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Abstract

In the present paper, we consider a parallel method for computing interior
eigenvalues and corresponding eigenvectors of generalized eigenvalue problems
that arise in molecular orbital computation of biochemistry applications. Ma-
trices in such applications are sparse but often have a relatively large number
of nonzero elements, and we may require some eigenpairs in a specific part of
the spectrum. We use a contour integration to construct a desired subspace.
Properties of the subspace obtained by numerical integration are discussed,
and a parallel implementation is then presented. We report the numerical as-
pects and parallel performance of the proposed method with matrices derived
from molecular orbital computation.
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1 Introduction

In the present paper, we consider a parallel method for computing eigenpairs (λ, x)
satisfying Ax = λBx in a specific part of the spectrum that arise in molecular
orbital computation, where A,B ∈ Rn×n are symmetric and B is positive definite.
Molecular orbital computation is performed in order to investigate phenomena such
as the reaction mechanisms of enzymes and the electronic structure of photosynthetic
systems.

The fragment molecular orbital (FMO) method [4] enables the total energy of
a molecule to be calculated without performing molecular orbital computation for
the entire molecule. In [1], a full electron calculation for a large molecule was
performed using the FMO method on a massive cluster computer. The FMO-MO
method [3, 12], which works as a post-process of the FMO method, gives a good
approximation for canonical MOs without SCF iterations. A huge Fock matrix is
generated, and we require a limited number of eigenpairs corresponding to frontier
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orbitals. Therefore, a large-scale interior eigenvalue problem occurs in the FMO-MO
method.

With growing parallel efficiency in the Fock matrix construction, the diagonal-
ization process becomes a bottleneck in MO calculations. Since the Fock matrix
has a relatively large number of nonzero elements due to the base function of the
middle-range interaction of molecules, a sparse factorization of the shifted matrix
for spectral transformation may not be feasible. An alternative to factorization is
offered by iterative solvers. Unfortunately, this is usually not an attractive option
for parallel computation, because the iterative process is performed successively.
Therefore, the shift-and-invert approach is not effective for treating interior eigen-
value problems in such applications.

The proposed method for finding eigenpairs in a given physical domain is based
on the contour integral presented in [6]. One of the major advantages of the proposed
eigensolver is that it does not require an inner loop to construct an approximate
subspace or an outer loop to update approximate eigenvectors. Moreover, the values
that are used in a numerical integration can be evaluated independently on each
integration node, which provides a variety of parallel programming models [7]. We
recently proposed a Rayleigh-Ritz type method [8] in order to improve numerical
stability. The block method [2] performs well if there are multiple eigenvalues in the
interested spectrum.

The computation at each integral node involves linear system solutions in which
the coefficient matrices are derived from A and B. In [5], we found that a Krylov
subspace iterative method, in conjunction with a preconditioning using a complete
factorization for an approximated coefficient matrix, is effective for solving such
linear systems.

In the next section, we explain our eigensolver using a contour integration. Then,
we present some numerical properties of the subspace obtained by a numerical ap-
proximation of the contour integration. In Section 3, we present an implementation
of the proposed method. In Section 4, numerical examples are presented in order
to verify the numerical properties and the parallel performance of the method with
the matrices derived from molecular orbital computation.

2 An eigensolver using contour integration

In this section, we describe an eigensolver using the contour integration presented
in [8]. This method finds eigenpairs inside a given circle. Let (λi,xi), 1 ≤ i ≤ n be
eigenpairs of the matrix pencil (A,B). Suppose that m eigenvalues λ1, . . . ,λm are
located inside the circle Γ with center γ ∈ R and radius ρ > 0 in the complex plane.
For a nonzero vector v ∈ Rn, let

sk =
1

2πi

∫

Γ

zk(zB − A)−1Bv dz, k = 0, 1, . . . , m − 1, (1)

and let S = [s0, . . . , sm−1] ∈ Rn×m.
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Suppose that v is expanded by the eigenvectors {x1, . . . , xn} as

v =
n∑

i=1

αixi. (2)

Then, we have the following theorem([8]).

Theorem 1 If λ1, . . . , λm are distinct, and αj $= 0 for 1 ≤ j ≤ m, then

span{s0, . . . , sm−1} = span{x1, . . . , xm}.

Let Q = [q1, . . . , qm] ∈ Rn×m be an orthonormal matrix derived from S =
[s0, . . . , sm−1]. Theorem 1 implies that the eigenpairs (λi,xi), 1 ≤ i ≤ m can
be extracted using the Rayleigh-Ritz procedure with the projected matrix pencil
(QTAQ,QTBQ).

