RESEARCH REPORT ISIS-RR-96-11F

Functional Analysis of DUl Systems:
Toward PizzaSystem Development

Kazuo Misue Tao Lin*

August, 1996

Institute for Social Information Science (/S/S)

at Numazu

FUJITSU LABORATORIES LTD.

140 Miyamoto, Numazu-shi, Shizuoka 410-03, Japan
Telephone: +81-559-24-7210 Fax: +81-559-24-6180

Functional Analysis of DUI Systems:
Toward PizzaSystem Development

Kazuo Misue Tao Lin*

Institute for Social Information Science (/5/S)
at Numazu

FUJITSU LABORATORIES LTD.

140 Miyamoto, Numazu-shi, Shizuoka 410-03, Japan

Email: misue@iias.flab.fujitsu.co.jp

Abstract

A diagrammatic user interface (DUI) allows users to interact with computers
through diagrams. A DUI platform is a flexible base on which we can develop
application systems with various DUIs quickly and efficiently. We aim at devel-
oping a total system of a DUI platform and component modules on it. A formed
idea of the system is called the “PizzaSystem.” To realize the idea, a general
DUI system should be analyzed form a viewpoint of functions. In this document,
intuitive definitions of several terms related to the “PizzaSystem” are given, and
then several requirements for functions of DUIs and implementation of DUIs are
listed. Last, we give a functional architecture of DUI systems in object-oriented
manner.

Key words: Diagrammatic User Interface (DUI), DUI platform, PizzaSys-
tem

*CSIRO, Division of Information Technology, GPO Box 664, Canberra, ACT 2601 Australia

1 Introduction

A diagrammatic user interface (DUT) [1] supports users to interact with computers through
diagrams (visual representations of structural information). Since the DUI determines the
usability of the system, a DUI is one of the most critical part of an interactive system.
However, implementation of interactive systems with such the DUIs tends to require complex
mechanisms and high cost. To solve these problems, a DUI platform [2], which is a flexible
base on which we can develop various DUIs quickly and efficiently, is required.

We aim at developing a complete DUI platform. Such a platform is called “PizzaSystem”
[3] and has several features; the platform is a slim kernel for easy maintenance, component
modules can be chosen like pizza toppings, and this platform allows potential users to have
the tastes of the application system with different DUIs by using the different combinations
of the developed modules in this platform.

To support high flexibility and extensibility, the architecture of this platform should well
decompose the functions in the sense of that we can easily change the implementation of a
module without disturb other modules. Therefore, an architecture which well specifies the
interfaces between the possible functional modules is required for the development of this
platform. Due to the features supported by object-oriented methodology, such as encapsu-
lation and polymorphism. we use this methodology for this project.

In this document we analyze a general DUI system to decompose its functions; decom-
posed functions are represented as networks of objects. The platform can be decomposed into
a groups of object components: “Manager,” “Data Handler,” “Raster Handler,” “Graphical
User Interface,” “Layout Generator,” and “Application Filter.” These group of objects are
further decomposed in so detail that they are available to design the architecture of the
“PizzaSystem.”

In the following part of this document, Section 2 gives intuitive definitions of several terms
related to the idea of a “PizzaSystem.” Section 3 lists the requirements from the point of
view of the functions and implementation of DUIs. Section 4 presents a functional analysis
of DUT systems. Decomposed functions are represented as diagrams of object-networks.
Section 5 gives concluding remarks and a plan of developing the “PizzaSystem.”

2 Terminology

This section gives the terminology related to the “PizzaSystem.” Section 2.1 gives explana-
tion of the concept of “PizzaSystem” and its constituents. Section 2.2 gives classification of
people concerned with the “PizzaSystem.”

2.1 PizzaSystem

PizzaSystem is a comprehensive concept including a DUI platform, its components, and
technologies on them. The concept of PizzaSystem is outlined by “PlainPizza,” “Toppings,”
and “MixedPizza.”

PlanPizza: a DUI platform, that is, a flexible base on which we can quickly and efficiently
develop various DUIs.

