
Analysis of Software Aging in a Blockchain
Platform

Douglas Dias
Department of Computing

Federal Rural University of Pernambuco
Recife, Brazil

douglas.dias@ufrpe.br

Fumio Machida
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

machida@cs.tsukuba.ac.jp

Ermeson Andrade
Department of Computing

Federal Rural University of Pernambuco
Recife, Brazil

ermeson.andrade@ufrpe.br

Abstract—Blockchain platforms have gained popularity in
recent years and integrated with other digital technologies like In-
ternet of Things (IoT) and Artificial Intelligence (AI) for multiple-
business purposes. Software aging is a common issue in many
long-running software systems, but little has been experienced in
the context of blockchain platforms. To narrow this gap, this
work aims to characterize potential software aging issues in
the Cardano blockchain platform that is considered the largest
cryptocurrency adopting proof-of-stake. By performing statistical
analysis on the measurement data of the Cardano blockchain
deployed in two environments with different configurations, we
found a symptom of software aging through memory degradation
that was confirmed by the Mann-Kendall test. By analyzing the
running processes, we identify the cardano-node (the main process
of the platform) as the process possibly responsible for such
degradation.

Index Terms—Blockchain, Cardano, Memory degradation,
Software aging.

I. INTRODUCTION

Software permeates our lives increasingly, including in
critical areas such as safety and health, which motivates not
only the development of more efficient and secure systems,
but also the constant monitoring of their operation for long
periods. In the long run, software systems can suffer from
gradual performance degradation and resource exhaustion that
are known as software aging. Software aging is a phenomenon
empirically observed in many software systems that progres-
sively degrades performance and eventually causes a system
failure [1]. While it is not always possible to prevent its
occurrence, its effects can be limited, its damage can be
reversed, and its causes can be understood [2]. However,
for blockchain technologies, which are behind platforms for
trading cryptocurrencies and executing smart contracts [3],
there are still very few works addressing this phenomenon
and its implications in such environments.

Although blockchains have been strongly associated with
cryptocurrencies since 2008, which was the year in which
Satoshi Nakamoto published Bitcoin’s famous white paper [4],
the blockchain itself is nothing more than a data structure
that enables the secure recording of transactions. However,
the implementation of Bitcoin in 2009 and its eventual popu-
larization demonstrated the possibilities for such technology
and influenced the emergence of several projects with the

most diverse applications [5]. Medicalchain, for example, is a
London-based company that uses blockchain to store patients’
medical history [6]. It aims to provide patients with the power
to control their health-related data (e.g.: appointment or exam
history) and allow them to share their records with medical
organizations privately and securely. BlockPharma, on the
other hand, uses blockchain to track medications and prevent
counterfeits [7]. Over the past few years, different areas
are producing solutions built using blockchain technology,
showing its relevance and value. Therefore, it is essential to
analyze the reliability aspects of these platforms, especially in
long-running instances.

Although there are several blockchain platforms (e.g., Hy-
perledger Fabric, Ethereum, Tezos and Corda), Cardano stands
out for being one of the largest and most important blockchains
that use a proof-of-stake consensus mechanism. Therefore,
this work aims to investigate the existence of software aging
symptoms and their possible causes in a Cardano platform
through an experimental evaluation of the execution of a
cardano-node. In order to investigate the software aging, we
connected a cardano-node to the Cardano’s mainnet to perform
synchronization tasks considering different environments and
workloads. We collected various system performance met-
rics (e.g., memory/swap/CPU usage, response time, network,
among others) and applied the Mann-Kendall test [8] with
Sen’s slope estimator [9] to confirm the symptoms of soft-
ware aging on the cardano-node. In addition, we identified
processes suspected of causing software aging. The results
revealed that, on one hand, when the cardano-node was
deployed on a computer with minimal requirements, it only
supported low workload. It also was prematurely terminated
at about forty hours after the start of the experiments due to
memory degradation. On the other hand, when the cardano-
node is deployed on a computer with the recommended
requirements, it supported all workloads (low, medium and
high). However, it showed indication of memory degradation
for all of them. Our findings, as well as the analysis approach,
can be useful for users or developers in the decision-making
process to tackle software aging problems encountered in
blockchain environments.

This paper is organized as follows. Section II briefly de-
scribes Cardano. Section III details the related work. Section



IV details our experiments. Section V shows the results of
the experiments and statistical analysis. Finally, Section VI
presents the conclusions and briefly describes future work.

