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Abstract

The Sakurai-Sugiura projection method, which solves a generalized eigenvalue prob-
lem to find certain eigenvalues in a given domain, was reformulated by using the
resolvent theory. A new interpretation based on the filter diagonalization was given,
and the corresponding filter function was derived explicitly. The block version of
the method was also proposed, which enabled to resolve degenerated eigenvalues.
Two numerical examples were provided to illustrate the method.
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1 Introduction

There is a wide area of scientific and engineering applications that are reduced
to the eigenvalue problem [3,11,2,6]. Generally speaking, the dimension of the
system increases with the refinement of the corresponding physical model,
which can reach few millions. Fortunately, it is often the case that not all of
the eigenvalues are necessary, and those in the physically meaningful range
may suffice. Iterative methods are typically used for those cases [1,10,5,14],
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which are suitable to extract eigenvalues with large absolute value. In some
applications, however, it is required to extract eigenvalues embedded in the
middle of the distribution.

In the last decade, a filter diagonalization [4,7] is developed to extract eigen-
values contained in a specified region G. It was first formulated based on time
propagation of quantum wave packets [9], and soon was reformulated as a
filter operator. Let H be a Hermitian matrix and v be an arbitrary vector.
A filter function f(x) =

∑
i cix

i is designed, such that f(x) ' 0 on outside
of G. The filter operator is defined by replacing x with H as f(H). When
the operator is applied on v, eigen-elements of H whose eigenvalues are con-
tained in G dominate in f(H)v. Starting from a set of initial vectors vi, we
can thus span an eigen-subspace localized on G by using a set of f(H)vi. In
typical applications, a gaussian function is chosen for f(x), and Chebyshev
series expansion is used instead of the Taylor series. Because the power series
is employed in the expansion, however, it is inevitable for f(x) to diverge as
x → ±∞. Therefore, we have to shift and scale H a priori such that all the
eigenvalues of H are confined in the domain of f(x).

The Sakurai-Sugiura (SS) method [12] also extract eigenvalues in the specified
domain, though it takes a different approach. In the filter diagonalization, the
domain G is determined numerically by the asymptotic behavior of f(x). On
the other hand, the SS method defines G mathematically by a Cauchy integral
path that surrounds G. As a result, the SS method can deal with the non-
Hermitian systems, where the eigenvalues may be located on the complex
plane. The method is also applicable to the generalized eigenvalue problems,
and is suitable to the modern distributed parallel computer.

In the present paper, we will reformulate the SS method in the context of the
resolvent theory. The block version of the SS method is also proposed, in which
the relation to the filter diagonalization is discussed. Next section is devoted
to the derivation based on the resolvent theory. In Sec. 3, the SS method is
investigated in the light of the filter diagonalization, and the algorithm of the
block SS method is given. Two numerical examples are shown in Sec. 4, and
Sec. 5 conclude.

2 Block Sakurai-Sugiura method

In this section, we reformulate the Sakurai-Sugiura (SS) projection method
based on the resolvent of a matrix pencil, and propose a block version of the
SS method. Let A,B ∈ CN×N form a regular matrix pencil zB − A. The
regular pencil can be transformed into Weierstrass canonical form [15].
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Theorem 1 (Weierstrass canonical form). Let zB − A be a regular pencil of
order N . Then there exist nonsingular matrices P̃, Q ∈ CN×N such that

P̃(zB−A)Q =




zIk1 − J1

. . .

zIkd
− Jd

zNd+1 − Ikd+1

. . .

zNr − Ikr




, (1)

where Ji,Ni ∈ Cki×ki are Jordan blocks, Ni is nilpotent, and Ik denotes the
identity matrix of order k.

Because P̃ and Q are the regular matrices, we can define P = P̃
−1

and Q̃ =
Q−1. According to the Jordan block structures in Eq. (1), we will partition
row vectors in P̃ and Q̃ into P̃i, Q̃i ∈ Cki×N , and column vectors in P and Q
into Pi, Qi ∈ CN×ki , respectively, for i = 1, 2, . . . , r.