Toppings: function modules, which are ezchangeable according to user’s preference. The
users may develop their original toppings. Toppings are classified by functions. For
example, a Topping class for generating layout is called “layout generator.” Such a
class is called a functional Topping. The implementation of a functional Topping is
called an implementation Topping , for instance, Sugiyama algorithm [4] is one of the
implementation Toppings for the functional Topping: layout generator.

MixedPizza: an interactive system with a DUI. A MixedPizza consist of a DUI part and
applications. We should not call an “application system” to avoid confusing it with
an application (described below). To strictly specify only a DUT part of a MixedPizza,
a term “pure MixedPizza” should be used. In the following part of this document,
however, the term “MixedPizza” is used to mention a DUI part of an interactive
system (see Figure 1).

Applications: application programs or application systems without DUIs. For example, a
database management system can be an application. A PlainPizza combined with a
Topping that is an application interface to the database system is a MixedPizza and
can provide a DUI of the database system.

2.2 Users and Developers

It is possible to regard people except platform developers as “users.” Here, however, we
classify such the users into three levels: “MixedPizza users,” “MixedPizza developers,” and
“Topping developers.” This classification is important to consider measures to cover various
user levels.

1. MixedPizza Users: use a MixedPizza and may customize the MixedPizza. They are
often called “end users.”

2. MixedPizza Developers: develop a MixedPizza using the PlainPizza and Toppings.
They choose the Toppings ready developed and do not need to develop new Toppings.
They know the architecture of the PizzaSystem to make a MixedPizza.

3. Topping Developers: develop new (implementation) Toppings.

4. PlainPizza Developers: develop the PlainPizza.

These four classes can be considered to represent a hierarchy in terms of the degree of
providing skills in the PizzaSystem. MixedPizza users should not be required high level of
skills, while PlainPizza users must be required highest level of skills.

3 Requirements

The roles played in a PizzaSystem can be divided into four categories: MixedPizza users,
MixedPizza developers, Topping developers, and PlainPizza developers. Here, we investigate
the requirements from the view point of these four roles respectively.

8]

3.1 Requirements of MixedPizza users

The functions of the MixedPizzas mainly decides the requirements of MixedPizza users. A
MixedPizza has two major roles: one is as a user interface of applications, and the other is
as a provider of diagram handling facilities. Requirements for functions can be also classified
according to these two roles.

3.1.1 As a User Interface of an Application

A DUI system must or should provide the facilities as a user interface to an application.

Communication with an Application Module: A user interface must be able to com-
municate with an application modules. Communication should be used to control and
to retrieve the information from application modules.

Providing Graphical User Interface: Menus and dialog boxes should be available. It is
also desirable that MixedPizza users should be allowed to customize menus and menu
items according to their preferences.

Communication with Other MixedPizzas: Communication with other Mixed Pizzas en-
ables the MixedPizza users to share information with other users of other computers.
The MixedPizza should be a groupware.

Undo for Every Possible Operations: Every possible operations could be canceled by
the “Undo” command. Diagrams used by DUIs are sometimes very delicate and dif-
ficult to restore by ordinal operations. The DUI system should take and keep every
snapshot of diagrams and should provide for user’s cancellation requests.

Recording Working History: A history of working with the MixedPizza should be recorded.
Recorded history should be machine-readable to be able to replay. The history should
also be human-readable or be able to convert into human-readable format. Analysis
of such the working history is an important research topic for certain applications and
is useful to improve the MixedPizza.

Revision Control of Diagram Data: Multiple revisions of diagram data should be man-
aged. Tasks with some kind of applications need trial and error on editing diagram.
Revision control is useful for the users to perform such tasks.

Customizable: A DUI should be customizable to user’s custom, habit, preference, envi-
ronment and so on.
3.1.2 As a Provider of Diagram Handling Facilities

The most important feature of a DUI system is to provide diagram handling facilities such
as the followings.

Powerful Visual Formalism: Diagrams used by user-interfaces should provide powerful
visual formalism adaptive to a certain application. Some applications might have
conventional styles of visual formalism. It is desired that such styles shall be supported.