II. CARDANO

Cardano is one of several open source blockchain platforms
available [10]. It was developed with the goal of implementing
a sustainable and balanced ecosystem that facilitates the needs
of users as well as other systems. Cardano has attractive fea-
tures such as scalability, interoperability, decentralization, and
low energy consumption. When compared to other platforms
like Bitcoin or Ethereum, that use proof-of-work consensus
mechanism, Cardano consumes less power per node as it
employs proof-of-stake for consensus, which leads to a smaller
carbon footprint. [11].

Cardano has two networks into which third-party applica-
tions and systems can integrate: the testnet, which is used
for integration tests, and the mainnet, which is the Cardano’s
core network. The networks are made up of nodes, called
cardano-nodes, which are interconnected and work together
to validate transactions and blocks through consensus. The
cardano-node is the key component of Cardano as it sustains
the network. The node is deployed through a container that
runs on computers connected to the network and implements
several components such as ledger, networking, consensus,
storage, among others. The nodes communicate with each
other through a set of IPC (Inter-Process Communication)
mechanisms.

III. RELATED WORK

Software aging is a phenomenon that plagues many long-
running complex computing systems, which exhibit perfor-
mance degradation or an increasing failure rate [12]. Due to
its practical implications, both academia and industry have
increasingly studied this topic, resulting in numerous scientific
publications and registered patents [13]. As new technologies
are created and adopted, the number of publications involving
software aging also grows [14]. However, studies that aim
to analyze software aging on blockchain platforms are still
scarce.

Studies on software aging are broadly divided into model-
based approaches [15] and measurement-based approaches
[16]. Many researchers have investigated software aging in
computing systems by exploiting stochastic models such
as non-homogeneous Markov chain [17], continuous-time
Markov chains (CTMC) [18] and stochastic Petri Nets (SPN)
[19]. On the other hand, measurement-based approaches have
been employed in many studies to empirically characterize
software aging phenomena in computer systems from the
earliest work [20] to the recent studies [16], [21]. In this
approach, which is adopted in this work, measurement data
are collected from the system under study to infer the trend
of resource consumption or performance degradation caused
by software aging . Nevertheless, in relation to blockchain
platforms, there is only one work available in the literature
that analyzes software aging, but the authors focused on a

proof-of-work blockchain network called Hyperledger Fabric
[22].

Differently, our work aims to investigate the existence of
software aging on the Cardano platform by analyzing the
memory degradation during the execution of a cardano-node
connected to the mainnet. To the best of our knowledge, this
is the first work to analyze software aging on a proof-of-stake
blockchain network. Additionally, different environment con-
figurations and workloads are considered. We also performed
a process analysis to identify the process suspected of causing
software aging.

IV. EXPERIMENTS

The objective of the experiments is to investigate potential
software aging issues on a Cardano platform under different
environment settings and workloads. If any symptoms of
software aging are identified, we also aim to analyze the main
causes of such phenomenon. Through the experiments, we try
to answer the following research questions.

RQ1: Does the execution of Cardano encounter any soft-
ware aging issues?

RQ2: If so, what are the potential causes of Cardano
software aging and how significant are they?

In the following, we explain the experimental setup, the
stress tests, the metrics and the analysis techniques.

A. Setup

To perform the experiments, we set up two computers with
cardano-node version 1.29.0 (one with the minimal configu-
ration and the other one with the recommended configuration)
and cardano-cli command line interface both obtained from
the cardano-node source code1. The cardano-node is config-
ured to be connected to the mainnet, which is the main network
of the Cardano platform, composed of several other nodes
running on various other devices. Each round of experiments
is only started after the nodes were fully synchronized with
the mainnet.

In each computer responsible for running the cardano-
node, we created and ran scripts to collect data from the
resources and running processes. We also created a load
generator (Python program) to request the information about
the last block of the blockchain through the command getCar-
danoTip(). The load generator is deployed on a client node
and uses the cardano-cli to request the information. On the
cardano-node side, a Python/Flask program is created that
provides an endpoint responsible for receiving the requests
from the client node. All requests are sent to the cardano-
nodes over a wireless local area network. The adopted ar-
chitecture is described in Figure 1. The specifications of the
system components are presented below:

• Computer running the cardano-node on the minimum
requirements (Computer A): Intel Core i5-4200U (3 MB
cache, dual core @2.6 GHz, 4 threads), 8 GB RAM

1https://github.com/input-output-hk/cardano-node



1600Mhz DDR3, SSD 240GB, SATA, read 500MB/s,
write 350MB/s, Ubuntu 20.04.3

• Computer running the cardano-node on the recommended
requirements (Computer B): Intel Core i7-7700HQ, (6
MB cache, quad core @3.8 GHz, 8 threads), 16 GB
RAM, 1TB HDD, SATA, 5400 RPM, Linux Mint 20.3

• Raspberry Pi 3 B+ (Client node), 1GB LPDDR2
SDRAM, 16GB SD, Raspberry Pi OS.

