RESEARCH REPORT ISIS-RR-96-7TE

Techniques for DUl Platforms:
Developing Graph Drawing Applications on
D-ABDUCTOR

Kazuo Misue Kiyoshi Nitta Kozo Sugiyama
Takeshi Koshiba Robert Inder*

June, 1996

Institute for Social Information Science (/S/S)

at Numazu

FUJITSU LABORATORIES LTD.

140 Miyamoto, Numazu-shi, Shizuoka 410-03, Japan
Telephone: +81-559-24-7210 Fax: +81-559-24-6180


misue
ISSN 0919-6617


Techniques for DUI Platforms:
Developing Graph Drawing Applications on
D-ABDUCTOR

Ikazuo Misue Iiyoshi Nitta INozo Sugiyama
Takeshi Ixoshiba Robert Inder*

Institute for Social Information Science (/S/S)
at Numazu

FUJITSU LABORATORIES LTD.

140 Miyamoto. Numazu-shi, Shizuoka 410-03, Japan

Email: misue@iias.flab.fujitsu.co.]jp

Abstract

An important application of automatic graph drawing is providing diagram-
matic user interface (DUI). Although a DUI is an important part for the user of
a graph drawing application, implementation of application systems with such
the DUIs tends to require much cost. Therefore, a DUI platform is required.
In this paper, how a DUI platform can be customized or extended to create a
variety of DUIs are illustrated. Three generic levels of DUIs are distinguished:
viewing level, selecting level, and manipulating level. In each DUI level. examples
of graph drawing applications are shown. All examples in this paper have been
developed by using D-ABDUCTOR as a DUI platform. This paper also presents
how to use D-ABDUCTOR as a DUI platform by illustrating mechanisms of
these examples.

Key words: diagrammatic user interface (DUI), DUI platform. D-ABDUCTOR.
automatic graph drawing

*University of Edinburgh, Human Communication Research Centre



1 Introduction

It is widely known that automatic graph drawing is of use. One of its signs is that very many
graph drawing algorithms have been developed [1]. An important application of automatic
graph drawing is providing diagrammatic user interface (DUI) [2], which allows human
to interact with computers through diagrams, that is, visual representations of structural
information.

A DUI is an important part for the user of a graph drawing application, since the DUI
has an influence on usability of the application. To offer more usability to the users, DUIs
have to provide greater services by exploiting automatic graph drawing effectively. However,
implementation of application systems with such the DUIs tends to require more complex
mechanisms and more cost. So, a DUI platform, that is, a flexible base on which we can
develop graph drawing applications with various DUIs quickly and efficiently is required.

In this paper we show how a DUI platform can be customized or extended to create a va-
riety of DUIs; we illustrate with systems for “Decision Tree Generator,” “Network Monitor,”
“Directory Browser,” “Graphical Hypertext,” “Graphical Outline Processor,” and “Struc-
ture Analyzer.”

In the following part of this paper, first we explain three generic levels of DUIs, and then
list requirements for DUI platforms applicable to all DUI levels. Next, in each DUI level, we
show examples of graph drawing applications developed by using D-ABDUCTOR [3.4] as a
DUI platform. Finally, based on our experience of developing applications, we discuss what
is desired for DUI platforms.

2 DUI Levels

Architecture of application systems depends on styles of DUIs. in other words, services
offered by DUIs. The following three generic levels of DUIs can be distinguished.

I. Viewing Level

In this level, graphs are drawn only to be viewed. The users are not allowed to input any-
thing through graphs.

Application System

o

User

II. Selecting Level

In this level, graphs are drawn to be viewed and their elements work as selectable buttons.
The users are allowed to select some elements of graphs.



Application System |

ITII. Manipulating Level

In this level, graphs are drawn to be viewed and also works as an object of direct manipu-
lation. Manipulation of the graph changes application data.

Application System . V

These three levels of DUI can be considered to represent a hierarchy in terms of the degree
and sophistication of interaction between computers and the users. Although a higher level of
DUIs can more sufficiently exploit automatic graph drawing, implementation of a higher level
of DUIs tends to require more complex mechanisms; more information must be exchanged
between a DUI and an application module. More complex mechanism certainly requires
more cost in development.