3

Layout Generation / Adjustment: Facilities to generate layout of diagrams are impor-
tant because that such the facilities are necessary to visualize logical information pro-
vided by applications. Some applications might also have conventional styles of dia-
gram layout. It is desired that such the styles shall be supported. Layout generation
generates layout from scratch and does not care for the current layout, while layout
adjustment is sensitive to the current layout. Layout adjustment might be more useful
In most interactive systems.

Fisheye Views: It is desired that fisheye views [5,6] of diagrams should be available. One
of the most important feature of diagrams is to be able to show the total structure of
information represented by the diagram at once. However, it is difficult to show the
whole of a large diagram in detall. Fisheye views enable to show the whole diagram
and local details of viewpoints at the same time.

Multiple Views: It might be required multiple views of the same logical information, that
is, information provided by applications. Different views can have different advantages,
so combination of two or more different views enable to exploit various advantages at
once [7].

Mental-Map Preservation: The mental map of diagrams should be preserved [8]. Layout
generation and sometimes layout adjustment can destroy the mental map and tend to
decrease efficiency of tasks with diagrams.

Direct Manipulation: Some operations should be allowed to be performed directory by
using pointing devices like a mouse. For example, selecting, moving, and resizing are
suitable to direct manipulation.

Saving and Restoring Diagrams: Diagram data should be able to saved and restored.
Not only topological information of diagrams but also their geometry and appearance
might be desired to be saved.

3.2 Requirements of MixedPizza developers

The implementation of MixedPizzas determines the requirements of MixedPizza developers.
In another word, the requirements of MixedPizza developers depends on the functions of
the PlainPizza. The PlainPizza, that is, a DUI platform should be adaptable and flexible to
various applications and various developers. These are essential aspects of platforms.

Flexible Visual Formalism: Visual formalism of diagrams used by user-interfaces should
be suitable to a certain application, but suitable diagrams are various depend on ap-
plications. It is desired that DUI platforms should deal with general diagrams to be
applicable various applications or should provide exchangeable and extensible visual
formalism of diagrams.

Extensible Functions: It should be easy to add new functions. For this purpose, the func-
tional Toppings should be well encapsulated and thus the implementation Toppings are
exchangeable. The users should be allowed to develop new implementation Toppings.

Non-Programming Development: Development of a MixedPizza should be easy. Users
develop a MixedPizza without programming However, the users who like programming
should be allowed to write programs.

Automatic Configuration: Some MixedPizza developers do not want to take care to
maintain their system. For such people, Toppings should be added or exchanged
automatically.

Dynamic Configuration: It should be allowed to modify and exchange function modules
In run time.

3.3 Requirements of Topping developers

Functional Independence: Toppings should be developed independently. Topping devel-
opers are ought to desire to concentrate on the development of the implementation
Topping for certain functional Toppings without the concerns of the interfaces of these
Toppings to others.

Language Independence: The programming language to develop original function mod-
ules is not limited to a certain language, so the users can employ a suitable and a
familiar language to develop new modules in the easiest way.

3.4 Requirements of PlainPizza developers

Software systems should be economical of development and maintenance costs.

Slim Kernel System: The kernel system, that is, the PlainPizza should be so slim that it
1s easy to develop and to maintain.

Clean Architecture: The architecture of the PlainPizza should be clean. Clean architec-
ture makes system maintenance easy.

Exploiting Existing Resources: There are many programmers and many programs in
the world. We should attempt spontaneous distribution of tasks and reusage of pro-
grams like in the UNIX world.

Design of the PizzaSystem must take account of these requirements mentioned above.
Requirements of MixedPizza users influence what functions should be provided by Mixed-
Pizzas. Other requirements, especially requirements of MixedPizza. developers influence how
to organize provided functions.

In Section 4, we analyze functions of a typical MixedPizza according to the require-
ments of MixedPizza users. A MixedPizza is decomposed into functional parts to prepare
reorganization of them for new architecture of the PlainPizza and Toppings.