The version of the cardano-node we performed our exper-
iments was 1.29.0. This version is the latest version of the
Cardano platform whose requirements required at least 8GB
of RAM for a cardano-node [23]. Therefore, Computer A
(detailed above) meets the minimum requirements of such a
version and represents the baseline of our experiments. The
Computer B, on the other hand, meets the recommended
requirements of this version. It also meets the requirements
to be used as a server running a stake pool [24], maintaining
and combining the stake of various stakeholders, processing
transactions and creating new blocks.

Fig. 1: System setup.

B. Stress Test

To accelerate the possible symptoms of software aging on
each computer running the cardano-node, we ran stress tests
using the load generator. We applied three workload inten-
sities: low (synchronous requests sending at most 3 requests
per second), medium (synchronous requests sending at most 8
requests per second), and high (asynchronous requests sending
20 requests every second). For each experiment, we ran the
environment for 72 hours or until the cardano-node is inter-
rupted due to an operating system crash or interruption. As a
result, we have 3 long-running test results for each computer
configuration, resulting in a total of 6 test results. However,
Computer A, which only met the minimum requirements, only
supported the low workload, consequently, we only obtained
4 test results at the end of the experiments.

C. Metrics and Analysis

For each experiment, we collected system monitoring data
and analyzed aging indicators. As mentioned in [25], aging
indicators refer to system variables that can be measured
directly and can be related to the software aging phenomenon.

For the aging indicators, several metrics were collected such
as response time, CPU/memory usage, disk I/O, etc. In this
study, however, we focused on investigating the presence of
memory degradation as the main aging indicator, since other
metric variations were negligible compared to memory-related
indicators. Therefore, memory (RAM) and swap usage are the
aging indicators used in this work.

For statistical analysis, we used the conventional
Mann–Kendall test (MKT) to analyze the trends of aging
indicators, and the Sen’s slope estimate to calculate the
magnitude of the trends. The Mann-Kendall test adopts two
hypotheses: the null hypothesis, that there is no trend present
in the data, and the alternative hypothesis, that there is a
statistically significant increasing or decreasing trend in the
data. If the p-value returned from the test is less than the
significance level of 0.05, we reject the null hypothesis and
accept the alternative hypothesis. This indicates that there
is significant evidence that a trend exists. Once detected the
presence of a trend, the Sen’s slope estimate is obtained to
measure the magnitude of the trend, so that a positive Sen’s
slope implies a positive trend, while a negative Sen’s slope
means a negative trend. Finally, the five running processes
that used the most memory were collected and analyzed in
order to identify the potential causes of aging of software.

V. RESULTS

In this section, we present the results of the experiments,
as well as the statistical analysis we performed to answer the
research questions.

A. Preliminary Analysis

In this subsection, we present preliminary results regarding
the execution of the experiments. Table I details the results
related to RAM usage, while Table II presents the results
related to swap usage. For each configuration, we computed
the mean, standard deviation (SD), and confidence interval
with 95% of confidence level.

TABLE I: Average memory usage.

Memory usage (%)

Computer/Workload Mean SD Confidence Interval
Lower Upper SE

Computer A / Low 95.4189 9.14528 95.05169 95.78612 0.18726
Computer B / Low 58.53823 6.48198 58.34771 58.72875 0.09718
Computer B / Medium 64.37922 4.95793 64.23321 64.52522 0.07447
Computer B / High 65.30512 3.94030 65.18756 65.42268 0.05996

TABLE II: Average swap usage

Swap usage (%)

Computer/Workload Mean SD Confidence Interval
Lower Upper SE

Computer A / Low 76.39333 30.4485 75.17071 77.61594 0.62348
Computer B / Low 0.00000 0.00000 0.00000 0.00000 0.00000
Computer B / Medium 0.10000 0.00000 0.10000 0.10000 0.00000
Computer B / High 0.03323 0.06981 0.03115 0.03532 0.00106

