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Abstract— Computing in drones has recently become 
popular for various real-world applications. To assure the 
performance and reliability of drone computing, systems can 
also adopt computation offloading to a nearby fog or edge server 
through a wireless network. As the offloading performance is 
significantly affected by the amount of workload, the network 
stability, and the competing use of a shared resource, 
performance estimation is essential for such systems. In this 
paper, we analyze the performance bottleneck of a drone system 
consisting of multiple drones that offload the tasks to a shared 
fog node. We investigate how resource conflict due to 
computation offloading causes the performance bottleneck of 
the drone computation system. To model the behavior of the 
system and analyze the performance and availability, we use 
Stochastic Reward Nets (SRNs). Through the numerical 
experiments, we confirm that the benefit of computation 
offloading deteriorates as the number of competing drones 
increases. To overcome the performance bottleneck, we also 
discuss potential solutions to mitigate the issue of a shared fog 
node. 

Keywords—Drone, Fog computing, Offload, Performance 
bottleneck, Stochastic reward nets 

I. INTRODUCTION  
The rapid growth of the Internet of Things (IoT) 

applications and their interference with our daily lives have 
led to many IoT devices and an enormous amount of data. 
Traditional cloud computing resources are used in part to deal 
with IoT resource constraints. However, using cloud-centric 
resources can lead to other issues, such as latency for time-
critical applications [1]. Fog computing is a distributed 
computing paradigm that uses any computing nodes between 
IoT devices and the cloud. Many latency-sensitive 
applications, such as self-driving cars, virtual reality, 
augmented reality, smart roads, and smart cities, are adopting 
fog or edge computing architectures to meet real-time 
processing requirements [2-4]. Fog and edge computing are 
similar as both paradigms aim to bring computation closer to 
the source of data, while fog node does not necessarily run at 
the edge of the network (i.e., any intermediate nodes between 
edge devices and the cloud can be considered a fog node).  
Moreover, fog computing can also provide a solution to 
certain applications that need to avoid storing data in the cloud 
because of privacy issues and concerns [5-6].  

As fog computing gradually extends the cloud to the edge 
of the network, the application of drones with fog computing 
has received increasing attention. There are many practical 
applications of drones, such as emergency rescue, cargo 
transport, remote sensing and telemetry, and precision 
agriculture [7-10]. Drones can communicate with the ground 
station via wireless networks, recognize surroundings, and 

realize autonomous flight. Since drones as mobile edge 
devices have limited computing resources and battery lifetime, 
reducing the computation workload during the flight is a 
fundamental requirement.  

Computation offloading is one of the key technologies 
used in mobile edge computing, allowing mobile edge devices 
to offload all or part of their computing tasks to edge nodes 
under the constraints of energy, delay, and computing power. 
Mobile devices can offload their computation tasks to other 
computing nodes through the network to reduce the workloads 
and save battery [12]. Drones can also benefit from 
computation offloading but may need appropriate resource 
allocation strategies which account for computation and 
communication at the same time [11]. As computation 
offloading by a drone impacts the system quality, such as 
performance and availability, performability models have 
been developed to decide on efficient offloading [13]. While 
the performability model is useful for analyzing the impacts 
of offloading, the previous study only considered a single fog 
node that is dedicated to the drone. However, considering 
practical application scenarios, the fog node can be shared by 
multiple drones. In such a scenario, the effectiveness of 
computation offloading may not be obvious.  

In this paper, we model a system consisting of multiple 
drones competing for offloading tasks to a shared fog node 
and analyze the potential performance bottleneck through 
numerical analysis. The tasks on the drone to be offloaded are 
assumed to be part of an application program like image 
processing tasks such as object recognition. In the evaluation 
of system performance and availability, we consider 
uncertainty factors such as workload intensity and link 
reliability. The workload intensity is parametrized by the 
arrival rate of image processing requests, while the link 
reliability is considered as the communication disconnection 
rate. We use Stochastic Reward Nets (SRNs) [26] to model 
the interactions between multiple drones and a shared fog 
node under the uncertainty factors. SRN allows us to define 
the reward functions over the Petri nets for quantifying several 
performance measures of interest. In order to quantitatively 
analyze the bottleneck, we conduct sensitivity analysis by 
varying the uncertainty factors with different numbers of 
competing drones. Through the numerical analysis, we 
confirm both service availability and throughput decrease as 
the number of drones increases. When the amount of workload 
on the drones increases, both availability and throughput 
decrease due to the bottleneck in the fog node that does not 
have sufficient resources to process all the tasks offloaded 
from multiple drones. When the communication quality of 
drones becomes unstable, the service throughput declines 
since many jobs cannot be successfully offloaded. While low 