4 Functional Analysis

According to the requirements discussed in the previous section, we aim to develop a Mixed-
Pizza development environment which can support two development phases:

MixedPizza Development: This environment phase is to support the activities of Mixed-
Pizza developers. This phase should provide the mechanisms to guide the MixedPizza
developers to easily find the implementation Toppings and to develop a new MixedPizza
by integrating the PlainPizza and the implementation Toppings chosen by MixedPizza
developers. The interfaces to applications are treated as Toppings as well.

Topping Development: This environment phase is to support the activities of Topping
developers. This environment phase should provide the mechanisms to manage the
implementation Toppings by Topping developers and the criteria to organize the im-
plementation Toppings.

The development of a MixedPizza development environment is a long term task. The
most important task for the development of such an environment is to give a functional ar--
chitecture which can be applied to a wide range of MixedPizzas. This functional architecture
lists the possible functional Toppings of MixedPizzas and specifies the interfaces between the
possible Toppings.

Section 4.1 analyses the functionality of a MixedPizza. and divides the objects into six
functional groups ("parts”): "Manager”, "Raster Handler”, "Data Handler”, ” Application
Filter”, "Layout Generator”, and ”"Graphical User Interface”. From Section 4.2 to 4.7, we
will further divide the objects in these functional parts.

4.1 A MixedPizza

A MixedPizza handles a diagrammatic representation which maps the relational information
(which can be modeled as “graphs” or “networks”) into the graphical forms (which are
displayed on the screen). A MixedPizza is a DUI system which represents the information
retrieved from application into pictures and supports users to modify the picture by direct
manipulations to control the application. Figure 1 illustrates these basic functions of a

MixedPizza.

retriving . . viewing
An Application A MixedPizza
System

controlling manipulating

Picture

Figure 1: Basic Functions

A MixedPizza can be decomposed into several functional parts illustrated in Figure 2.

o A Data Handler maintains the data entities of the data model in a MixedPizza. The
data entities contain the following information: logical attributes (information re-
lated to the applications), topological attributes (structural relationship), geometric

6

Picture

Raster Raster

Image / Handler
Data Graphical User
Handler AN / Interface

|
1
1
1
1
!
|
]
I
|
I
I
1
:
| Manager
|
1
!
!
|
!
|
|
i
'
1
i
I
|

iaati Layout
Ap g:if;t 1on Generator

J A MixedPizza System

Application
Figure 2: Functional Parts of a MixedPizza

attributes (shape and location) and appearance attributes (color and texture). These
entities create a raster image for the entire data entities which are handled by “raster
handler”.

o A Raster Handler handles the raster image and displays it on the screen. Users can
deal with the raster image by direct manipulations. The cursor positions, operation
types are sent to the data handler to be interpreted. The data handler modifies the
data entities and the image handled by the raster handler is changed accordingly.

o The Graphical User Interface provides the interfaces to users to invoke operations.

e An Application Filter converts the formats between application data and the data
entities if these data formats are different. '

o A Layout Generator creates the layout for the data entities of the data model. The
layout generator contains a set of graph entities which provide methods for layout
generation. The graph entities require topological relationships for generating layout.
The topological relationships between the data entities in data handler and graph
entitles in the layout generator could be different. For example, the data entities are
structured as a directed graph and the graph entities in the layout generator can be
structured as a tree.

¢ The Manager coordinates the above functional parts.

It is allowed to have multiple raster handlers, multiple layout generators, and multiple
data handlers. However, in a MixedPizza there can only be a single manager part, a single

-~

application filter part and a single graphical user interface. It is also possible that a new part
may be required to be added into the system. For example, to allow several MixedPizzas
working in a groupware environment, a communicator part should be added into the system.
This part is responsible to receive and send messages between this MixedPizza and other
MixedPizza. Figure 3 illustrates a MixedPizza with a communicator part. However, in this
design. we just focus on a stand alone MixedPizza, but keep the flexibility to add new part.

Picture

1 A MixedPizza System

Graphical User

Data
Handler \ / Interface

Manager Tt TTTTT T !
7 I \ Other MixedPizza '
Communicator [~ roos > Svstems !
Application i] Y :
Filter Layout A REEEEEEE

Generator :

I

Application

Figure 3: Extra Component in a MixedPizza

Some operations for a MixedPizza are listed below to illustrate the functionality of these

parts:

Application Input. To conduct this operation, application filter reads the data from
the application and converts the data into the data format of data entities, and then
data handler creates the data entities.