3 DUI Platforms

A DUI platform is desired to develop graph drawing applications with less cost. DUI plat-
forms have two aspects: (1) a system offering DUIs, it has to provide facilities to handle
diagrams, and (2) a platform software, it must be extensible and be able to be combined
with other application programs.

3.1 Diagram Handling

A DUI platform should provide diagram handling facilities such as the followings. DUIs in
the all levels require the following facilities unless we describe notice especially.

General Diagram Handling: dealing with general diagrams to be applicable various ap-
plications.

Layout Creation: producing layout of diagrams and visualizing them by using automatic
graph drawing.

Layout Adjustment: modifying visual attributes and / or geometric attributes of dia-
grams.

QW]



Mental-Map Preservation: preserving the user’s mental map of diagrams [5]. which is
apt to be destroyed by layout creation or adjustment, to not decrease efficiency of
user’s tasks with application systems.

Direct Manipulation: allowing the users to manipulate diagrams directory by using point-
ing devices like a mouse. This facility is required partially in the selecting-level DUIs
and totally in the manipulating-level DUIs.

3.2 Extensibility

A DUI platform needs to be combined with another application module in order to work
as a DUI of an application system, and to be customizable to offer a DUI suitable for the
application system.

Combination with Application Modules: A DUI platform can be combine with appli-
cation modules, for example, it can communicate with application processes by using
pipes, sockets, and so on, be linked with object programs of application modules, and
be embedded in application programs.

Customizable User Interface: The users can define or redefine menus and semantics of
mouse operations.

3.3 System Integration as a DUI Platform

Implementation of a DUT platform requires not only such facilities as mentioned above but
also to integrate the facilities. It is very difficult how to integrate these many facilities for
general purposes. However. it is an important problem in order to exploit automatic graph
drawing in actual systems, and so a lot of research effort should be put into the problem in
future. In this paper. we illustrate an instance of a DUI platform with D-ABDUCTOR.
D-ABDUCTOR!is a generic compound graph visualizer / manipulator which provides
facilities for diagram visualization / manipulation in a direct manipulation environment.

D-ABDUCTOR provides the following facilities to handle diagrams [3]:

Compound Graphs: As general diagrams, compound graphs that can represent both ad-
jacency relationships and inclusion relationships can be handled.

Automatic Layout: As layout creation facilities, a Sugiyama-style drawing algorithm ex-
tended for compound graphs [6] is built-in, and also other external layout programs
of, for example, a spring layout algorithm can be used. Some of these layout programs
are applicable to the current diagram as layout adjustment facilities.

Diagram Dressing: As another layout adjustment facility, “diagram dressing” (a kind of
fisheye view) which changes visual attributes of nodes according to their importance
is provided.

ID-ABDUCTOR is available for non-profit use by anonymous ftp from: SunSITE.sut.ac.jp (133.31.30.7)
/pub/asia-info/japanese-src/packages/abd2.23.tar.gz



Display Animation: Changes of diagrams are shown by animation which reduces the in-
stantaneous visual change of diagrams so that the user’s mental map of diagrams is
preserved.

Direct Manipulation: Direct manipulation environment to edit compound graphs is pro-
vided. The users can select elements, move and resize nodes, make edges. and make
and resolve groups directory by using mouse.

We can extend D-ABDUCTOR by combining with other application programs and pro-
grams for additional functions. To combine D-ABDUCTOR and other programs, the fol-
lowing facilities are available.

Language Simple: The language Simple is designed to describe compound graphs and ma-
nipulating commands for them. D-ABDUCTOR uses the language to save diagrams,
to communicate with D-ABDUCTOR processes on other workstations. and to com-
municate with other programs. Since D-ABDUCTOR works as an interpreter of the
language Simple, it can be controlled by other programs using Simple as a protocol
language.

Communication with Other Programs: The current version of D-ABDUCTOR does
not wait command from the standard input since it is an event driven system. However,
it is convenient that D-ABDUCTOR can read commands from the standard input. A
program abd_tx [3] reads character strings form the standard input and sends them to
a D-ABDUCTOR process on the same display. D-ABDUCTOR provides a facility to
record user’s working history in the language Simple. The history, that is, a sequence
of Simple statements is saved into a specified file or output to the standard output.
Therefore, D-ABDUCTOR can communicate with other programs through UNIX pipes
or files in the language Simple.