We approximate the contour integration (1) via the N -point trapezoidal rule:

ŝk =
1

N

N−1∑

j=0

(
ωj − γ

ρ

)k+1

(ωjB − A)−1Bv, k = 0, 1, . . . , m − 1

where ωj = γ + ρ exp(2πi(j + 1/2)/N) and N is a positive integer.
In this computation, we solve the following systems of linear equations

(ωjB − A)yj = Bv, j = 0, 1, . . . , N − 1 (3)

for y0, . . . , yN−1 ∈ Cn. The solutions yN/2, . . . , yN−1 are obtained from the relation
yj = ȳN−j−1. Thus, we only need to solve N/2 systems, and

ŝk =
1

N

N/2−1∑

j=0

2 Re

((
ωj − γ

ρ

)k+1

yj

)
, k = 0, 1, . . . , m − 1. (4)

Note that ŝk are real vectors.
Letting θj = exp(2πi(j + 1/2)/N), the following relations hold:

Lemma 2 Let η be a real number with |η| $= 1. For an integer k (1 ≤ k < N), the
following holds:

1

N

N−1∑

j=0

θk+1
j

θj − η
=

ηk

1 + ηN
. (5)

Proof. If |η| < 1, we have

1

N

N−1∑

j=0

θk+1
j

θj − η
=

1

N

N−1∑

j=0

θk
j

1 − η
θj

=
∞∑

p=0

ηp 1

N

N−1∑

j=0

θk−p
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=
∞∑

q=0

(−1)qηNq+k. (6)

The last step follows from the fact that

1

N

N−1∑

j=0

θp
j =

{
(−1)q if p = qN for q ∈ Z
0 otherwise

. (7)

Similarly, for the case in which |η| > 1, we have

1

N

N−1∑

j=0

θk+1
j

θj − η
=

1

N

N−1∑

j=0

(
−1

η

)
θk+1

j

1 − θj

η

=
∞∑

p=0

(
−1

ηp+1

) (
1

N

N−1∑

j=0

θp+k+1

)

=
∞∑

q=1

(−1)q−1η−Nq+k. (8)

Thus, (5) is obtained from (6) and (8). !

Theorem 3 Let ηi = (λi − γ)/ρ, 1 ≤ i ≤ n, then

ŝk =
n∑

i=1

αi

ρ
· ηk

i

1 + ηN
i

xi. (9)

Proof. Since

(ωjB − A)−1Bxi =
1

ωj − λi
xi,

it follows that

ŝk =
1

N

N−1∑

j=0

(
ωj − γ

ρ

)k+1

(ωjB − A)−1Bv

=
1

N

N−1∑

j=0

(
ωj − γ

ρ

)k+1 n∑

i=1

αi(ωjB − A)−1Bxi

=
1

N

N−1∑

j=0

(
ωj − γ

ρ

)k+1 n∑

i=1

αi

ωj − λi
xi

=
n∑

i=1

αi

ρ

(
1

N

N−1∑

j=0

θk+1
j

θj − ηi

)
xi.

Therefore, from Lemma 2, we have

ŝk =
n∑

i=1

αi

ρ
· ηk

i

1 + ηN
i

xi.
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This proves the theorem. !

For vectors a, b ∈ Rn, we define the B inner product 〈·, ·〉B by

〈a, b〉B = aTBb.

From Theorem 3, we have the following estimation for eigencomponents that are
included in ŝk.

Theorem 4 Assume that the eigenvectors x1, . . . , xn are normalized to be B-orthogonal,
i.e., 〈xi, xj〉B = δij. Then,

|〈xi, ŝk〉B| =

{ αi

ρ
ηk

i + O(|ηi|N+k) (1 ≤ i ≤ m)

O(|ηi|−N+k) (m + 1 ≤ i ≤ n)
.