Application Output. To conduct this operation, data handler send the data to appli-
cation filter to convert the data format into the application data format, and then
application filter sends the converted data into application.

Dressing Assignment. This operation assigns color and texture values for the appear-
ance attributes of the data entities. This operation is conducted by data handler.

Animation. This operation aims to provide a smooth change after the geometric at-
tributes of data entities been modified. This operation is performed by data handler.

Rasterization. This operation lets part or all of the data entities to generate their
raster data to form an image handled by raster handler. This operation is conducted
by data handler.

[0

Topological Connection Setting. Data handler conducts this operation which sets up
the object links according to the text-index links.

o Raster Input. After a user makes some changes by direct manipulations, the raster
handler sends the requests of the operations and cursor positions to the data handler
through manager. Data handler interprets the operations and change the data entities
accordingly. The change is broadcasted by manager to inform the relevant parts to
change their contents.

o GUI Input. A user can invoke an operation through GUI to change data entities and
other object attributes in a MixedPizza, such as “color mapping rules.” A user can
change data entity attributes by using a dialog box or a combination of GUT input and
raster input.

o Size Determination. This operation is a preprocessing operation for automatic layout
generation. This operation determines all the sizes of nodes and the widths of edges.
Layout generator conducts this operation.

o Layout Generation. This operation is an automatic layout generation method which
decides the values of the geometric attributes for data entities. Obviously, layout
generator performs this operation. The layout generation method decides the geometric
values of graph entities in the layout generator part first. Then geometric values of the
relevant data entities are assigned accordingly.

o Viewpoint Focusing. This operation modifies the raster image in order to allow users
to emphasize their own focuses. The major technology is fisheye presentation which
can enlarge the image of the focused points and reduce the rest of the image. It is
allowed to have more than one focus. This operation is performed by raster handler.

o Display. This operation displays the raster image on the screen. This operation is
performed by raster handler.

4.2 Data Handler

Data handler is a group of object components for handling data entities. The attributes for
data entities can be divided into four categories:

o Topological attributes give the connection relationship between the entities of the rela-
tional information, such as tree, directed graph, undirected graph, compound digraph,
and compound mixed graph.

o Applicational attributes provide application related information except topological at-
tributes. In a MixedPizza, the application attributes can be used to decide the values
of geometric attributes and appearance attributes.

o (eomelric attributes include size and coordination. Geometric attributes determine
the layout of a diagram.

Appearance attributes determine the color, texture and the shape for the graphical
entities to be displayed.

Manager

7 - .‘4- RS
.~ Dressing "\
‘. Reference '

Dala Handler
Interface

R

Data Handler
Coordinator

Data Entity

Generator
h y
kS

g
+~ Structure
', Reference,

PN

LT
/ Animator *,
« Refernce ./

Data Entity
Modifier
PR

- ~

. Semanics |
« Reference -

Topology
onnecto;

Data Entity
Collection

Data Handler

Figure 4: Components of Data Handler

A data handler consists of the following components (illustrated in Figure 4):

A Data Handler Interface provides an interface between manager part and data handler
part. This interface passes commands, data and object reference between these two
parts.

The Data Entity Collection organizes the data entities and provides the object reference
of the data entities to other components in data handler part.

A Data Entity Generator receives the commands for generating data entities from
application filter or graphical user interface parts. Data entity generator provides a
generic mechanism for creating data entities. The “structure reference” provides the
information for generating the specific data entities.

A Topology Connector sets up the topological connection by using object references.
When generating data entities from application data, the topological connection are
represented by the text identifiers of the data entities.

A Dresser assigns the appearance attributes for data entities. Dresser provides a
generic mechanism for the dressing of data entilies and “dressing reference” provides
the information for the dressing of the specific data entities.