Theorem 2. Resolvent of the regular pencil (zB − A)−1 is decomposed into

(zB−A)−1 =
d∑

i=1

Qi





ki−1∑

m=0

(Ji − αiIki
)m

(z − αi)m+1



 P̃i−

r∑

i=d+1

Qi





ki−1∑

m=0

zmNi
m



 P̃i, (2)

where αi is an eigenvalue of Jordan block Ji.

Proof. Let W = P̃(zB − A)Q. According to Theorem 1, we have

(zB − A)−1 = QW−1P̃

=
d∑

i=1

Qi(zIki
− Ji)

−1P̃i +
r∑

i=d+1

Qi(zNi − Iki
)−1P̃i. (3)

Using the resolvent of the Jordan block,

R(z,Ji) ≡ (zIki
− Ji)

−1 =
ki−1∑

m=0

(Ji − αiIki
)m

(z − αi)m+1
, (4)

and (zNi − Iki
)−1 = −z−1R(z−1,Ni), we get the result.

Definition 3. Let Γ be a positively oriented closed Jordan curve and G be
the inside of Γ. For a non-negative integer n, the n-th order moment matrix
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of the pencil zB − A, localized on G, is defined by

Mn =
1

2πi

∮

Γ
zn(zB − A)−1dzB. (5)

Note that the moment matrix can be defined more generally, where a poly-
nomial of z appears in place of zn in Eq. (5). Such a matrix, however, can be
represented by a linear combination of Mn.

Theorem 4. The localized moment matrix is written as

Mn =
∑

i;αi∈G

QiJi
nQ̃i. (6)

Proof. Let Eq. (2) to Eq. (5),

Mn =
d∑

i=1

Qi

{
1

2πi

∮

Γ
ji(z)dz

}
P̃iB −

r∑

i=d+1

Qi

{
1

2πi

∮

Γ
ni(z)dz

}
P̃iB, (7)

ji(z) = zn
ki−1∑

m=0

(Ji − αiIki
)m

(z − αi)m+1
, (8)

ni(z) = zn
ki−1∑

m=0

zmNi
m. (9)

Using the relation

zn =
n∑

j=0

(
n

j

)
(z − α)n−jαj, (10)

we have

Res
z=α

(
zn

(z − α)m+1

)
=





0, m > n,
(

n
n−m

)
αn−m, m ≤ n,

(11)

where
(

n
j

)
is a binomial coefficient and Res

z=α
(g(z)) gives a residue of g(z) at a

pole z = α. Because (Ji − αiIki
)m = 0 for m ≥ ki, the residue of ji(z) is given

by

Res
z=αi

(ji(z)) =
min(n,ki−1)∑

m=0

(
n

n−m

)
αn−m

i (Ji − αiIki
)m

=Ji
n. (12)

Because ji(z) is regular for z 6= αi and ni(z) is regular for z ∈ C, we have,
using the Cauchy’s integral theorem,

Mn =
∑

i,αi∈G

QiJi
nP̃iB. (13)
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Meanwhile, by definition, the matrix B is expanded as

B =
d∑

i=1

PiQ̃i +
r∑

i=d+1

PiNiQ̃i. (14)

Combining Eqs. (13) and (14), we get the result.

As shown below, we can use the localized moment matrix to extract Jordan
blocks whose eigenvalues are contained in G. Here we employ the following
collective notations: Those Jordan blocks Ji; αi ∈ G are collected to from
kΓ×kΓ Jordan matrix JΓ, where kΓ =

∑
i;αi∈G ki. Similarly, the corresponding

eigenvectors Qi and Q̃i are collected to form QΓ ∈ CN×kΓ and Q̃Γ ∈ CkΓ×N ,
respectively. Let C and D be arbitrary N ×m matrices, where N > m ≥ kΓ.
A size-reduced moment matrix is defined as

Mn = CHMnD ∈ Cm×m. (15)

Theorem 5. If ranks of both CHQΓ and Q̃ΓD are kΓ, non-singular part of a
matrix pencil zM0 −M1 is equivalent to zIkΓ

− JΓ.

