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Abstract— The N-version machine learning system (MLS) is an 
architectural approach to reduce error outputs from a system by 
redundant configuration using multiple machine learning (ML) 
modules. Improved system reliability achieved by N-version MLSs 
inherently depends on how diverse ML models are employed and 
how diverse input data sets are given. However, neither error 
input spaces of individual ML models nor input data distributions 
are obtainable in practice, which is a fundamental barrier to 
understanding the reliability improvement by N-version 
architectures. In this paper, we introduce two diversity measures 
quantifying the similarities of ML models’ capabilities and the 
interdependence of input data sets causing errors, respectively. 
The defined measures are used to formulate the reliability of an 
elemental N-version MLS called dependent double-modules 
double-inputs MLS. The system is assumed to fail when two ML 
modules output errors simultaneously for the same classification 
task. The reliabilities of different architecture options for this 
MLS are comprehensively analyzed through a compact matrix 
representation form of the proposed reliability model. The 
theoretical analysis and numerical results show that the 
architecture exploiting two diversities achieves preferable 
reliability under reasonable assumptions. Intuitive relations 
between diversity parameters and architecture reliabilities are 
also demonstrated through numerical examples. 

Index Terms— Diversity, Machine learning system, Redundant 
architecture, Reliability, Software fault-tolerance 
 

I. INTRODUCTION 
UALITY assurance of machine learning systems (MLSs) 
is becoming a major concern of system providers who 

adopt advanced machine learning (ML) functions in their 
products or services. In the development of MLSs, desirable 
input-output relations are not fully specified in advance since 
the behavior of ML functions is determined by the samples used 
in the ML training process [21]. Correct outputs are not always 
guaranteed in real user environments, even if the trained ML 
functions achieve high accuracy for the testing data set. 
Therefore, understanding the reliability consequence of error 
outputs from an ML function is crucial in MLS design, 
particularly for safety-critical domains such as autonomous 
vehicles [1].  

The N-version machine learning system is an approach to 
improving the reliability of system outputs by introducing 
redundant architecture [2]. The idea is analogous to the 
traditional software fault-tolerant technique referred to as N-

version programming that employs 𝑁𝑁 ≥ 2  functionally-
equivalent independent programs from the same initial 
specification [3][4]. An MLS may employ N different ML 
models that are trained independently for the same task. Since 
individual ML models output errors differently, the probability 
of simultaneous errors from the N-version MLS can be reduced. 
To make an N-version MLS effective, it is essential to include 
diverse versions of ML models. Compared to software 
programs, multiple versions of ML models can be generated 
easily with much smaller costs by using different algorithms, 
training data, and hyperparameters [5]. Moreover, outputs from 
a single ML model can also be diversified by perturbating input 
data for inference [6][18]. We can obtain diverse outputs not 
only from different ML models but also from a single ML model 
by changing input data for inference. Both the diversity among 
ML models and the diversity among input data sets significantly 
affect the reliability of the system output. Nevertheless, 
modeling the reliability of N-version MLS with two diversities 
is still underexplored [2]. 

In this paper, we present an analytical model for 
characterizing the reliability of output from a basic N-version 
MLS composed of two ML modules for classification tasks and 
two sensors generating different input data. An ML module 
installs an ML model to classify the input data and is connected 
to either one of the sensors. The MLS outputs classification 
results when two ML modules agree with the output. We 
assume that the errors of the two ML models are largely similar, 
and the probability distributions of the two input data are not 
independent of each other. A representative example of such a 
system is a perception system in an autonomous vehicle 
equipped with two image sensors and two image classifiers. We 
call this type of system dependent double-modules double-
inputs MLS, whose applications are not limited to autonomous 
driving. The challenge in the reliability modeling for dependent 
double-modules double-inputs MLSs resides in the statistical 
dependence between ML inference errors. The reliability 
formulation is simple if we can assume two outputs from two 
modules are statistically independent. However, such an 
assumption does not hold in practice since the capabilities of 
ML models have a certain similarity, and the input data from 
sensors also have similarities. Therefore, we introduce two 
diversity measures, conjunction of errors and intersection of 
errors, representing the similarity of input data causing errors 
and the similarity of error input spaces for two ML models, 
respectively. 