For the Computer A, under a low workload (3 synchronous
requests per second), the average memory usage was 95.4%
with the upper limit of the confidence interval of 95.7%. The



value for the standard deviation was 9.1%, which denotes a
dispersion in the data during the execution of the experiments.
We remark that memory usage remained high throughout
the execution of the experiments with cardano-node being
prematurely terminated around the fortieth hour due to mem-
ory degradation. Since the maximum limit for Computer
A was already reached when running the lowest workload,
experiments for medium and high workloads were not possible
on this environment. As described in the cardano-node system
requirements, 8GB of RAM is indeed a minimum requirement
for running Cardano version 1.29.0. However, the cardano-
node termination after a few hours of experiments indicates
that further investigation is needed to identify possible causes
of this resource exhaustion.

For the Computer B, the average memory usage show
variations according to the workload. That is, there is a direct
influence between workload and memory usage. The differ-
ence is significant when comparing the differences between
workloads, especially low workload (3 requests per second)
and medium workload (8 requests per second). Additionally,
it is worth noting that the confidence intervals do not overlap
for the workloads (low, medium and high), meaning that the
means are statistically different.

The swap usage of Computer B for all workloads was very
low. Although, for the medium workload case, the Computer
B consumed more swap than the high workload case, it did
not vary over time and had 0.1% usage since the beginning.
Additionally, the confidence interval shows that the lower and
upper bounds are equal to the mean, and the standard deviation
is equal to 0. Therefore, for the medium workload, we consider
that the execution of the cardano-node did not influence the
swap usage. Under high workload, the swap showed a slight
increase over time, but extremely low. Regarding the Computer
A, the results showed a considerable consumption of swap,
especially considering that swap is used only when the system
runs out of available memory, which explains the cardano-
node interruption mentioned above.

B. Analysis of Potential Software Aging

In this subsection, the research questions presented above
are examined. First, we analyze the degradation trends in
available memory (RQ1). Then, if suspicion software aging
is confirmed, our next goal is to find out what are the
potential processes causing such memory degradation (RQ2).
Note that for Computer A only the low workload was used
for experiments, since the others were not supported by the
adopted environment. For Computer B, on the other hand, low,
medium and high workloads were used.

1) Computer A: Figure 2 presents the memory and swap
analysis for Computer A. As it can be seen, there is a rapid
growth for the memory usage after the third and fourth hour
of the experiment. From this point, the memory consumption
drops and increases slightly, but remains high throughout
the experiments (above 90%). The swap usage, on the other
hand, start to increase slowly, so that after the tenth hour,
it increases rapidly reaching its maximum around 20 hours.

(a) Memory

(b) Swap

Fig. 2: Memory and swap usage for Computer A.

After the fortieth hour, both memory and swap start to drop
as a consequence of the termination of the cardano-node by
the OOM Killer2. Inspecting the issues on the cardano-node
repository, we found that cardano-node is known to have
aging-related problems, due to memory leak34.

Table III presents the results for the Mann-Kendall test and
the Sen’s slope, considering up to the fortieth hour. That is,
before the cardano-node termination. As the results show, the
trend is upward for both memory and swap usage, since the
slopes are positive. Besides, the p-values are less than 0.05,
which indicates the existence of a trend for both memory
and swap usage. Therefore, the results reveal a statistically
significant degradation of available memory and swap for the
low workload, suggesting the suspicion of software aging.

To further investigate the underlying causes of the suspected
aging phenomenon, we performed a process analysis for the

2The Out of Memory (Out Of Memory) Killer is a process that the Linux
kernel employs when the system is critically low on available memory. It
analyzes the running processes and terminates one or more of them to free
up memory to keep the system running.

3https://github.com/input-output-hk/cardano-node/issues/769
4https://github.com/input-output-hk/cardano-node/issues/460



TABLE III: Mann-Kendall test and Sen’s slope for Computer
A.

MK Test and Sen’s Slope - Computer A
Metric p-value Slope Trend
Memory 2.09e-08 1.36e+04 KB/h Growth
Swap 4.14e-12 4.30e+04 KB/h Growth

TABLE IV: Description of the processes for Computer A.

Top 5 memory-consuming processes
PID Description

13416 (cardano-node) The cardano-node process.
1634, 1163 (gnome-shell) GNOME Desktop Environment Graphical Shell.
2225133, 23306 (nautilus) GNOME’s default file manager.

