(
s(k)(t(k) − t(k−1))− w

q(k)
, p̃

)

is well defined. Substituting p for p∗, and w for w in (14) derives (15) by the inclusion property.

✷

Therefore if we can calculate w, and can also calculate s(k) and t(k) that satisfy

s(k)q(k) + t(k)p = s(k)(t(k) − t(k−1))−w

then

p∗ ∈ p(k) := p + s(k).
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Now let us consider a method to calculate w. Let

Cp =




0 0 · · · 0 −a0/am

1 0 · · · 0 −a1/am

0 1 · · · 0 −a2/am

...
...

...
...

0 0 · · · 1 −am−1/am




denotes the companion matrix of a polynomial

p(z) = a0 + a1z + · · ·+ amz
m (am �= 0).

The notation p̂ implies the vector (a0, a1, . . . , am)
T of the coefficients of p(z).

The following interpolation theorem was established in [18].

Theorem 3.3 Let p be a polynomial of degree m, and let z1, . . . , zm be distinct zeros of p. Let

g be a rational function defined at the zi. Let the coefficients of the polynomial v be defined by

v̂ = g(Cp)e1,

where e1 = (1, 0, . . . , 0)T . Then

v(zi) = g(zi), i = 1, 2, . . . , m.

Even when some of the zi coincide, the polynomial v of the above theorem is well defined

([18]). In this case, it represents the appropriate Hermite interpolant of g over the zeros of p.

This implies that g − v is divisible by p, and hence v = mod(g, p).

Here we shall use the following notations. The matrix |A| has elements |αij|, that is, absolute
value of the elements of A = (αij). The notation A ≤ B implies αij ≤ βij for every i and j,

where B = (βij). We also define |α| := maxα∈α |α| for a closed set α of complex numbers .

Theorem 3.4 Let h =
∑∞

k=0 γkz
k with |γk| < ηk where 0 < η < 1. Let v = mod(h, p∗), and

let v̂ be the vector of the coefficients of v. If the spectral radius of |Cp|, denoted by ρ(|Cp|), is
smaller than η−1, then

|v̂| ≤ (I − η|Cp|)−1e1.

Proof. Let v(k)(z) = mod(zk, p∗). By Theorem 3.3 we have the vector v̂(k) of the coefficients

of v(k) by

v̂(k) = (Cp∗)
ke1.

Therefore

v̂ =
∞∑

k=0

γkv̂
(k) =

∞∑
k=0

γk(Cp∗)
ke1.

Since |γk| < ηk for every k, and |Cp∗| ≤ |Cp| for p∗ ∈ p,

|v̂| ≤
∞∑

k=0

ηk|Cp∗|ke1 ≤
∞∑

k=0

ηk|Cp|ke1.
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By the hypothesis ρ(|Cp|) < η−1,
∑∞

k=0 η
k|Cp|k is well defined (for example see [8]), hence we

obtain the result of the theorem. ✷

If we define the polynomial v so that

|v̂| = (I − η|Cp|)−1e1

then above theorem implies that v ∈ v. Hence we can obtain w by w = mod(zm+n+1v,p).

There are some estimations for the upper bound of the radius of a circle that includes all the

zeros of the corresponding polynomial of |Cp| by using the coefficients of p (for example see

[13]). Therefore if all the zeros of any polynomial that belongs to p lie in a small disk then we

can expect that ρ(|Cp|) is also small.

4 The algorithm

We show the algorithm to calculate a factor by using circular arithmetic. We denote a circular

closed region z := {z | |z−c| ≤ d} by z := {c, d} with center c = mid(z) and radius d = rad(z).

For a polynomial p =
∑m

k=0 akz
k, the notation mid(p) gives the polynomial

∑m
k=0 mid(ak)z

k.

Suppose that the coefficients ck, 0 ≤ k ≤ m + n are given. For k > m + n, we assume that

only the parametersM and η that satisfy |ck| < Mηk−m−n−1 are given. Suppose that the radius

δ of a disk around the origin which includes m zeros of f is also given. Then the following

algorithm finds a polynomial with circular coefficients that includes a polynomial factor of f .

Algorithm

Input: {ck}m+n
k=0 , M , η, δ, m, n, ε, kmax

Output: p(k)

p← zm

r ← ∑m−1
k=0 ckz

k

q ← ∑m+n
k=m ckz

k−m

p← (z − {0, δ})m
s(0) ← 0

t(0) ← 0

for k = 1, 2, . . . , kmax

compute s(k) and t(k) such that

s(k)(q +mid(t(k−1))) + t(k)p = r

If ‖s(k) − s(k−1)‖ ≤ ε then exit for loop

end for

v ← (1, z, . . . , zm−1)(I − η|Cp|)−1e1
w ← mod(Mzm+n+1v,p)

s(k) ← mod
(

s(k)(t(k)−t(k−1))−w
q(k) ,p

)
p(k) ← (p+ s(k) − s(k)) ∩ p

5 Numerical examples

We implemented our algorithm in MATLAB with INTLAB package [14] which provides

circular arithmetic facilities for MATLAB.
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Example 1 Let

p∗(z) = (z − 10−3)(z + 10−3/2)(z − 10−3/4)

= z3 − 7.50× 10−4z2 − 3.75× 10−7z + 1.25× 10−10,

and let

q∗(z) = ex
5∏

k=1

(z − k)
3∏

k=1

(2z + k).