From this theorem, we can see that the eigencomponent in ŝk with respect to λi

decays exponentially with the ratio |ηi| = |λi − γ|/ρ, if λi is located outside Γ.
A block variant of the eigensolver is proposed in [2], which enables us to obtain

degenerate eigenvalues. In the eigensolver, a matrix V = [v1, . . . , vL] ∈ Rn×L is used
instead of v in (3), where v1, . . . , vL are linearly independent, and positive integer
L is the block size. Then, the numerical integration (4) is represented as

Ŝk =
1

N

N/2−1∑

j=0

2 Re

((
ωj − γ

ρ

)k+1

Yj

)
k = 0, 1, . . . , M − 1,

with the following systems of linear equations

(ωjB − A)Yj = BV, j = 0, 1, . . . , N/2 − 1, (10)

where M is a positive integer chosen so that M ≥ m/L.
In choosing the size of the subspace, we use the singular value of Ŝ = [Ŝ0, . . . , ŜM−1].

Let UΣW = Ŝ be a singular value decomposition of Ŝ, and let Σ = diag(σ1, . . . , σM).
Let m̂ be an integer such that σj/σ1 ≥ δ for 1 ≤ j ≤ m̂ and σj/σ1 < δ for j > m̂.
Then, the orthonormal matrix Q̃ ∈ Rn×m̂ is constructed from Ŝ(:, 1 : m̂). The
algorithm is shown below.

Algorithm (block method using contour integration):

Input A,B ∈ Rn×n, V ∈ Rn×L, N , M , δ

Output (λ̂i, x̂i), 1 ≤ i ≤ m̂

1. Solve (ωjB − A)Yj = BV for Yj, j = 0, . . . , N/2 − 1

2. Compute Ŝk =
∑N/2−1

j=0 2Re
(
θk+1

j Yj

)
, k = 0, . . . , M − 1

3. Perform singular value decomposition UTΣW = [Ŝ0, . . . , ŜM−1], and find

m̂ such that |σj|/|σ1| ≥ δ for 1 ≤ j ≤ m̂

4. Construct an orthonormal basis Q̃ from Ŝ(:, 1 : m̂)
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5. Form Ã = Q̃TAQ̃ and B̃ = Q̃TBQ̂

6. Compute the eigenpairs (λ̂i, ŵl), 1 ≤ l ≤ m̂ of the projected pencil (Ã, B̃)

7. Set x̂i = Q̃ŵi, 1 ≤ l ≤ m̂

Note that we can use U(:, 1 : m̂) instead of Q̃ so as to avoid the orthogonalization
of Ŝ(:, 1 : m̂).

3 An implementation

When matrices A and B are large, the computational costs for solving systems of
linear equations (10) are dominant. In the present implementation, the matrices
have a relatively large number of nonzero elements, which could make sparse direct
methods impractical due to the large number of fill-ins required. Instead, we apply
a Krylov subspace iterative method with the complete factorization preconditioner
presented in [5].

In the preconditioning method of the present study, a complete factorization
of the approximate matrix C̃j = (c̃ij) of the coefficient matrix Cj := ωjB − A is
performed. The approximate matrix C̃j is obtained from the drop-thresholding of
the original coefficient matrix Cj. Since there are fewer nonzero elements in C̃j than
in Cj, we expect fewer nonzero elements in the preconditioner than the matrix factor
obtained from complete factorization of Cj. Drop-thresholding is defined as follows:

c̃ij =

{
cij (|cij| > ε)
0 (|cij| ≤ ε)

,

where ε is a small positive number.
Since systems (10) can be solved independently for j, we solve N/2 systems

CjYj = BV, j = 0, 1, . . . , N/2 − 1 (11)

on each computing node of clusters. Before starting the iterative process of the
Krylov subspace method, the approximate matrix C̃j is factorized, and then for-
ward/backward substitutions and matrix-vector multiplications are performed in
the iterative process.

We can easily extend the method for the case in which several circular regions
are given. Suppose that Nc circles Γ(0), . . . ,Γ(NC−1) with center (γ(l), ρ(l)) and radius
0 ≤ l ≤ NC − 1 are given. Then, we solve NC × (N/2) linear systems

(ω(l)
j B − A)Y (l)

j = BV, j = 0, . . . , N/2 − 1, l = 0, . . . , NC − 1,

where ω(l)
j = γ(l) + ρ(l)exp(2πi(j + 1/2)/N), j = 0, . . . , N/2 − 1 are equidistributed

points on the l-th circle Γ(l). We solve these linear systems simultaneously on dis-
tributed computing nodes.