Cardano plataform. We created a Python program to collect
information about the processes running on the cardano-node
every hour. This program uses the ps command with eo
to retrieve process information such as Process Identification
Number (PID), Resident Set Size (RSS), and Virtual Set
Size (VSZ). Figure 3 lists the five processes that consumed
the most memory on Computer A, while Table IV presents
the description of such processes. The results reveal that the
cardano-node process consumed on average more than 80%
of the available memory, while the four other processes with
the highest consumption, all of which are part of the operating
system (in this case, Ubuntu), used little memory. Therefore,
we can conclude that the execution of cardano-node largely
contributed to the memory exhaustion that occurred during the
experiment, indicating that it may be the potential responsible
for the software aging.

Fig. 3: Top 5 memory-consuming processes for Computer A.

2) Computer B: Figure 4 presents the memory analysis
for Computer B, considering the low workload. The results
show a large increase in memory consumption from the fourth
hour of the experiment. But, before that, the memory usage
experienced a small increase in the first hour of the experiment,
followed by two hours of relative stability. After the fourth
hour, the behavior was repeated for some time. That is, a
slight increase in the following hours, followed by a period
of stability. At the thirtieth hour, a sharp growth is observed

that lasted until approximately the fortieth hour. After that,
memory usage was stabilized. For swap usage, on the other
hand, there was no variation, remaining at zero percent from
the beginning to the end of the experiment.

Fig. 4: Memory usage for Computer B under low Workload.

Table V presents the results for the Mann-Kendall test
and Sen’s Slope, taking into account Computer B under low
workload. As the test result shows, the memory usage has
a tendency to degrade, since the p-value is less than 0.05,
which indicates potential software aging. Furthermore, the
Sen’s Slope is positive, indicating an upward trend. On the
other hand, swap usage has no trend at all, since the p-value
is zero. Figure 5 lists the five processes that consumed the most
memory on Computer B for the low workload, while Table VI
presents the description of such processes. Again, the cardano-
node led by far among the most memory-consuming processes,
using about 8GB of the 16GB available on the computer. The
other processes are part of the operating system and consumed
little memory, the same characteristics present in the execution
of the experiment on the Computer A.

TABLE V: Mann-Kendall test and Sen’s slope for Computer
B under low workload.

MK Test and Sen’s Slope - Computer B
Metric p-value Slope Trend
Memory 2.22e-16 3.30e+04 KB/h Growth
Swap 0 0 KB/h None

TABLE VI: Description of the processes for Computer B under
low workload.

Top 5 memory-consuming processes
PID Description

4085 (cardano-node) The cardano-node process.

1356 (cinnamon-replace) Command that starts/restarts Cinnamon,
which is a window manager.

862 (Xorg-core) One of Xorg processes, which is a system software
and protocol that provides a base to GUIs.

152020, 1787000
(cinnamon-screensaver) The default screensaver in a GNOME desktop.



Fig. 5: Top 5 memory-consuming processes for Computer B
under the low workload).

Figure 6 presents the memory and swap results for Com-
puter B, considering the medium workload. The rapid increase
in memory usage (see Figure 6a) during this experiment is
remarkable when compared to the previous experiment (see
Figure 4a). In addition to reach a higher average memory
usage by the end of the first hour, about 47.5% versus 35% in
the low workload case, the 60% memory usage threshold was
reached in the tenth hour. Note that under the low workload
this did not happen until just before the fortieth hour. For
low and medium workloads, memory usage was more stable,
just above 60%. However, for the medium workload case, the
utilization was higher than 65%, a value that was not reached
during the low workload experiment. The results related to
the swap is presented in Figure 6b. Despite not being zero,
the swap usage did not change during the experiments, which
indicates that the small use of 0.1% is not a consequence of
the execution of the cardano-node.

Table VII shows the results for the Mann-Kendall test and
the Sen’s Slope estimate. Similar to the low workload case,
there is a degradation trend in the memory usage, which is
confirmed by the p-value less than 0.05. Furthermore, the
value of Sen’s Slope estimate is positive, indicating an upward
trend and highlighting the occurrence of memory degradation.
Therefore, these results show indications of potential software
aging. For the use of swap, there is no trend at all, as the
p-value and the Sen’s Slope estimate are equal to zero. By
analyzing the five processes that consumed the most memory
on Computer B under medium Workload (see Figure 7 and
Table VIII), we can conclude that the cardano-node was,
again, the process that consumed the most. Additionally, just
like in the low workload experiment, the other processes with
the highest memory usage are part of the operating system,
but they consumed very little compared to cardano-node.