10

o A Data Entity Modifier is responsible to modify the data entities. Data entity modifier
checks the consistency of semantics after adding, deleting data entities, or modifying
the attribute of data entities. Data entity modifier does not check the consistency of
semantics when loading a batch of application data. Data entity modifier only provides
a generic mechanism and “semantic reference” provides detail information for a specific
MixedPizza system.

e An Animator is responsible to create the intermediate frames between the original
state and final state of the layout after the geometric attributes of the data entities are
modified. According to the operations for modifying the geometric attributes, different
approaches can be used to create the frames. The “animator reference” provides the
information for choosing the approaches for the geometric modification operations in
a specific MixedPizza.

o A Rasterizator is responsible to generate the raster image for the data entities to be
viewed. Each data entity creates its own raster image.

o A Data Handler Coordinator is responsible to coordinate the activities of the above
components in data handler part.

4.3 Raster Handler

Manager

// ____________ e

 Mouse Action ")
~._ Rules .-

Raster Handler
Interface

.....

\

{ Picture

- - —.___(Raster Image
Displayer

- -
- ~<

Raster Handler
Coordinator

Viewpoint
Setter

Raster Handler

‘. Raster Image)

Figure 5: Components of Raster Handler

A raster handler consists of following components (illustrated in Figure 5):

o A Raster Handler Interface provides an interface between manager part and raster
handler part. 'I'his interface passes commands, data and object reference between
these parts.

11

¢ The Raster Image Display displays the raster image on screen. The raster image can
be created by rasterizator in data handler part, and can be further modified by image
modifier defined below.

A Image Modifier mainly uses fisheye view technology to enlarge some parts of the
image to emphasize some information.

A Viewpoint Setter helps the user to choose the emphasized points in the image.

A Mouse Action Interpreter takes “mouse action rules” to interpret the mouse actions.
The mouse operations are passed to data handler part for further processing.

A Raster Handler Coordinator is responsible to coordinate the activities of the above
components in raster handler part.

4.4 Application Filter

Manager

Application Filter
Interface

‘. Grammer _-

1

]

|

|

I

I

1

]

]

'

]

:

I

: Application Filter Data Format
! . Coordinator Convertor
' String
1

1

1

1

|

|

|

1

1

1

]

|

|

Application

Filter v

\

S~

- Application *
~. Grammer _-

~ . -

t

Figure 6: Components of Application Filter

An application filter consists of the following components (illustrated in Figure 6):

o An Application Filter Interface provides an interface between manager part and data
handler part. This interface passes commands, data and object reference between these
two parts.

o A String Filter maps the data from the application file and the data entities in the
MixedPizza. If the data formats are different, a data format converter is required.

e A Data Format Converteris responsible to convert the data between formats of appli-
cation data and data entities if these two formats are different.

12

e An Application Filter Coordinator is responsible to coordinate the activities of the

above components.

4.5 Layout Generator

Manager

Layout Generator
Interface

’ Size
v. Reference .
i

Layout Generator
Coordinator

Graph Entity
Collection

i
’

Size
Determination

Layout Generator

Layout
Creation

- ~

. <
/ Layout NP
\ o ld

« Preference e

~ -

Figure 7: Components of Layout Generator

Layout generator is responsible to generate the layout for the data entities. The graph
entity set can have the same topological structure as the data entity set in data handler
part. However, it is also allowed to have different topological structures. For example, the
topological structure for data entity set is a directed graph and for graph entity set is a tree.
The graph entity also differentiates from the data entity in that graph entity provides local
layout operations. A layout generator consists of the following components (illustrated in
Figure 7):

¢ A Layout Generator Interface provides an interface between manager part and layout
generator part. This interface passes commands, data and object reference between
these parts.

o A Graph Entity Collection organizes the graph entities and provides the object reference
of graph entities to the data entities in graph handler part.

¢ The Layout Creation in layout generator provides global operations and graph entities
provide the local operations for layout generation. The geometric values of the graph
entities are decided by the operations provided by both sides.

e The Size Determination determines the size for each 2-dimensional graph entity and
the width for each 1-dimensional graph entity.

13

e A Layout Generator Coordinator is responsible to coordinate the activities of the above
components.