First, we broadcast the sparse matrix data of A and B to all computing nodes.
Then, we start to solve systems of linear equations on the computing nodes simulta-
neously. After that, we construct a subspace for each circle using the results of the
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linear solver, and then perform the Rayleigh-Ritz procedure to extract eigenpairs in
each circle. Since the computational costs to solve systems of linear equations dom-
inate the computations, we can expect high performance in parallel computations.
The algorithm for parallel implementation is summarized as follows:

Parallel implementation (circles Γ0, . . . ,ΓNC−1):

1. Broadcast sparse matrix data of A and B

2. do l = 0, 1, . . . , NC − 1

3. Solve (ω(l)
j B − A)Y (l)

j = BV for Y (l)
j , j = 0, . . . , N/2 − 1

4. AllReduce 2Re(θ(l)
j )k+1Y (l)

j , j = 0, . . . , N/2 − 1, and compute

Ŝ(l)
k =

∑N/2−1
j=0 2Re

(
(θ(l)

j )k+1Y (l)
j

)
, k = 0, . . . , M − 1

5. Compute singular values σ(l)
1 , . . . , σ(l)

M of Ŝ(l) = [Ŝ(l)
0 , . . . , Ŝ(l)

M−1],

and set m̂(l) such that |σ(l)
j |/|σ(l)

1 | ≥ δ for 1 ≤ j ≤ m̂(l)

6. Construct the orthnormal basis Q̃(l) from Ŝ(l)(:, 1 : m̂(l))

7. Form Ã(l) = (Q̃(l))TAQ̃(l) and B̃(l) = (Q̃(l))TBQ(l)

8. Compute the eigenpairs (λ̂(l)
i , ŵ(l)

i ), 1 ≤ i ≤ m̂(l) of the projected

pencil (Ã(l), B̃(l))

9. Set x̂(l)
i = Q̃(l)ŵ(l)

i , 1 ≤ i ≤ m̂(l)

10. end do

4 Numerical examples

In this section, we present numerical examples with the matrices derived from the
FMO-MO method[10].

Example 1 The test matrices A and B are derived from the computation of the
molecular orbitals of an eight-base-pair model DNA. The size of the matrices is
n = 1, 980, and the number of nonzero elements is 728, 080.

The CPU was a Core2Duo (2.2 GHz) with 2 GB of memory. Computation was
performed using MATLAB 7.5 with double-precision arithmetic. The systems of
linear equations were solved by the sparse direct solver UMFPACK in MATLAB.
The elements of V were distributed randomly on the interval [0, 1] by a random
number generator. The exact eigenpairs (λi,xi) 1 ≤ i ≤ n were evaluated by the
MATLAB command eig.

In Figure 1, we show |〈xi, ŝ0〉B| with respect to eigenvalues λi ∈ [−0.25,−0.16].
The parameters were γ = −0.2, ρ = 0.01, N = 32, L = 12, M = 12, and δ = 10−12.
In this case, the interval [−0.21,−0.19] is inside and on Γ. The eigencomponents
associated with eigenvalues that are located outside Γ decay exponentially to zero
in ŝ0. For vectors ŝk, k ≥ 1, we can obtain similar results. In Figure 2, we show
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|〈x̂i, Q̃〉B|. We can see that Q̃ includes only the eigencomponents around the interval
[−0.21,−0.19].

In Table 1, the error and residual of approximate eigenvalues in Γ are shown.
A total of 16 eigenvalues are located in the interval [−0.21,−0.19], and all of the
eigenvalues in this interval were obtained with sufficient accuracy.

Figure 1: |〈xi, ŝ0〉B| (γ = −0.2, ρ = 0.01, N = 32)

Figure 2: |〈x̃i, Q̃〉B| (γ = −0.2, ρ = 0.01, N = 32)

Example 2 The test matrices were obtained from an epidermal growth factor re-
ceptor (EGFR) protein, which is a target molecule for anticancer agents. The Fock
matrix was constructed by the method described in [10]. The dimension of the Fock
matrix was 96, 234, and the number of non-zero elements was 457 million.

The calculations were performed on a P32 subsystem of the AIST Super Cluster
(ASC) at National Institute of Advanced Industrial Science and Technology Agency
(AIST). Each computing node is an Opteron Dual processor (2.0 GHz) with 6 GB
of memory and is interconnected by both Myrinet and gigabit ethernet. Intel C and
Fortran compiler 9.1 were used to compile the codes with Intel Math Kernel Library
10.0.