TABLE VII: Mann-Kendall Test and Sen’s Slope for Computer
B under medium workload).

Mann-Kendall Test and Sen’s Slope
Metric p-value Slope Trend
Memory 1.307e-13 4.18e+03 KB/h Growth
Swap 0 0 KB/h None

For the experiment on Computer B under high workload,

(a) Memory

(b) Swap

Fig. 6: Memory and swap usage for Computer B under
medium workload.

Fig. 7: Top 5 memory-consuming processes for Computer B
under medium workload.

whose memory and swap usage results are shown in Figures
8 a and b, the increase in memory usage was even faster
than in the experiment under medium workload, reaching
more than 60% of memory usage before the end of the
third hour. Although the growth in memory usage slowed
after 60%, it continued to increase followed by periods of
relative stability, as in the medium workload case. However, it
reached higher memory usage, approaching 70%. Additionally,



TABLE VIII: Description of the processes for Computer B
under medium workload.

Top 5 memory-consuming processes
PID Description

30658 (cardano-node) The cardano-node process.

1412 (cinnamon-replace) Command that starts/restarts Cinnamon,
which is a window manager.

880 (Xorg-core) A process of Xorg, which is a system software
and protocol that provide a base to GUIs.

280167, 478758 (mint-refresh-cache) A process of Linux Mint’s Update Manager.

(a) Memory

(b) Swap

Fig. 8: Memory and swap usage for Computer B under high
workload.

for this experiment, swap usage (see Figure 8b) showed a
small positive variation, starting to increase around the sixtieth
hour, reaching a period of stability before growing again
and reaching its maximum. However, the consumption was
relatively low, reaching only 0.2% at the end of the experiment.

The results for the Mann-Kendall test and the Sen’s slope
estimate are shown in Table IX. They reveal a degradation
trend for both memory and swap. In both cases, the p-
value was less than 0.05, indicating the potential software
aging. Furthermore, the value of Sen’s slope estimate was
positive, indicating an increasing trend. Figure 9 lists the five
processes most consumed memory on Computer B for the
high workload case, while Table X presents the description

of such processes. Similar to other workloads, the processes
were repeated for this case as well. The cardano-node was
the process that consumed the most memory, while the other
processes consumed little memory. In addition, the cardano-
node process reached the highest memory usage considering
all other workloads.

TABLE IX: Mann-Kendall test and Sen’s slope for Computer
B under high workload.

Mann-Kendall Test and Sen’s Slope
Metric p-value Slope Trend
Memory 2.22e-16 2.04e+04 KB/h Growth
Swap 2.22e-16 6.86 KB/h Growth

Fig. 9: Top 5 memory-consuming processes for Computer B
under high Workload.

TABLE X: Description of the processes for Computer B under
high workload.

Top 5 memory-consuming processes
PID Description

7120 (cardano-node) The cardano-node process.

1571 (cinnamon-replace) Command that starts/restarts Cinnamon,
which is a window manager.

879 (Xorg-core) A process of Xorg, which is a system software
and protocol that provide a base to GUIs.

2930932, 3672669 (mint-refresh-cache) A process of Linux Mint’s Update Manager.

VI. CONCLUSION

This work investigated the symptom of software aging
in the Cardano platform by analyzing memory degradation,
considering various environments and workloads. We statis-
tically confirmed potential software aging, accompanied by
trends in memory usage degradation across all experiments, in
addition to increases in swap usage for some cases. The results,
together with the process analysis, are strong indications that
the Cardano platform does indeed show symptoms of software
aging, and that cardano-node is the main suspect. As future
work, we plan to consider other blockchain platforms and
aging indicators such as response time, power consumption,
CPU utilization, etc. In addition, we plan to explore the
effects of memory degradation on user-perceived metrics (e.g.,
throughput and response time) and possible rejuvenation so-
lutions.



REFERENCES

[1] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in IEEE 1st International Workshop on Software Aging and
Rejuvenation, 2008, pp. 1–6.

[2] D. Parnas, “Software aging,” in 16th International Conference on
Software Engineering, 1994, pp. 279–287.

[3] M. D. Pierro, “What is the blockchain?” Computing in Science &
Engineering, 2017, pp. 92–95.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.” De-
centralized Business Review, 2008.