4.6 Graphical User Interface

Manager

Figure 8: Components of GUI

Graphical user interface consists of the following components (illustrated in Figure 8):

o A GUI Interface provides an interface between manager part and graphical user inter-
tace part. This interface passes commands and data between these parts.

o Views & Controllers provides graphical widgets and controlling mechanisms.

e A GUI Coordinator passes the messages between manager part and views & controllers.
Users’ operations on the views and controllers are converted into text form in GUI
coordinator. The GUI coordinator is the model in model-view-controller or model and
control-view architectures.

4.7 Manager
A manager consists of the following components (illustrated in Figure 9):

o A Component Interface Coordinator is responsible to coordinate the activities of the
interfaces of other functional parts.

e A Command Interpreteris responsible to interpret the commands from the interface of
each functional part. The “command reference” defines the rules for the interpretation
of the command for a specific MixedPizza.

e A Operator Coordinator is responsible to invoke the operations after the command is
interpreted by the command interpreter. The “operator reference” defines the rules
for the invoking of the operators.

14

. . " Command °
’ " \)
. Operator) \ Reference
‘. Reference . -7 .

" -— -

Manager
‘ Coordmator

© Component Component
Interface Coordmator
Coordinator

Manager

Figure 9: Components of Manager

o A Component Coordinator. It is required that there should be multiple raster handlers,
multiple data handlers and multiple layout generators. The component coordinator is
responsible to coordinate the components in this situation.

o A Manager Coordinator is responsible to coordinate the activities of the components
In manager part.

5 Conclusions

The functions of possible MixedPizzas were analyzed and decomposed. Decomposition was
performed based on object-oriented approach, so decomposed functions are represented as
networks of objects. These objects should be reorganized to construct a platform architecture
adequate to the fundamental idea of the PizzaSystem. These object networks should be
useful to develop a DUI platform in some object-oriented languages.

We have the following plans to develop the PizzaSystem.

1. Design architecture of the PizzaSystem; Objects decomposed in this document will be
reorganized in line with the fundamental idea of the PizzaSystem [3].

b

Decide specification of the PlainPizza and some Toppings; Their specification as objects
and messages among them will be described in writing.

3. Implement the PlainPizza and some Toppings; Based on the specification, program of
the PlainPizza will be written and some Toppings will be also written as examples.

4. Combine the PlainPizza and some Toppings to develop MixedPizzas; some MixedPizzas
will be developed for a tasting of the PizzaSystem.

A cknowledgment

The authors would like to thank Mr Kiyoshi Nitta of Fujitsu Laboratories, ISIS for his useful
comments.

References

[1] Tao Lin. A General Schema for Diagrammatic User Interfaces. PhD thesis, Department
of Computer Science, The University of Newcastle, 1993.

[2] Kazuo Misue, Kiyoshi Nitta, Kozo Sugiyama, Takeshi Koshiba, and Robert Inder. Tech-
niques for DUI platforms: Developing graph drawing applications on D-ABDUCTOR.
Research Report ISIS-RR-96-7TE, FUJITSU LABORATORIES, ISIS, 1996.

[3] Kazuo Misue and Kiyoshi Nitta. Basic idea of the hyper diagram platform. ISIS-BW-
MISU9510B (Fujitsu Laboratories Ltd., ISIS internal document, in Japanese), October
1995.

[4] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding
of hierarchical system structures. IEFE Trans. SMC, 11(2):109-1235, 1981.

(5] George W. Furnas. Generalized fisheye views. In Proceedings of CHI'86, Human Factors
in Computing Systems, pages 16-23, 1986.

[6] M. Sarkar and Marc H. Brown. Graphical fisheye views of graphs. In Proceedings of
CHI’92, pages 83-91, 1992.

[7] Kiyoshi Nitta, Robert Inder, Kazuo Misue, and Kozo Sugiyama. GOL: Graphical outline
processor — simultaneously using a text view and a graph view. In Asta Pacific Computer
Human Interaction (APCHI’96), pages 469-478, June 25-28 1996.

[8] Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugivama. Layout adjustment and the
mental map. Journal of Visual Languages and Computing, 6(2):183-210, 1995.

16