Extensible Menu: The users are allowed to add menu items to menus. When one of
the menu items is chosen form a menu, the current diagram data is written into a
temporary file, and the command corresponding with the menu item is invoked with
the temporal file as an argument. Ordinarily, an invoked command reads the current
diagram data, then produces Simple statements to change the diagrams, and finally
send back the statements to D-ABDUCTOR by using abd_tx. The commands are also
allowed to not send back changes to D-ABDUCTOR. So we can define, for example, a
special hard-copy command, which does not change the current diagram.

4 Application Examples

We have developed several graph drawing applications by using D-ABDUCTOR as an in-
stance of a DUI platform. In this section, for each DUI level, we show how D-ABDUCTOR
can be customized or extended to develop applications with DUIs, and then give a few
examples of actual graph drawing applications.



I. Applications with Viewing-Level DUI

Viewing-level DUIs only show diagrams and accept no input. An easy way to make D-
ABDUCTOR work as a viewing-level DUI of an application program is to translate output
of the application program into the language Simple and pass it to D-ABDUCTOR by using
the program abd_tx.

Decision Tree Generator

Learning or generating decision trees by computers is an application of machine learning [7].
Computers sometimes generate very large trees, and it is difficult for us to grasp structural
features only through text representation of the trees. Decision Tree Generator generates
decision trees and visualize the trees by using D-ABDUCTOR (see Figure 1). Visualized

trees help the user to grasp their structural features.

D-ABDUCTOR

viewing

<<
User
pipe
Decision Tree Generator (C) >

Figure 1: Decision Tree Generator
The sample screen shows a tree really generated by a computer [8]; it has 979 nodes.

The program module generating decision trees, written in (. writes tree data and a
layout command in the language Simple. The generated tree data in Simple is passed to
the standard input of abd_tx through a pipe, and D-ABDUCTOR that is passed simple
statements by the abd_tx draws the tree on the screen. The user does not need to touch
D-ABDUCTOR to view the generated tree.

Decision Tree Generator is one of the simplest applications of D-ABDUCTOR. This style
of extension is applicable to many other programs that generate graphs or compound graphs.

Network Monitor

Network Monitor is used for monitoring status of LAN in real time. It shows a graph; a
node represents a workstation and an edge represents existence of packets between two nodes.
i.e., workstations incident to the edge. Visual attributes of elements represent more detail

ot



D-ABDUCTOR
g e SRR T T

Filg i e o Edtr) bocus 1 Props i Create vl viperate <)

viewing

User

pipe
Network Monitor (Perl) —

A
pipeV Tﬁle pipe ]
ruptime
Spring Layout .
Program (C) etherfind ]
(UNIX Command) i vt gt . |

Figure 2: Network Monitor

information. For example, edges with more packets are drawn as wider lines, and nodes
(workstations) with higher load average are drawn as wider boundary lines (see Figure 2).

The main module of Network Monitor, written in Perl, gets information about packets
on the ethernet by using a UNIX command etherfind and load average of each workstation
by using ruptime. The Perl program receives outputs of these commands through pipes
and build a graph data representing current status of LAN. It also invokes external layout
program written in C to use a spring layout algorithm [9], which D-ABDUCTOR does
not support, then passes Simple statement to move nodes to the standard input of abd_tx
through a pipe to show new layout of the graph.

Network Monitor uses etherfind to construct graphs and an external layout program.
By this style of extension, we can employ other commands or programs to construct graphs
and to lay them out.

II. Applications with Selecting-Level DUI

Selecting-level DUIs show diagrams and accept selecting information of elements of the
diagrams. To make D-ABDUCTOR work as a selecting-level DUI of an application program.
the application program have to get log information of D-ABDUCTOR and to pick up select
/ unselect commands. D-ABDUCTOR can output log information to the standard output,
so an application program can know that an element has been selected / unselected by
monitoring a pipe.

Directory Browser

Directory Browser is used for management of files and directories. It shows recursive struc-
ture of directories by a tree; a node represents a file or a directory and an directed edge
represents a directory corresponding where to its tail node (it must be a directory) includes
its head node (i.e., a file or a directory). A node for the current directory is drawn in the



largest size, and nodes closer to the current directory are drawn in larger size by using the
diagram dressing facility (see Figure 3).