We use the diversity measures to formulate the reliability of 
a dependent double-modules double-inputs MLS. Depending 
on the choice of input data and ML model for individual ML 
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modules, there can be six architecture options (shown in Figure 
2 in Section II-C). The presented reliability model is 
subsequently used to show some properties of the reliabilities 
of different architectures under specific assumptions on the 
relation between input data distribution and error input spaces. 
Finally, we conduct numerical experiments to evaluate the 
reliability of dependent double-modules double-inputs MLSs in 
a hypothetical setting. Our numerical results show the 
advantage of two-input architectures compared with a 
conventional modular redundancy scheme. The result also 
gives an intuitive view of the properties derived from the 
proposed model. 

The contributions are summarized as follows. 
1. We propose a new reliability model for a basic N-version 

MLS by defining two diversity measures that characterize the 
dependencies of errors by two input data and the two error 
input spaces attributed by corresponding ML models. Our 
formulation with a compact matrix representation gives a 
useful tool to investigate the properties of architectures’ 
reliability in relation to the diversity measures. 

2. By restricting the type of input data distributions on error 
input spaces, we show some important properties that can 
guide the choice of the preferable architecture in terms of 
system output reliability. Except for limiting cases, our 
analysis implies that the architecture exploiting two 
diversities tends to achieve preferable reliability to the 
architectures relying on a single diversity. 

3. We provide the results of numerical experiments that help 
understand the dependencies between two input data and two 
ML models for computing the reliability of a dependent 
double-modules double-inputs MLS. The experimental 
results confirm the properties derived from the proposed 
model.  

The rest of the paper is organized as follows. Section II 
introduces a motivating example and specifies the problem 
scope; the reliability analysis of a dependent double-modules 
double-inputs MLS. To compare six possible architecture 
options, in Section III, we present the diversity measures and 
use them to formulate the reliabilities of MLS outputs. Section 
IV shows some important properties we can derive from the 
constructed reliability models. Section V shows the results of 
numerical experiments to show the difference in reliabilities 
achieved by our redundant configuration scheme. Section VI 
describes a potential application scenario and limitations of the 
work. Section VII discusses related work, and finally, Section 
VIII gives conclusions and potential future studies. 

II. PRELIMINARIES 
In this section, we first show a motivating example and 

present the reliability design issue. Then we define our problem 
scope and introduce the notations used throughout the paper. 

A. A motivating example 
As an example of MLS applications, we consider an 

autonomous vehicle equipped with image sensors and ML 
modules to classify input images. For safe autonomous driving 
on the road, the system needs to recognize the traffic signs, 

signals, other vehicles, and other obstacles using the equipped 
sensors. Relying on a single sensor and a single ML function is 
not encouraged since the output of an ML module is highly 
error-prone to the samples from the real world [7][8]. Thus, N-
version MLSs can be adopted to improve the reliability of 
system output. Figure 1 shows a scenario in which an 
autonomous vehicle needs to recognize the traffic signal in front 
of the car using two cameras and two ML modules. 

 
Figure 1. An example scenario for an autonomous vehicle on the road. 

 
The cameras can generate different images from slightly 
different angles. The ML models can behave differently on the 
same input image by using different ML algorithms or training 
data sets. When the outputs of these ML modules disagree, the 
system does not output any inference results to avoid errors. In 
other words, the system outputs an error only when both 
modules agree on the inference result but the answer is incorrect. 

The design issue we encounter in configuring such a 
dependent double-modules double-inputs MLS is the 
combination of input data and ML models for individual 
modules. A wrong combination of input data and ML model 
even may decrease the system output reliability. In order to 
discuss this design issue and clarify our problem scope, we 
introduce formal notations in the following section. 

B. Reliability of MLS 
We define the reliability of MLS as the probability that an 

MLS output agrees with the ground truth in the real world (e.g., 
red signal). Unlike the accuracy measures of classification tasks, 
we do not distinguish false positives from false negatives. 
Errors can also be caused by the implementation bugs of ML 
programs [9][15]. Any outputs that do not match the ground 
truth are considered errors causing unreliable system outputs. 