link reliability to a drone harms the throughput, low link 
reliabilities to other competing drones benefit the throughput, 
as it reduces the competition at the fog node. We also discuss 
potential approaches to overcome the performance bottleneck 
in the fog node resource.  

The rest of the paper is organized as follows. Section II 
describes related work. Section III and IV introduce the target 
system and the model we developed to evaluate the system 
performance and availability, respectively. Section V presents 
the results of bottleneck analysis through the numerical 
experiments on the proposed model. Section VI discusses the 
potential approaches to mitigate the performance bottleneck 
in the fog node. Finally, Section VII gives our conclusion. 

II. RELATED WORK 
System and network design for drone applications have 

been emerging challenges for research and industry. Drones 
need to communicate with ground stations, computing devices, 
and other drones via various types of wireless communication 
channels and protocols. For example, an open-source 
simulator – FlyNetSim [14] allows us to simulate and evaluate 
swarms of drones operating in a connected multi-layer 
technology ecosystem, such as the urban Internet of Things 
(IoT). IoD-Sim is another open-source simulator that offers a 
ready-to-use simulation development platform for drone 
application systems [15]. In the present work, we consider the 
performance impact of offloading among multiple drones to a 
shared fog node rather than providing a general-purpose 
simulator. Using SRNs to model the system behavior, we can 
analytically evaluate both the performance and availability 
impacts of computation offloading.  

Mobile edge computing (MEC) and fog computing have 
been actively studied in recent years [16][17]. Mobile and 
edge devices can reduce computational burden and save 
energy by offloading the tasks to fog and edge servers or cloud 
nodes. Offloading techniques can be broadly classified into 
full or partial offloading [18]. Computing tasks can be 
offloaded to different layers of the underlying computing 
system. For example, in a three-tier structure, an edge device 
can decide to completely offload tasks to edge nodes or cloud 
nodes or to complete the task itself [19]. In our study, we 
consider partial offloading with a fog layer, by which only 
important heavy computational tasks, such as image 
processing, are offloaded to a fog node. We do not consider 
the cloud layer in this paper. 

 Sensitivity analysis is one of the essential methods to 
analyze the system performance bottleneck. There have been 
many studies using Stochastic Petri nets (SPNs) to model the 
system and to analyze the sensitivity of system parameters to 
the system performance [20-24]. For example, Silva et al. 
proposed an SPN to model the cooperative usage of cloud and 
fog [20]. The presented model allowed the configuration of 12 
parameters, such as the number of available resources, 
workload, and average request arrival time. The SPN is also 
used to represent the abstract distributed systems consisting of 
IoT, edge, and cloud layers. A Deterministic and Stochastic 
Petri Net (DSPN) is developed for evaluating fog and cloud 
IoT environments consisting of hundreds of physical things. 
The proposed approach allows evaluating the trade-offs of 
many performance metrics (e.g., utilization, response time, 
throughput, and availability) and thus can help system 
designers to choose the most appropriate fog and cloud IoT 
environment [25]. In our study, as an extension of the 

previously developed model [13], we develop a 
comprehensive SRN to determine the computation offloading 
for drone tasks under situations where multiple drones share 
the fog node for offloading. 