Proof. Using the collective notations,

Mn = CHQΓJΓ
nQ̃ΓD. (16)

Because ranks of CHQΓ and Q̃ΓD are kΓ, there exist m×m regular matrices
P̃m and Qm, such that

P̃mCHQΓ =



IkΓ

0


 , (17)

Q̃ΓDQm =
(
IkΓ

, 0
)
. (18)

Then, we have

P̃m (zM0 −M1)Qm =




zIkΓ
− JΓ

0


 , (19)

which is the result of the theorem.

From Theorem 5, the interior eigenvalues of the origial matrix pencil zB −A
are obtained by solving the size-reduced eigenvalue problem zM0 −M1. The
corresponding eigenvectors are also obtained from the eigenvectors P̃m and Qm

of the size-reduced system. Let Qm be split into (QΓ,Q∅), where QΓ ∈ Cm×kΓ
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defines the non-singular components of the right-eigenvectors of zM0 −M1.

Similarly, P̃m is split into (P̃Γ, P̃∅)T , P̃Γ ∈ CkΓ×m. Note that P̃∅ and Q∅
define right and left common null spaces of Mn, respectively.

Theorem 6. The right-eigenvectors of the original matrix pencil zB − A is
given by QΓ = M0DQΓ, and its adjoint is given by Q̃Γ = P̃ΓCHM0.

Proof. Because M0 = QΓQ̃Γ, we have

M0DQΓ = QΓQ̃ΓDQΓ = QΓIkΓ
= QΓ. (20)

Similarly, P̃ΓCHM0 = Q̃Γ.

The left-eigenvectors are obtained by solving on the transposed system.

We can now derive the original SS method. Let v ∈ CN be an arbitrary vector
and µn = vHMnv. Two m×m Hankel matrices Hm and H<

m are defined as

Hm =




µ0 µ1 · · · µm−1

µ1 µ2 · · · µm

...
...

...

µm−1 µm · · · µ2m−2




(21)

and

H<
m =




µ1 µ2 · · · µm

µ2 µ3 · · · µm+1

...
...

...

µm µm+1 · · · µ2m−1




. (22)

Theorem 7. If all elements of Q̃Γv and vHQΓ are non-zero, and there is
no degeneracy in JΓ, then non-singular part of a matrix pencil zHm −H<

m is
equivalent to zIkΓ

− JΓ.

Proof. By choosing row vectors of CH and column vectors of D to be

(CH)i,∗ = vHQΓJΓ
i−1Q̃Γ (23)

and
D∗,i = QΓJΓ

i−1Q̃Γv (24)

for i = 1, 2, . . . ,m, respectively, we have Hm = M0 and H<
m = M1. As for

the rank of Q̃ΓD, we consider that column vectors of Q̃ΓD form the Krylov
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series of JΓ starting from Q̃Γv. Because JΓ is not degenerated, and elements
of Q̃Γv are non-zero, these column vectors are linearly independent, and thus
the rank of Q̃ΓD is kΓ. Similarly, the rank of CHQΓ is kΓ. From Theorem 5,
we have the result of the theorem.

Rigorously, not all of the elements of Q̃Γv need to be non-zero; the prerequisite
non-zero elements are those corresponding to the last Jordan canonical vector
for each Jordan blocks in JΓ.

A block version of the SS method is located between Theorems 5 and 7. Let V
be an N×l matrix, whose column vectors are used as initial vectors. The block
SS method is defined by replacing µn in Theorem 7 with matrices V HMnV .
Apparently from the proof of the theorem, up to the l-th order degeneracy in
JΓ can be separated in the block SS method.

3 Filter diagonalization

From the viewpoint of the filter diagonalization, the localized moment matrix
Mn is considered to be a filter operator. In the following, we focus on the case
where the matrix pencil zB−A is diagonalizable. In this case, Ji is reduced to
a scalar, αi. Comparing Equations (5) and (6), a filter function corresponding
to Mn is derived as

fn(x) =
1

2πi

∮

Γ

zn

z − x
dz

=





xn, x ∈ G,

0, otherwise.
(25)

When Mn is operated on the i-th right-eigenvector, its amplitude is modulated
by fn(αi),

Q̃iMnQi = fn(αi)Q̃iQi. (26)

In the conventional filter diagonalization, a single filter operator f(H) is ap-
plied on a set of random vectors to construct a basis set that spans the filtered
eigen-subspace. On the other hand, the SS method applies a set of modulated
filter operators Mn on a single vector to build the basis set. From this point of
view, the block SS method is considered naturally as a hybrid method between
the filter diagonalization and the SS method.