D-ABDUCTOR
T T T G AEBUCTOR 2208 lmnfiMAGIQ) T T T T
o flio L) Vg EQLT) Ferus:m) Brops ) Creats t Operate <
viewing . T T
- g
- >
User operation
(selecting nodes)
pipe
Directory Browser (Perl)
pipe

T pipe

UNIX
File System

e ” 2 5
. tayingout - dona. : N : s Daciding pesifions .. . done.

Figure 3: Directory Browser

The main module of Directory Browser, written in Perl, gets information about a di-
rectory by communicating with UNIX file system. The Perl program receives directory
information through a pipe and build a tree data representing directories the user visited
until now. The Perl program is also monitoring log information of D-ABDUCTOR. When
the program finds a select command in the log, it collects information about the selected
directory, and then draws the contents of the directory.

Directory Browser shows a part of a UNIX file system as a visual tree. By way of this style
of extension, we can employ other tree or graph data to be shown as visual representation.

Graphical Hypertext

Graphical Hypertext provides two styles of view for a hypertext. One is an ordinal text view;
text is displayed with some anchors for hyper-links. The other is a graph view; a compound
graph that shows pages and hyper-links among the pages are displayed. and especially a
node for the current page is displayed in larger size (see Figure 4). The user may select
anchors to jump according to hyper-links on the text view, while the user may select nodes
to jump any pages according to nodes on the graph view. Operations in one view cause
immediate change of the other view.

Graphical Hypertext is developed by extending info system of Emacs. We first pre-
pared an emacs-Lisp package (abd.el), which collects functions to communicate with D-
ABDUCTOR. By using this package, the application programmers do not need to take
thought of abd_tx and log information. The extended version of the info system is gds-info.el.
which calls functions in the package abd.el.

The idea of graphical (dual-view) hypertext should be also applicable to other hypertext
systems, for example, the World Wide Web (WWW). For example. if we employ WWW
mode of Emacs, we can use the package abd.el and thus it should be easy to extend the
original program of WWW mode.

-1



operation (selecting hyper-links) viewing

A

\ 4

User operation
(selecting nodes)

viewing

D-ABDUCTOR

Node: The E<ho Firea, Last Yisit: 3 mnutes ago
Up: Display, Next: Selective Display
To: Minibuffer Misc.

&cho 3raa” 15 used for displaying messages made with the
mmve and for echoing kaystrobes, It 15 not the same 33
spxte the fact [hat me minibut fer appear 5 (when

the riles for lt:SOlV!rg umf.lCL between the
ffor for use of that screen space (Hrote The
ffer. . Error messages appear 1n the exh

lelmlfer (ama SIMi

area: see tNote Errors:

You van write outeut in the echo ares by Using Lhe LIS £rinting
1nmtm with “t’ as the stream (#ncte Output Functions::.h. or as
ol Low:

- Functicn: message STRING &rwst ARGUMENTS
Tras function prints 3 one-line message in the echo srea. The
3 gument smm 15 mulv to g L language ‘prantf’ control
string. See ‘furmat’ in #Note String Conversion::, for the details
on the conversion specifications. Message’ retuins the
constructed string

pipe
If STRING 15 ‘n1l’. ‘message’ clears the echo ares. If the <
minibuffer 15 a tlvs this brings the minituffer contents bacv onto Bl
the screen immediately.
moosa

gds-info.el

SSage:

“Min:buffer depth 15 %d."
(mimbuf fer-depth) )
= “Minibuffer depth 15 0."

abd.el pipe

Esn ﬂ""" T T m ot ot done

Figure 4: Graphical Hypertext System GDS-info

ITI. Applications with Manipulating-Level DUI

Manipulating-level DUIs show diagrams and accept manipulation of the diagrams. To make
D-ABDUCTOR work as a manipulating-level DUI of an application program, the application
program has to get log information of D-ABDUCTOR to know change of diagrams and to
change application data.

If an application does not need to have specific application data, the application program
can be constructed by collecting variety of commands for diagram manipulation. These
commands can be added to menus by the users.

Graphical Outline Processor

Graphical OutLine processor (GOL) [10] provides two styles of view for a document (see
Figure 5). One is a text view; outline of a document is displayed with some indentations
representing section structure. The other is a graph view; an ordered compound graph
[10], which represents section structure, the order of paragraphs, and reference relationships
among paragraphs, is displayed. These two views appear simultaneously on a screen. The
user can edit text not only by operating the outline text but also by manipulating diagrams
in the graph view. Operations in one view change the text and cause immediate change of
the other view.