[5] W. Baiod, J. Light, and A. Mahanti, “Blockchain technology and its ap-
plications across multiple domains: A survey.” Journal of International
Technology and Information Management, 2021, pp. 78–119.

[6] IBM Blockchain Pulse, “Blockchain beyond cryptocurrency,”
https://www.ibm.com/blogs/blockchain/2019/12/blockchain-beyond-
cryptocurrency/, 2019, accessed: 2022-07-23.

[7] Blockpharma, https://www.blockpharma.com/, accessed: 2022-07-23.
[8] H. B. Mann, “Nonparametric tests against trend,” Econometrica: Journal

of the econometric society, pp. 245–259, 1945.
[9] P. K. Sen, “Estimates of the regression coefficient based on kendall’s

tau,” Journal of the American statistical association, vol. 63, no. 324,
pp. 1379–1389, 1968.

[10] N. Deepa, Q.-V. Pham, D. C. Nguyen, S. Bhattacharya, B. Prabadevi,
T. R. Gadekallu, P. K. R. Maddikunta, F. Fang, and P. N. Pathirana, “A
survey on blockchain for big data: approaches, opportunities, and future
directions,” Future Generation Computer Systems, 2022.

[11] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen,
and E. Dutkiewicz, “Proof-of-stake consensus mechanisms for future
blockchain networks: fundamentals, applications and opportunities,”
IEEE Access, vol. 7, pp. 85 727–85 745, 2019.

[12] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, “A survey of
software aging and rejuvenation studies,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 10, no. 1, pp. 1–34,
2014.

[13] N. A. Valentim, A. Macedo, and R. Matias, “A systematic mapping
review of the first 20 years of software aging and rejuvenation research,”
in IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE, 2016, pp. 57–63.

[14] R. Pietrantuono and S. Russo, “A survey on software aging and rejuve-
nation in the cloud,” Software Quality Journal, vol. 28, no. 1, pp. 7–38,
2020.

[15] F. Machida and P. R. Maciel, “Markov chains and petri nets,” in Hand-
book Of Software Aging And Rejuvenation: Fundamentals, Methods,
Applications, And Future Directions. World Scientific, 2020, pp. 93–
126.

[16] R. Pietrantuono, J. Alonso, and K. Vaidyanathan, “Measurements for
software aging,” in Handbook Of Software Aging And Rejuvenation:
Fundamentals, Methods, Applications, And Future Directions. World
Scientific, 2020, pp. 73–90.

[17] Y. Bao, X. Sun, and K. S. Trivedi, “A workload-based analysis of
software aging, and rejuvenation,” IEEE Transactions on Reliability,
vol. 54, no. 3, pp. 541–548, 2005.

[18] F. Machida and N. Miyoshi, “Analysis of an optimal stopping problem
for software rejuvenation in a deteriorating job processing system,”
Reliability Engineering & System Safety, vol. 168, pp. 128–135, 2017.

[19] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi, “Anal-
ysis and implementation of software rejuvenation in cluster systems,”
in ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, 2001, pp. 62–71.

[20] S. Garg, A. Van Moorsel, K. Vaidyanathan, and K. S. Trivedi, “A
methodology for detection and estimation of software aging,” in Ninth
International Symposium on Software Reliability Engineering. IEEE,
1998, pp. 283–292.

[21] E. Andrade, R. Pietrantuono, F. Machida, and D. Cotroneo, “A compar-
ative analysis of software aging in image classifiers on cloud and edge,”
IEEE Transactions on Dependable and Secure Computing, 2021.

[22] C. Melo, F. Oliveira, J. Dantas, J. Araujo, P. Pereira, R. Maciel, and
P. Maciel, “Performance and availability evaluation of the blockchain
platform hyperledger fabric,” The Journal of Supercomputing, pp. 1–23,
2022.

[23] IOHK, “Cardano node releases,” https://github.com/input-output-
hk/cardano-node/releases, 2022, accessed: 2022-04-18.

[24] IOHK, “Stake pool minimum system requirements,”
https://iohk.zendesk.com/hc/en-us/articles/900001208966-Stake-Pool-
Minimum-System-Requirements, 2022, accessed: 2022-08-23.

[25] K. S. Trivedi, M. Grottke, and E. Andrade, “Software fault mitigation
and availability assurance techniques,” International Journal of System
Assurance Engineering and Management, vol. 1, no. 4, pp. 340–350,
2010.