In the actual calculations, the path integral in Eq. (5) is evaluated numerically
by using an appropriate quadrature. Let zj be the quadrature points on Γ and
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Fig. 1. Plots of filter functions f̃n(x) for M = 16, γ = 0, ρ = 1, n = 0, 1, 2, and 8.

wj be the corresponding weights, where j = 1, 2, . . . , M . The localized moment
matrix is then approximated by

M̄n =
M∑

j=1

wjz
n
j (zjB − A)−1B. (27)

Accordingly, the effective filter function f̄n(x) is derived for the quadrature as

f̄n(x) =
M∑

j=1

wj

zn
j

zj − x
. (28)

Thanks to the explicit form of the filter function, several properties of the SS
method can be analyzed quantitatively. As an example, let Γ be a circle of
radius ρ centered at a point γ. Dividing the circle into M division and applying
the trapezoidal rule, we have zj = γ + ρ exp(2πi

M
(j− 1

2
)) and wj = (zj − γ)/M .

From the numerical reason, the momental weight of zn is also replaced by a
shift-and-scaled one, ((z − γ)/ρ)n. Then, the filter function becomes

f̃n(x) =
M∑

j=1

wj

(
zj − γ

ρ

)n
1

zj − x
(29)

=
x̃n

1 + x̃M
(30)

where x̃ = (x−γ)/ρ. In Fig. 1, f̃n(x) is plotted along the real axis for M = 16,
γ = 0, ρ = 1, n = 0, 1, 2, and 8. The shape of the effective filter functions
deviates from the ideal rectangle, which exude outside of G. The value and the
derivative at the boundary are f̃n(γ+ρ) = 1/2 and f̃ ′n(γ+ρ) = (−M/4+n/2)/ρ
for n = 0, 1, . . . , M−1. From here, we notice that n should be kept well smaller
than M/2.

The filtered subspace is spanned by the set of filtered vectors. If there exist
multiple eigenvalues in G, we need as many vectors to span the subspace.
Higher order moment matrices become necessary then, which may, in turn,
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require large M . Instead, we can prepare multiple initial vectors and use the
block SS method. The algorithm of the block SS method is shown below.

Algorithm 1 (Block SS method).

Input: V ∈ CN×l, {zj, wj} for j = 1, 2, . . . ,M
Output: αk for k = 1, 2, . . . , K

1. Solve Ṽj = (zjB − A)−1BV and calculate Vj = V H Ṽj ∈ Cl×l

2. Compute µ̄n =
∑M

j=1 wjz
n
jVj

3. Construct Hankel matrices Hm and H<
m ∈ Cml×ml

4. Perform singular value decomposition, Hm = WsU
5. Construct H = s−1/2WHH<

mU
Hs−1/2 ∈ CK×K

6. Compute eigenvalues of H to have αk

If eigenvectors Qk are also wanted, let qk be eigenvectors of H,

7. Compute S̄n =
∑M

j=1 wjz
n
j Ṽj

8. Compute (Q1, . . . , QK) = (S̄0, . . . , S̄m−1)U
Hs−1/2(q1, . . . , qK)

In the block SS method, the filtered subspace is implicitly spanned by the ml
column vectors of S̄n. At steps 2 and 7, the momental weight zn

j may as well
be replaced by the shifted-and-scaled one. Note that the resulting eigenvalues
are also shifted-and-scaled. At step 4, small singular value components are
omitted, so that s ∈ RK×K where K < ml. If no ignorable singular values are
found, there may be more eigenvalues than ml, and we should increase either
m or l to span the subspace in higher dimensions. Because the effective filter
function is not perfect, eigenvalues outside of G may be contaminated to be
K ≥ kΓ.