Coefficients ck were calculated by multiplying the polynomials and the truncated polynomial

of Maclaurin expansion of ex.

Parameters were m = 3, n = 12, δ = 10−2, η = 1/2 and M = 1. Underlines show the

significant figures of coefficients.

p(1) = z3 − {7.499980503774× 10−4, 8.5× 10−8}z2

−{3.749990236502× 10−7, 8.4× 10−10}z
+{1.249996747551× 10−10, 2.8× 10−12},

p(2) = z3 − {7.500000027622× 10−4, 1.2× 10−10}z2

−{3.750000013836× 10−7, 1.2× 10−12}z
+{1.250000004609× 10−10, 4.0× 10−15},

p(3) = z3 − {7.499999999956× 10−4, 1.9× 10−13}z2

−{3.749999999978× 10−7, 1.9× 10−15}z
+{1.249999999993× 10−10, 6.3× 10−18}.

These polynomials include p∗, and give sharp bounds for coefficients of p∗.

Example 2 Let

p∗(z) = (z − 10−3)

(
z +

10−3

2

)(
z − 10−3

4

)(
z +

10−3

6

)(
z − 10−3

8

)
.

q∗ is same as that of Example 1. Parameters were m = 5, n = 15, δ = 10−2, η = 1/2 and

M = 1.

p(1) = z5 − {7.083316917107× 10−4, 1.4× 10−7}z4

−{4.270823418524× 10−7, 2.7× 10−9}z3

+{1.249997100176× 10−10, 2.6× 10−11}z2

+{1.302080955610× 10−14, 1.3× 10−13}z
−{2.610812137458× 10−18, 2.6× 10−16},

8



p(2) = z5 − {7.083333355294× 10−4, 1.9× 10−10}z4

−{4.270833346599× 10−7, 3.6× 10−12}z3

+{1.250000003879× 10−10, 3.6× 10−14}z2

+{1.302083337377× 10−14, 1.8× 10−16}z
−{2.604166674751× 10−18, 3.5× 10−19},

p(3) = z5 − {7.083333333301× 10−4, 2.7× 10−13}z4

−{4.270833333314× 10−7, 5.4× 10−15}z3

+{1.249999999994× 10−10, 5.3× 10−17}z2

+{1.302083333327× 10−14, 2.6× 10−19}z
−{2.604166666655× 10−18, 5.3× 10−22}.

Example 3 Let

f = (sinh(2z2) + sinh(10z)− 1)× (sinh(2z2) + sinh(10z)− 1.01)×
(sinh(2z2) + sinh(10z)− 1.02).

This function has 21 simple zeros inside the unit circle. They form 7 clusters, where each cluster

consists of 3 zeros. This function was studied in [11, 15] as an example for finding the center of

each clusters. Their results show that one of the clusters is located at z = 8.777826159× 10−2,

it contains 3 zeros, and its size is O(10−3). The distance to the center of the nearest cluster is

about 0.32.

From these results, we estimated the coefficients ck by using the FFT with size 64 at the equi-

distributed points on the circle with radius 0.1. We estimated p∗ by using multiple precision

arithmetic in Mathematica to verify the numerical results.

p∗ = z3 + 7.3711680121192× 10−4z2

−4.7678119480547× 10−5z

−1.1197980731788× 10−8.

Parameters were m = 3, n = 12, δ = 10−1, η = 0.5 and M = 1.

p(1) = z3 + {7.3711670951× 10−4, 1.6× 10−7}z2

−{4.7678113222× 10−5, 1.4× 10−8}z
−{1.1197979540× 10−8, 4.4× 10−10},

p(2) = z3 + {7.3711680211× 10−4, 5.4× 10−11}z2

−{4.7678119478× 10−5, 4.8× 10−12}z
−{1.1197981010× 10−8, 1.6× 10−13},

p(3) = z3 + {7.3711680206× 10−4, 3.9× 10−12}z2

−{4.7678119474× 10−5, 3.5× 10−13}z
−{1.1197981009× 10−8, 2.0× 10−14}.
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6 Conclusions

We discussed a method to find a factor of an analytic function f(z). A fixed point relation for

a polynomial factor p∗ is derived. Based on this relation, an algorithm to find a factor of f(z)

with circular arithmetic is proposed. The presented method finds good bounds for coefficients

of a factor in some numerical examples.
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