The number of integration points was N = 32, and the block size was L = 16.
We placed eight circles around the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO) using the approximate eigenvalues
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Table 1: Errors and residuals in Example 1.

i λ̂i |λ̂i − λi| ‖Ax̂i − λ̂iBx̂i‖2

1 −0.192423480937650 2.9 × 10−15 9.4 × 10−15

2 −0.193053272393176 3.7 × 10−15 1.6 × 10−14

3 −0.193867518039814 1.1 × 10−15 1.0 × 10−14

4 −0.194749418147652 2.0 × 10−14 2.0 × 10−14

5 −0.195768218806505 2.5 × 10−15 2.5 × 10−14

6 −0.196048479728466 7.2 × 10−16 2.8 × 10−14

7 −0.196721896535061 1.2 × 10−15 4.0 × 10−14

8 −0.197042777317239 4.7 × 10−16 5.5 × 10−14

9 −0.200591957877910 1.2 × 10−15 5.5 × 10−13

10 −0.200835717839500 5.8 × 10−16 1.9 × 10−13

11 −0.203655629362533 2.5 × 10−16 5.6 × 10−14

12 −0.203800310807316 1.4 × 10−16 4.4 × 10−14

13 −0.203932047603002 6.1 × 10−16 4.4 × 10−14

14 −0.204805988179016 3.4 × 10−15 1.6 × 10−14

15 −0.204824251443765 2.6 × 10−15 3.4 × 10−14

16 −0.205054724756940 1.3 × 10−14 2.8 × 10−14

obtained from the results of the FMO method. The total number of systems to be
solved was 8 × (32/2) = 128 with 16 right-hand-side vectors. Since each system of
linear equations was solved on a single node of a dual processor, 16 nodes (32 PUs)
were used for one circle. Thus, a total of 256 PUs were used.

The preconditioned COCG method[11] was used as the iterative linear solver.
The stopping criterion for the relative residual norm was 10−10. The preconditioner
was constructed by applying a complete factorization for an approximate coefficient
matrix, which was obtained from drop-thresholding of the original coefficient ma-
trix. The drop-thresholding parameter was 2 × 10−4. The complete factorization is
performed by a sparse direct solver in the PARDISO library[9]. The elements of V
were distributed randomly on the interval [0, 1] by a random number generator.

The timing results are shown in Figure 3. The wall-clock time was 602 seconds,
and 94 eigenpairs were obtained. The time to broadcast the matrix data to all
computing nodes was 36.4 seconds, and the time to solve linear systems was 563.8
seconds. The maximum residual of these eigenpairs was 3.4 × 10−10.

Figure 4 shows the amount of time of each step in the algorithm for the circle
Γ(7), where gray, light gray, white, and black segments represent the factorization
times for the approximate matrix, forward and backward substitution in iteration,
matrix-vector multiplication, and the Rayleigh-Ritz procedure, respectively.
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Figure 3: Timing results of the method with 256 PUs in seconds. Each bar represents
the wall-clock time for one circle. For each circle, 32 PUs were used, for a total of
256 PUs. (": Broadcast, ": Linear system solver ": Rayleigh-Ritz procedure)

Figure 4: Time for each process for one circle. Each bar represents the time on
one integration node. A total of 16 systems of linear equations were solved. (":
Factorization, ": Forward/backward Substitution, ": Matrix-vector multiply, ":
Rayleigh-Ritz procedure)
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5 Conclusions

A parallel method for computing interior eigenvalues and corresponding eigenvectors
of generalized eigenvalue problems that arise from molecular orbital computation
was considered. In the present application, matrices often have a relatively large
number of nonzero elements, and eigenpairs are required in a specific part of the
spectrum.

We applied a Rayleigh-Ritz procedure with numerical integration. In this method,
a contour integration is used to construct a desired subspace. The proposed eigen-
solver does not require inner and outer loops to construct an approximate subspace
and update approximate eigenvectors. For the computation of the contour integra-
tion, we solve a number of systems of linear equations. When A and B are large,
the computational costs for solving these systems of linear equations are dominant.
Since these linear systems can be solved independently for each integration node,
the process by which to derive the subspace is performed in parallel.

We showed that the subspace obtained by a numerical integration includes eigen-
vectors corresponding to the eigenvalues around the interested interval. The i-th
eigencomponent in the subspace decays exponentially to zero with a rate |λi − γ|/ρ,
if the corresponding eigenvalue λi is located outside the interval.

The numerical experiments indicate that the proposed method gives good parallel
performance and that desired eigenpairs can be obtained with sufficient accuracy. In
the future, we intend to estimate appropriate parameters with theoretical analysis
and compare the proposed method with other methods.
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