4 Numerical examples

Two numerical examples are given in this section. The first one depicts how
the localized moment matrix works as a filter operator. The other one demon-
strates the improvement achieved by the block version of the SS method. The
algorithm was implemented on Mathematica 5.2. The linear equation solver
LinearSolve[] was used to evaluate (zjB−A)−1BV numerically. The calcu-
lated eigenvalues are compared against those obtained by Eigensystem[].

Example 8. Two random matrices, A,B ∈ R100×100, were generated. The
elements of A were taken randomly in [−1, 1], while B was diagonal dominant,
where random noises of [−0.1, 0.1] were added to every entry of an identity
matrix. The initial vector was setup artificially as a sum of all the right-
eigenvectors, v =

∑
i Qi. We define the i-th eigen-amplitude in v by Q̃iv, so
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Fig. 3. Example 8: (a) distribution of the eigenvalues around the origin, and (b)
eigen-amplitudes of M̄nv for α1∼8.

that all the amplitudes in the initial vector were unity. The integral path Γ
was taken to be a unit circle centered at origin. The M -point trapezoidal rule
was employed for the quadrature, where M = 64, γ = 0.0, and ρ = 1.0.

The eigen-amplitudes of v and M̄0v are plotted in Fig. 2. Each box is located at
the eigenvalue point on the complex plane, and the real part of the amplitude
is plotted as its height; the imaginary part was negligibly small. As can be
seen from the figure, four primary eigen-elements remained in M̄0v, which are
located inside of Γ. Detailed location of these eigenvalues, α1∼4, are plotted in
Fig. 3(a), along with four more eigenvalues, α5∼8, located on the periphery of
Γ. The eigen-amplitudes are modulated as we change the order of the moment
matrix n. In Fig. 3(b), absolute values of the amplitudes are plotted as a
function of n. The amplitudes of other eigen-elements than α1∼8 were lower
than the plotted area. For the primary eigen-elements, α1∼4, the amplitude
became smaller as n increases, which is roughly proportional to |αi|n. On the
other hand, the amplitude of the contaminant eigen-elements, α5∼8, increased
with n. It is because the tail of the filter function f̃n(x) extends more outward
for larger n. In the present example, f̃15(x) becomes lower than the threshold
of 10−14 at x > 1.9 along the real axis.
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To obtain the eigenvalues, Hm,H<
m ∈ C16×16 were calculated. The singular

value decomposition was performed on Hm to extract the non-singular part
from the size-reduced matrix pencil. The singular values were compared with
the largest one, and those components relatively smaller than 1.1× 10−14 were
removed. Two component were rejected at this step, and the approximated
eigenvalues were calculated with the rest of 14 components. The accuracy of
thus obtained eigenvalues are not uniform. The maximum error in the primary
eigenvalues α1∼4 was 1.7× 10−14. The corresponding eigenvectors are mainly
spanned by the large singular value components, which are calculated in high
accuracy. The smaller components also participate, though the contributions
are so small that their inferior accuracy doesn’t affect. Next two eigenvalues, α5

and α6, are located near the periphery of G, the error of which was 2.4× 10−12.
The errors in the following 7 eigenvalues were 3.2× 10−8 ∼ 1.5× 10−6. These
eigenvectors are spanned by the smaller singular value components. The rest
eigenvalue could not be assigned to any exact correspondents, the eigenvector
of which is spanned by the trace singular value components.

The original SS method has a difficulty to resolve nearly degenerated eigenval-
ues congested around the center of Γ. It is because the filter functions of large
n are flat at the center, which makes the filtered vectors linearly dependent.
The next example shows that the difficulty can be removed by the block SS
method.

Example 9. A real symmetric matrix A ∈ R400×400 was prepared, which has
five primary eigenvalues, -10.03, -10.02, -10.01, -10.00, and -9.99, in the range
of [−10.5,−9.5]. Other eigenvalues were taken randomly in the range [−40, 40],
and a random unitary matrix was prepared to construct A. An identity ma-
trix was used for B. The circular integral path and the trapezoidal rule was
employed, with the center and radius as γ = −10 and ρ = 0.5, respectively.
The shifted-and-scaled momental weight was employed as described in Sec. 3.