To model the reliability of MLS, we introduce the following 
notations. Let 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = {1,2, … } be an input data from a sensor 𝑖𝑖 
and let 𝑚𝑚𝑗𝑗 , 𝑗𝑗 = {𝑎𝑎, 𝑏𝑏, … } be a ML model. An ML module is a 
unit of the MLS, which installs one ML model 𝑚𝑚𝑗𝑗 and selects 
one input data source 𝑖𝑖. The ML module outputs errors when 
the installed ML model does not classify the input data correctly. 
Let S be the total set of possible input data, and let 𝐸𝐸𝑗𝑗 ⊂ 𝑆𝑆 be 
the subset of S that makes ML model 𝑚𝑚𝑗𝑗  outputs errors. The 
probability that the module outputs an error can be represented 
by 𝑃𝑃�𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑗𝑗�. Therefore, the reliability of MLS using this ML 
module solely is given by 1 − 𝑃𝑃�𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑗𝑗� . Throughout this 

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3322563

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 
 

3 

paper, we assume 𝑃𝑃�𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑗𝑗� ∈ (0,1)  unless otherwise stated. 
The possibility that the input 𝑥𝑥𝑖𝑖 occurs in a real environment 
can also depend on the sensor’s capability. To consider the 
randomness of sensor input, denote 𝑋𝑋𝑖𝑖 as the random variable 
representing the input data 𝑥𝑥𝑖𝑖  and define 𝜇𝜇𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖)  as the 
corresponding distribution function. When we define error 
function 𝑓𝑓𝑗𝑗 as 

𝑓𝑓𝑗𝑗(𝑥𝑥𝑖𝑖) = �
1, 𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑗𝑗
0, otherwise, (1)   

the error probability can be expressed as  

𝑃𝑃�𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑗𝑗� = �𝑓𝑓𝑗𝑗(𝑥𝑥𝑖𝑖)𝑑𝑑𝜇𝜇𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖). (2)   

Note that 𝑃𝑃�𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑗𝑗� is the expectation of the value of 𝑓𝑓𝑗𝑗  for 
given input data distribution, and the value should be in (0,1). 
𝑓𝑓𝑗𝑗 is also called score function and is used for representing the 
reliability of multi-version software systems [37][38]. We use 
these notations in the following reliability models. 

C. Double-modules double-inputs MLS 
With the reliability function defined above, next, we 

formulate the reliability of MLS with redundant configuration. 
Given two different sensor inputs 𝑥𝑥1 and 𝑥𝑥2 and two different 
ML models 𝑚𝑚𝑎𝑎  and 𝑚𝑚𝑏𝑏 , there could be six different 
architecture choices which are categorized into three types, as 
shown in Figure 2. Note that no matter which architecture is 
adopted, the final output of the MLS is determined by voting on 
two modules’ outputs. Voting strategies are commonly adopted 
in multi-version machine learning systems [5][26][36]. In our 
study, we assume that the MLS outputs the prediction results 
only when two modules output an identical result. Therefore, 
we consider the reliability of system output by the probability 
that both two modules’ outputs are correct. If any one of the 
modules outputs an error, the voter cannot judge which output 
is correct and hence discard all the outputs. The system may 
issue an alert to higher-level modules or users when 
encountering such conditions several times. We do not consider 
this case as a system failure in this paper. The reliabilities of the 
six architectures are characterized by the input data 
distributions and error functions as formulated below. 

1. Double-models single-input (DMSI) architecture 
In this architecture, two ML modules employ different ML 
models while choosing the same input data. Depending on 

which input data ( 𝑥𝑥1  or 𝑥𝑥2 ) is chosen, there are two 
architecture options. The reliabilities of these architectures 
can be represented by 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 = 1 − 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 ∩ 𝐸𝐸𝑏𝑏], 
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2 = 1 − 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 ∩ 𝐸𝐸𝑏𝑏]. (3)   