III. DRONE COMPUTATION SYSTEM 

 

We introduce the drone computation system considered in 
this paper. As shown in Figure 1, the system consists of a 
swarm of flying and working drones, a base station, and a 
shared fog node server. Drones are equipped with cameras and 
processors that are used to analyze the images taken by the 
cameras. Drones can communicate with the fog node via the 
base station through a mobile link. By using wireless networks, 
drones can offload computing tasks to the shared fog node. 
We assume that the shared fog node is a local server located 
close to the base station. Computation offloading is only 
possible when the drone is connected to the wireless link and 
the fog node is idle in which no other tasks are being processed. 
We assume that tasks are processed on a first-come first-
served basis, and the drones need to wait for the offloading 
until the fog node is idle. Since a fog node can reduce the 
computation workloads, offloading can also help reduce 
process failures and unavailability of the drone under a high 
workload. On the other hand, it may incur an additional delay 
in processing due to the communication between the drone 
and the fog node. 

There are two key environmental factors that can impact 
the system performance and availability. One is the computing 
demand for individual drones. If the workload is small, the 
drone can handle the tasks without using offloading. However, 
when the workload becomes heavy, offloading the tasks to the 
fog node is a desirable option as it can increase the availability 
of the system. The other key factor is the quality of wireless 
communication. The drone can send the tasks to the fog node 
for offloading if the wireless communication is robust. 
However, when the quality of the networks degrades, 
computation offloading may fail; hence, computation 
offloading is not a desirable option.  

Besides the environmental factors, the performance and 
availability of a drone using the fog node also depend on the 
behavior of other competing drones. As the number of drones 
requesting tasks to the shared fog node increases, the fog node 
might become a performance bottleneck of the system. In the 
following sections, we investigate such a bottleneck through 
modeling and analysis of the system.  

Figure 1. Drone computation system 
 



IV.  PROPOSED MODEL 

A.  Offloading model 
We compose SRNs for a drone image processing system 

using computation offloading to a fog node. The model is 
based on the fog offloading model presented in the previous 
study [13], but it is extended to consider the resource conflicts 
on the fog nodes by multiple drones. Figure 2 shows the SRN 
that consists of inter-dependent subnets corresponding to 
drones, a fog node, and the wireless link between them. Note 
that the subnets for drones and the wireless links are created 
for 𝑚𝑚 ≥ 1 competing drones, where 𝑚𝑚 represents the serial 
number of the drone. The parameters in the model as well as 
their values used in numerical experiments are summarized in 
TABLE III.  

TABLE Ⅰ. GUARD FUNCTIONS FOR THE FOG OFFLOADING MODEL 

 
 In the drone models,  when a token is in the place Pdm-idle, 

it represents the drone is not processing jobs. After firing the 
transition Tdm-job, the token deposited in Pdm-off, the transition 
tstart is enabled by the guard function gstart as shown in 
TABLE I. We assume that the arrivals of job processing 
requests to the drones follow the Poisson processes with rate 
𝛾𝛾m. When tstart fires, a token is removed from the Pn-idle, and a 
new token is deposited in Poffload. Then the token is removed 
when Tn-job fires and a new token is deposited to Pn-run, which 
means the task is offloading and running. Simultaneously, the 
immediate transition tdm-off fires by the guard function gstarted. 
We assume that the average time to start a job processing in 
the fog node (communication delay) is 1/ω, where ω denotes 
the communication rate. Since offloading only works when 
the node is idle and the wireless communication link is 
available, the condition is specified by the guard function 
goffloadm assigned to Tdm-job. The firing of Tn-srv represents the 
completion of a job processing. We assign service rate 𝜈𝜈n for 
Tn-srv. Meanwhile, the process may fail when the fog node is 
idle or running, which is represented by the transitions Tn-fail1 
or Tn-fail2, respectively. We assume that process failures occur 
due to software bugs or transient hardware faults, and assign 
the process failure rate 𝜆𝜆n1 and 𝜆𝜆n2 for Tn-fail1 and Tn-fail2. Since 

process failures can occur more frequently in the processing 
state than in the idle state, we assume 𝜆𝜆n1 < 𝜆𝜆n2. When a token 
deposited in Pn-fail is removed after Tn-rec fires, a new token is 
deposited in Pn-idle, which represents a node recovery. We 
assign the process recovery rate 𝜇𝜇n for Tn-rec. On the other hand, 
if Tdm-fail fires first, which represents a drone process failure 
event in the idle state, a new token is deposited in Pdm-fail. We 
assign the process failure rate 𝜆𝜆dm for Tdm-fail. When a token is 
deposited in Pdm-fail, the transition Tdm-rec is enabled, which 
represents the recovery of the process. We assign the process 
recovery rate 𝜇𝜇𝑑𝑑m for Tdm-rec.  