GOL is developed by extending an outline mode of Emacs. Extended version of the
outline mode is gol.el, which also calls functions in the package abd.el.

Structure Analyzer

An example of applications without specific application data is a “structure analyzer.” It
is used to analyze some relational data by manipulating them from points of combinatorial



operation (editing documents) viewing

<
<

— > - -
viewing User operation (manipu-

Emacs lating diagrams) D-ABDUCTOR

Buffers File £dit Headings Show Hide Help Bl £ e Editr). Foows.< )
= order s 3D 3

d o
T vant to get hard copy of a diagram
lating from a diagram 1o PostScript data :: needed

s 1o Erich features for custon:
Partial using of layout feature, layouting only edges or oniy aroup boudar
15 sometines noeded i
Mhether it is possible to layout using edges selected by soms vay fron the\Ml
tructure
Tre laout ing feature that considers weights of edges is desired
= Partial using of layout feature. layout ing only edges ar only
oudar-ies, s somet ines needed
#1311 phether | should make the layout direction 1o be tre same vith node pl p,pe
<
<

g direction
*411 The Lauouting feature that considers weights of sdges is desired gol_el

0 custonize Fisheye feature by the aethod Like dzigning of lent
le to excharge inportance calculating function of Rbridgems

y

© - Batising E’u\ﬂl“Ts: done. |

Figure 5: Graphical OutLine processor GOL

view and metrical view.

Hybrid Idea Processing System HIPS, which is a kind of structure analvzer, can be used
to organize / reorganize segments of text data, for example, answers of questionnaires. It
provides several automatic layout functions, a shortest-path finding function, a reachability
check function, and so on. The sample screen in Figure 6 shows a graph, which has nodes
with answers for a questionnaire and edges represent relationships among answers. After
being found the shortest path between two interesting answers. the graph has been laid out
by using the magnetic-spring algorithm [11,12]. The path is oriented to toward the right.
while most part of the graph appears to be free from any special coordinate systems.

D-ABDUCTOR

viewing

<

- >
User operation

(manipulating diagrams)

through the Operate menu file

v { e R

Other Layout Diagram Editing
Programs Macros
(e.g., Spring alg.) (e.g., Path-finder)

External Commands |

—P>
pipe |

Loaging .. dare. . sazas~1.:cst
oottt o

Figure 6: Hybrid Idea Processing System HIPS

Commands such as the magnetic-spring layout function and shortest-path finder are

9



prepared as external programs written in C, C-Shell, awk, Perl, and so on. Such commands
can be issued through a menu. All procedures the users have to do to add commands to
menus is to redefine shell environment variables.

5 Conclusions and Future Work

We have had experience of developing several graph drawing applications by using D-
ABDUCTOR. In this paper we classified three levels of DUI, and then showed several
applications with DUT in each of the three levels to explain how a DUI platform can be
customized or extended for the applications.

There are several systems we should mention as related systems. Examples are EDGE
[13], daVinci [14] and GraphEd [15]. By using one of these systems, it might be possi-
ble to develop the applications we described above. Differences of these systems including
D-ABDUCTOR we should remark are ways to customize or to extend them. Features of
extensibility of D-ABDUCTOR are summarized as (1) using the language Simple as a com-
munication protocol between a DUT and application programs. and (2) an independent pro-
cess (program) is invoked for each of application programs and additional functions. These
features have the following advantages:

1. The programming language to develop additional functions is not limited to a certain
language, so we can employ a suitable language to develop new facilities in the easiest
way.

2. Each of application modules and additional functions is managed as a separate pro-
gram, so it is easy to exchange facilities.

3. Each of application modules and additional functions is executed as a separated pro-
gram, so it is easy to maintain the whole system.

We hope DUI platforms provide many facilities and generality. If we integrate all expected
facilities into a system, the system must grow to a large and complicated program. It is often
difficult to obtain the above advantages for large and complicated programs. We should
employ some other approaches to provide many and general facilities without enlarging the
system. We propose a policy of development of such the systems:

e Make it easy to develop new facilities.
e Make it easy to exchange facilities for modification of the system.

e Make it easy to maintain the system.