Given the input data distributions 𝜇𝜇𝑋𝑋1(𝑥𝑥1) and 𝜇𝜇𝑋𝑋2(𝑥𝑥2), the 
reliabilities can also be expressed as 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 = 1 −�𝑓𝑓𝑎𝑎(𝑥𝑥1)𝑓𝑓𝑏𝑏(𝑥𝑥1)𝑑𝑑𝜇𝜇𝑋𝑋1(𝑥𝑥1), 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2 = 1 −�𝑓𝑓𝑎𝑎(𝑥𝑥2)𝑓𝑓𝑏𝑏(𝑥𝑥2)𝑑𝑑𝜇𝜇𝑋𝑋2(𝑥𝑥2). 
(4)   

2. Single-model double-inputs (SMDI) architecture 
In this architecture, both ML modules employ the same ML 
model but choose different sensor input data resulting in two 
potentially different outputs. Depending on which ML model 
(𝑚𝑚𝑎𝑎 or 𝑚𝑚𝑏𝑏) is employed, there are two architecture options. 
The reliabilities of these architectures can be represented by 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 = 1 − 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎], 
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2 = 1 − 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]. (5)   

Let 𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2)  be the joint distribution function of two 
input data. The reliabilities can also be expressed as 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 = 1 −�𝑓𝑓𝑎𝑎(𝑥𝑥1)𝑓𝑓𝑎𝑎(𝑥𝑥2)𝑑𝑑𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2), 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2 = 1 −�𝑓𝑓𝑏𝑏(𝑥𝑥1)𝑓𝑓𝑏𝑏(𝑥𝑥2)𝑑𝑑𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2). 
(6)   

3. Double-models double-inputs (DMDI) architecture 
This architecture uses two different inputs and two different 
ML models. Two ML modules deploy different ML models 
and choose different sensor inputs. Depending on the 
combination of input data and ML model, there are two 
architecture options in this case as well. The reliabilities of 
these architectures can be represented by 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 = 1 − 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏], 
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1 = 1 − 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏]. (7)   

With the joint distribution function of two input data, the 
reliabilities can also be expressed as 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 = 1 −�𝑓𝑓𝑎𝑎(𝑥𝑥1)𝑓𝑓𝑏𝑏(𝑥𝑥2)𝑑𝑑𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2), 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1 = 1 −�𝑓𝑓𝑏𝑏(𝑥𝑥1)𝑓𝑓𝑎𝑎(𝑥𝑥2)𝑑𝑑𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2). 
(8)   

The architecture reliability comparison is easy if we can 

Figure 2. Architecture options for dependent double-modules double-inputs MLS. 
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assume the two modules’ outputs are independent. When we 
know the reliability of individual modules’ outputs, the 
reliability of redundant configuration can be simply computed 
by combinatorial reliability models such as reliability block 
diagram [11] or fault tree [12][13]. However, the independence 
assumptions on the input data distributions and the errors of 
different ML models are unlikely to hold in practice. Moreover, 
we hardly obtain complete knowledge about the degrees of 
dependence between two ML models and two input data sets 
[6]. The architecture reliability comparison under such 
conditions is not a trivial issue. 

D. Problem 
With the above notations of MLS architectures’ reliability, 

the general problem we try to address in this paper can be 
described as follows. 

MLS redundant configuration problem. Given two different 
sensor inputs 𝑥𝑥1  and 𝑥𝑥2  with two different ML models 𝑚𝑚𝑎𝑎 
and 𝑚𝑚𝑏𝑏 for the same classification task, determine the best or 
preferable architecture options in terms of system reliability 
without knowing the complete information about the input 
data distributions and error input sets of the ML models. 

Answers to this problem must give guides to choosing a 
suitable configuration of redundant MLS architecture. Since we 
do not have complete knowledge about the input data 
distributions or the errors of ML models, the best option may 
not be determined due to the lack of information. However, any 
additional information may help screen inappropriate options 
regarding system reliability. Finding preferable architecture 
options from any available information is practically 
meaningful in the design of reliable MLS. 

III. DIVERSITY MEASURES AND RELIABILITY MODEL 
Instead of directly approaching input data distributions and 

error spaces of ML models, we attempt to characterize the 
architecture reliability through the diversities among the 
modules. In this section, we define two diversity measures and 
formulate the architecture reliabilities in a compact matrix 
representation form. 