 The wireless link model captures the states of the 
communication link between drones and the fog node. Even if 
the drones and the fog node are functioning properly, a failure 
of the network connection can cause the system to become 
unavailable. When a token is removed from Plm-up by firing 
Tlm-dw, it indicates that the communication links with 
temporarily disconnected. While a token is deposited in Plm-

down, the transition Tlm-up is enabled. After Tlm-up is fired, a token 
is deposited to Plm-up, representing the reconnection. The rates 
of link disconnection (Tlm-dw) and reconnection (Tlm-up) are 
assumed to be 𝜆𝜆𝑙𝑙m and 𝜇𝜇𝑙𝑙m, respectively.  

TABLE Ⅱ. REWARD FUNCTIONS FOR THE FOG OFFLOADING MODEL  

 
  We define two reward functions for computing system 

availability and performance measures. TABLE Ⅱ shows the 
definition of the reward functions. We evaluate the availability 
and the throughput of the primary drone (𝑚𝑚 = 1 ). For 
computing service availability, svavail assigns one reward for 
the marking (#Pd1-idle == 1 or #Pd1-off == 1) and #Pl-up1 == 1 and 
(#Pn-idle == 1 or #Pn-run== 1), where #Px represents the number 
of tokens in Px. The specified condition represents that the 
service is available only when the drone, the fog node and the 
wireless link are available simultaneously. svthru is computed 
by multiplying the throughput at Tn-srv and the ratio of the tasks 
from the primary drone over the total offloaded tasks. The 
throughput at Tn-srv can be computed by the probability of 
marking #Pn-run==1 and 𝜈𝜈𝑛𝑛 (service rate of the fog node). 

Name Transition Function 
gstart tstart if(#Pd1-off== 1 || #Pd2-off == 1||…||#Pdm-off ==1) 

then 1 else 0 
gstarted tdm-off if(#Pn-run== 1) then 1 else 0 
goffloadm Tdm-job if(#Pn-idle== 1 && #Plm-up== 1) then 1 else 0 

Name Measure Function 
svavail Service 

availability  
if( ( #Pd1-idle == 1 || #Pd1-off == 1)  && #Pl1-up 
== 1 && (#Pn-idle == 1 || #Pn-run== 1) ) then 1 
else 0 

svthru Service 
throughput  

prob(#Pn-run == 1)* 𝜈𝜈n * (prob(#Pd1-idle) * γ1) / 
((prob(#Pd1-idle) * γ1)+ (prob(#Pd2-idle) * 
γ2)+…+(prob(#Pdm-idle) * γm)) 

(a) Drone and wireless link models for drone m  (b) Fog node model 

Figure 2. SRN for a drone system consisting of m drones and a shared model 
 
 



V. NUMERICAL EXPERIMENTS 
To investigate the performance bottleneck of the drone 

offloading system using a shared fog node, we conduct a 
sensitivity analysis on the proposed model.  

A.  Experimental configuration 
For the sake of comparative study with the previous 

experiments, we follow the parameter values used in the 
previous study [13]. The job arrival rate 𝛾𝛾m  and the link failure 
rate 𝜆𝜆𝑙𝑙m are the parameters of uncertainty factors and they are 
used as the variables in the sensitivity analysis. Note that m in 
the subscripts of symbols represents the serial number of the 
drone. For instance, 𝜆𝜆𝑙𝑙1 is the link disconnection rate for the 
primary drone. 