The current version of D-ABDUCTOR will be extended and developed in line with the above
policy. With the new system, we will be able to add or exchange most functions by using
plug-in module mechanisms. So it should become very easy to customize the system by
exchanging functions such as automatic graph layout, fisheye display, communication with
application programs, and so on.

10



The development code of the next system is “Pizza System.” The Pizza System consists
of a “Plain Pizza,” which is a slim platform of DUI, and “Toppings,” which are function
modules exchangeable according to the user’s preference. The users choose some Toppings for
their applications and can easily make application systems, “Mixed Pizza.” only by putting
the Toppings on a Plain Pizza.

A cknowledgment

The authors would like to thank Professor Peter Eades of the University Newcastle for his
useful comments.

References

(1] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Algorithms
for automatic graph drawing: An annotated bibliography. Technical report, Depart-
ment of Computer Science, Brown University, 1993. avaiable via anonymous ftp from

wilma.cs.brown.edu (128.148.33.6), files /bup/gdbiblio.tex.Z and /pub/gdbiblio.ps.Z.

[2] Tao Lin. A General Schema for Diagrammatic User Interfaces. PhD thesis, Department
of Computer Science, The University of Newcastle, 1993.

[3] Kazuo Misue. D-ABDUCTOR 2.0 user manual. Research Report ITAS-RR-93-9E.
FUJITSU LABORATORIES. IIAS, 1993.

[4] Kozo Sugiyama and Kazuo Misue. A generic compound graph visualizer / manipulator:
D-ABDUCTOR. In Graph Drawing. Symposium on Graph Drawing, GD '95. Passau.
Germany, September 20 - 22, 1995, pages 500-503, 1996. Lecture Notes in Computer
Science 1027, Springer Verlag.

[5] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. Layout adjustment and the
mental map. Journal of Visual Languages and Computing, 6(2):183-210, 1995.

[6] Kozo Sugiyama and Kazuo Misue. Visualization of structural information: Automatic
drawing of compound digraphs. IEEE Trans. SMC, 21(4):876-892, 1991.

[7] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:31-106, 1986.

[8] Takeshi Koshiba. Decision tree learning system with switching evaluator. In Proceedings
of the 11th Biennial Conference of the Canadian Society for Computational Studies
of Intelligence (Al '96), Lecture Notes in Artificial Intelligence 1081, (Ed.) Gordon
McCalla, Springer, pages pp. 349-361, 1996.

[9] Peter Eades. A heuristics for graph drawing. Congressus Numerantium, 42:146-160,
1984.

[10] Kiyoshi Nitta, Robert Inder, Kazuo Misue, and Kozo Sugiyama. GOL: Graphical out-
line processor — simultaneously using a text view and a graph view. In Asia Pacific
Computer Human Interaction (APCHI '96), June 25-28 1996. to appear.

11



[11] Kozo Sugiyama and Kazuo Misue. A simple and unified method for drawing graphs:
Magnetic-spring algorithm. In Graph Drawing, DIMACS International Workshop, GD
94, Princeton, New Jersey, USA, October 1994, Proceedings, pages 364-375, 1995.
Lecture Notes in Computer Science 894, Springer Verlag.

[12] Kozo Sugiyama and Kazuo Misue. Graph drawing by the magnetic spring model. Jour-
nal of Visual Languages and Computing, 6(3):217-231, 1995.

[13] Frances Newbery Paulisch and Walter F. Tichy. EDGE: An extendible graph editor.
Software - Practice and Experience, 20(S1):51/63-S1/88, 1990.

[14] M. Froehlich and M. Werner. Demonstration of the interactive graph visualization sys-
tem davinci. In Graph Drawing, DIMACS International Workshop. GD '94. Princeton,
New Jersey, USA, October 1994, Proceedings, pages 266-269, 1995. Lecture Notes in
Computer Science 894, Springer Verlag.

[15] Michael Himsolt. GraphEd: A graphical platform for the implementation of graph
algorithm. In Graph Drawing, DIMACS International Workshop, GD 94, Princeton,
New Jersey, USA, October 1994, Proceedings, pages 182-193, 1995. Lecture Notes in
Computer Science 894, Springer Verlag.