The block SS method was examined on this system with varying the number
of initial vectors l. Those initial vectors of R400 were generated randomly
and ortho-normalized. The result is summarized in Table 1. To maintain the
computational amount nearly the same, the number of trapezoidal points M
was reduced as l increased. The order of the Hankel matrix m was taken
to be large enough for the size-reduced matrix pencil z−γ

ρ
Hm − H<

m to have
a singular part. This process certifies the over-completeness of the basis set
that spans the filtered subspace. The linear dependence of the basis set was
removed by the singular value decomposition on Hm, where the threshold of
the singularity was taken to be 1.1× 10−14. For l = 1 ∼ 3, a total of 12 vectors
were (implicitly) generated, while 16 vectors were necessary for l = 4, due to
the duller filter function with M = 32.

Starting from a single initial vector, only four dimensions out of five could
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Table 1
Example 9: errors of eigenvalues calculated by the block SS method. The columns,
from left to right, are the number of initial vectors, the number of trapezoidal points,
the order of the Hankel matrix, the number of obtained eigenvalues, errors of the
eigenvalues in G, and errors of the contaminant eigenvalues, respectively.

l M m Nα |∆α∈G| |∆α/∈G|
1 128 12 6 1.3× 10−6 ∼ 4.1× 10−3# 8.0× 10−11 ∼ 6.9× 10−9

2 64 6 8 7.7× 10−12 ∼ 9.5× 10−8 3.0× 10−12 ∼ 6.5× 10−5

3 42 4 10 4.5× 10−13 ∼ 1.1× 10−10 8.1× 10−13 ∼ 2.3× 10−2

4 32 4 14 1.8× 10−15 ∼ 1.5× 10−12 4.8× 10−14 ∼ 8.1× 10−2

# only four eigenvalues out of five were obtained.

be extracted for the primary subspace. Because the primary eigenvalues are
located near the origin, the corresponding eigen-elements diminished quickly in
Mnv, as n ≥ 1 increased. As a result, peripheral eigen-elements overwhelmed
in Mnv, leaving the basis set incomplete in the primary subspace. The situation
is the same for l > 1, but in these cases the column vectors of M0V already
span l-dimensions with moderate linear independency. The eigenvalues became
more accurate as l increases, reflecting the improved linear independency in
the primary subspace. With the large l, the order of the moment m can also
be kept smaller, where the practical filter functions are expected to behave
better (see Fig. 1).

In this example, the number of linear equations to be solved were kept nearly
constant to average the computation cost among different l. It is often the
case, however, that the cost to solve a linear equation A(x1, x2) = (v1, v2) is
much smaller than twice the cost of Ax = v. This observation makes the block
version of the SS method preferable, especially when the size of the matrix
is large and preconditioning is necessary. The block SS method also inherits
the adaptability to the parallel computing in the original, which makes the
method attractive from a computational point of view.

5 Conclusion

The SS method was reformulated based on the resolvent theory, and its block
version was proposed. The numerical example indicated that the block version
has a potential not only to resolve degeneracies, but also to achieve higher
accuracy under the same computational cost. The method was also interpreted
in the context of the filter diagonalization. The explicit form of the filter
function was derived for the SS method, which helps to investigate several
properties of the method quantitatively.
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In the Rayleigh-Ritz approach of the SS method [13], we don’t use the Hankel
matrices, but construct a size-reduced matrix pencil directly in the filtered
subspace. In this approach, the quadrature for the path integral needs not
be accurate enough, as far as the corresponding filter function f̄n(x) is well
localized. More specifically, f̄0(x) need not be flat in x ∈ G, as far as f̄0(x) '
0 for x /∈ G. Indeed, Murakami proposed a novel filter operator similar to
Eq. (27) [8], where the momental weight is replaced by constants and {zj, wj}
are chosen specifically. The corresponding filter function does oscillate in G,
and falls off quickly outside of G. Liberation from the accuracy allows us to
choose the integral path and quadrature points more freely, and to tweak the
quadrature weight to make the filter function tail off faster. For example, if
the quadrature points can be arranged on an even grid, the survey of the
eigenvalue distribution becomes much easier, because we can reuse most of
the quadrature points for different integral paths. Designing such an optimized
quadrature is a part of our future work.
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