TABLE Ⅲ. PARAMETERS VALUES FOR NUMERICAL EXPERIMENT 
Notation Transition Description Value[1/hour] 
γm Tdm-job Job arrival rate 720 
𝜈𝜈𝑛𝑛 Tn-srv Service rate of a process on the 

fog node 
1440 

𝜆𝜆𝑑𝑑m  Tdm-fail Failure rate of a process on the 
drone m in the idle state 

0.002976190 

𝜇𝜇𝑑𝑑m Tdm-rec Fecovery rate of a process on 
the drone m 

3 

𝜆𝜆𝑛𝑛 Tn-fail Failure rate of a process on the 
fog node in the idle state 

0.000462963 

𝜆𝜆𝑛𝑛2 Tn-dail2 Failure rate of a process on the 
fog node in the processing state 

0.00138889 

𝜇𝜇𝑛𝑛m Tdm-rec Recovery rate of a process on 
the fog node  

2 

𝜔𝜔 Tn-job Communication rate between 
the drone and the fog node 

7200 

𝜆𝜆𝑙𝑙m Tlm-dw Communication link failure 
rate 

0.5 

𝜇𝜇𝑙𝑙m Tlm-up Communication link recovery 
rate 

360 

 

B. Sensitivity analysis on workload variation 
First, we evaluate the impacts of the workload on the 

service availability and throughput of the fog offloading 
system with 1, 2, and 3 drones (FO, 2D_FO, and 3D_FO). To 
compare with the system without using computation 
offloading, we also evaluate the service availability and 
throughput by the drone processing model (DP) [13]. We fix 
the communication link failure rate 𝜆𝜆𝑙𝑙1 = 𝜆𝜆𝑙𝑙2 = 𝜆𝜆𝑙𝑙3  to 1 
(1/hour) and vary the job arrival rate 𝛾𝛾1 = 𝛾𝛾2 = 𝛾𝛾3 in a range 
of [60, 1200] (1/hour). The expected service availabilities and 
service throughputs are plotted in Figures 3 (a) and (b), 
respectively.  

As can be seen, the service availabilities significantly 
decrease in 2D_FO and 3D_FO compared to the availability 
of DP and FO. When the workload intensity becomes high, 
the service availability of 2D_FO and 3D_FO decreases to 
around 0.88, which may be unacceptable considering practical 
usages. The availability decrease is caused by the increasing 
waiting time for offloading at the drone. When the fog node 
processes the tasks from the other drones, the primary drone 
must need to wait in the idle state in which the process may 
encounter a failure.  

The service throughput can increase by the increased 
workloads in all the configurations. Nevertheless, the 
improved rates of 2D_FO and 3D_FO are significantly 
smaller than DP and FO. When the amount of workloads is 
not large, the difference in the service throughputs is marginal. 
However, as the amount of workloads increases, the 
difference between DP and FO enlarges. The results are 
caused by the resource contention in the shared fog node that 
receives offloading tasks from all the drones. We observe that 
the throughput reduction is not simply proportional to the 

(a) Service availability under varying workload 

(b) Service throughput under varying workload 

Figure 3. Sensitivity analysis results under varying workload  

(a) Service availability by varying γ2 and γ3 

(b) Service throughput by varying γ2 and γ3 

Figure 4. Sensitivity analysis results by varying γ2 and γ3 



number of competing drones. The results indicate that the 
utilization of the fog node resource is actually improved by 
increasing the number of drones, but the service throughput 
does not increase simply because the fog node's computing 
power is not enough for multiple offloaded tasks.  

Next, we fix the job arrival rate of the primary drone (𝑚𝑚 =
1) to be 720 (1/hour) and vary the job arrival rates γ2 and γ3  of 
the other drones between [60,1200] (1/hour) to analyze the 
impacts of the workload intensities of other drones. The 
expected service availability and service throughput are 
plotted in Figures 4 (a) and (b), respectively. As the job arrival 
rate increases, both service availability and throughput 
decrease. Compared to the previous case, the job arrival rate 
of the primary drone is unchanged, and hence the throughput 
can significantly decrease when the amount of offloading 
tasks from other drones increases. As the fog node processes 
tasks on a first-come first-served basis, the imbalance of job 
arrival rates among the drones matter. 

C. Sensitivity analysis on link reliability 
In this subsection, we evaluate the impacts of the 

communication link reliability on service availability and 
performance. In this experiment, we fix the job arrival rate 
𝛾𝛾1 = 𝛾𝛾2 = 𝛾𝛾3  to 720 (1/hour) and vary the communication 
link failure rate 𝜆𝜆𝑙𝑙1 = 𝜆𝜆𝑙𝑙2 = 𝜆𝜆𝑙𝑙3  in a range of [0.25, 5] 
(1/hour). The expected service availability and service 
throughputs are plotted in Figure 5. (a) and (b), respectively. 

For all the configurations, we observe the small monotonic 
decreasing trends in the service availability when increasing 
the communication link failure rates. The service availability 
in 2D_FO and 3D_FO are significantly smaller than in DP and 

FO, which are mainly due to the high workloads. On the other 
hand, the service throughput slightly decreases by increasing 
the communication link failure rates. The service throughput 
in DP is unchanged because the link reliability does not impact 
the processing on the drone in DP mode.  

Next, we fix the link failure rate of the primary drone to 1 
(1/hour) and vary the link failure rates 𝜆𝜆𝑙𝑙2 and 𝜆𝜆𝑙𝑙3  of the other 
drones between [0.25,5] (1/hour). The expected service 
availability and service throughput are shown in Figures 6 (a) 
and (b), respectively. We can observe that service availability 
and throughput improve as the other drone’s link failure rates 
increase. The results show that lower link reliabilities of other 
competing drones limit the access to the shared fog node, 
resulting in a higher chance to use the resource to process the 
offloaded tasks from the primary drone. 

VI. DISCUSSION 
Our numerical results show how the bottleneck in the 

shared fog node resource impact service availability and 
throughput of drone computation under different workload 
and communication quality environments. When the number 
of competing drones increases, the service availability and 
throughput decrease due to resource contention. The 
significance of resource contention depends on the amount of 
workload and communication link reliabilities of other drones. 
There are a number of ways to overcome the bottleneck and 
improve the performance of computation offloading. One 
approach is to use more powerful fog nodes so that they can 
handle more tasks. This approach simply scales up the 
computing resource at the fog node. While the fog node can 
accept more tasks offloaded, the network bandwidth may 
become another bottleneck if the tasks entail a high volume of 

(a) Service availability under varying link reliability 

(b) Service throughput under varying link reliability 

Figure 5. Sensitivity analysis results under varying link reliability  
 

(a) Service availability by varying 𝜆𝜆𝑙𝑙2 and 𝜆𝜆𝑙𝑙3 

(b) Service throughput by varying 𝜆𝜆𝑙𝑙2 and 𝜆𝜆𝑙𝑙3 

Figure 6. Sensitivity analysis results by varying 𝜆𝜆𝑙𝑙2 and 𝜆𝜆𝑙𝑙3 

 



data. Moreover, the fog node may become a single point of 
failure that reduces the total system reliability. Alternatively, 
we may increase the number of fog nodes, which can also 
increase the total processing powers in the fog infrastructure. 
This approach requires a dynamic resource allocation 
mechanism like cloud computing to map the drone requesting 
the computation offloading to the fog that is available for task 
processing. The resource allocation is not trivial as it needs to 
consider the node's distance, energy consumption, 
communication link quality, and other interrelated factors. 
Another promising solution that can be considered is 
hierarchical offloading [27][28], which uses cloud computing 
to further offload the tasks when fog nodes are not sufficient 
to process the tasks. This approach also requires a decision 
mechanism to send the tasks to the cloud. It must consider the 
importance of tasks because different tasks have different 
priorities, and the computing capabilities of cloud nodes and 
edge nodes are different. Special attention may be required for 
the tasks offloaded to the cloud as they incur an additional 
delay. The comparisons of the mitigations are considered in 
future work. 

VII. CONCLUSION 
In this paper, we analyze the performance bottleneck of a 

drone offloading system where competing drones share the 
fog computing resource for computation offloading. We use 
SRNs to model the interactions between drones and a shared 
fog node. By changing the number of competing drones in the 
numerical experiments, we observe that both service 
availability and throughput of the primary drone decrease 
because of resource contention at the fog node. The sensitivity 
analysis results show that the increased job arrival rate of other 
drones negatively impacts the primary drone’s performance. 
In contrast, the decreased reliability of communication links 
for other drones has a positive impact. We also discuss 
potential mitigations to overcome the performance bottleneck 
in the shared fog node for drone computation offloading 
systems. 
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