A. Diversity measures 
Input data from different sensors must be very similar since 

both sensors observe the same target. On the other hand, the 
error tendencies of different ML models must be similar since 
both the models are trained for the same task and possibly 
trained from the same data sets. The degree of these similarities 
must influence the system reliability and may bring useful 
information to determine the preferable architecture option. To 
incorporate the factor of dependence quantitatively in the 
reliability model, we introduce two measures of diversity.  

Intersection of errors (model similarity). Let 𝐸𝐸𝑎𝑎 and 𝐸𝐸𝑏𝑏  be the 
subsets of input space S that make machine learning models 
𝑚𝑚𝑎𝑎 and 𝑚𝑚𝑏𝑏 output errors, respectively. For an input data 𝑥𝑥𝑖𝑖 
sampled from distribution 𝜇𝜇𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖), the intersection of errors 
𝛼𝛼𝑏𝑏|𝑎𝑎,𝑖𝑖   is defined by the conditional probability 

𝛼𝛼𝑏𝑏|𝑎𝑎,𝑖𝑖 = 𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎] =
𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎 ∩ 𝐸𝐸𝑏𝑏]
𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎] , 

where 𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎] > 0. 
(9)   

The intersection of errors represents the degree of overlap 
between the sets 𝐸𝐸𝑎𝑎  and 𝐸𝐸𝑏𝑏 . The larger the elements of 𝐸𝐸𝑏𝑏  
overlaps the elements of 𝐸𝐸𝑎𝑎, the value of 𝛼𝛼𝑏𝑏|𝑎𝑎,𝑖𝑖 becomes larger. 
Since 𝐸𝐸𝑎𝑎  and 𝐸𝐸𝑏𝑏  are attributed to the capabilities of different 
ML models, their intersection indicates how two models 
resemble in terms of error input space. The smaller intersection 
decreases the probability of common errors of 𝑚𝑚𝑎𝑎  and 𝑚𝑚𝑏𝑏 , 
which corresponds to the smaller model similarity. 

Conjunction of errors (input similarity). Let x1 and x2 be the 
input data that follow distributions 𝜇𝜇𝑋𝑋1(𝑥𝑥1)  and 𝜇𝜇𝑋𝑋2(𝑥𝑥2) , 
respectively. For a machine learning model 𝑚𝑚𝑗𝑗 whose error 
space is given by 𝐸𝐸𝑗𝑗, the conjunction of errors 𝛽𝛽𝑗𝑗,2|1 is defined 
by the conditional probability  

𝛽𝛽𝑗𝑗,2|1 = 𝑃𝑃𝑃𝑃�𝑥𝑥2 ∈ 𝐸𝐸𝑗𝑗|𝑥𝑥1 ∈ 𝐸𝐸𝑗𝑗� =
𝑃𝑃�𝑥𝑥1 ∈ 𝐸𝐸𝑗𝑗 , 𝑥𝑥2 ∈ 𝐸𝐸𝑗𝑗�

𝑃𝑃�𝑥𝑥1 ∈ 𝐸𝐸𝑗𝑗�
, 

where 𝑃𝑃�𝑥𝑥1 ∈ 𝐸𝐸𝑗𝑗� > 0. 
(10)   

The conjunction of errors represents the possibility of both 
inputs x1 and x2 fall into error outputs by the process of the same 
ML model 𝑚𝑚𝑗𝑗 . The larger similarity there is between 
distributions 𝜇𝜇𝑋𝑋1(𝑥𝑥1) and 𝜇𝜇𝑋𝑋2(𝑥𝑥2) in error space 𝐸𝐸𝑗𝑗 , the value 
of 𝛽𝛽𝑗𝑗,2|1 becomes the larger. The difference in distributions can 
be regarded as the diversity of the sensors’ capabilities. The 
smaller conjunction decreases the probability of double errors 
due to the smaller input similarity. 

With the defined diversity measures, the reliabilities of DMSI 
and SMDI architectures can be expressed as 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 = 1 − 𝛼𝛼𝑏𝑏|𝑎𝑎,1 ∙ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 
= 1 − 𝛼𝛼𝑎𝑎|𝑏𝑏,1 ∙ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏], 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 = 1 − 𝛽𝛽𝑎𝑎,2|1 ∙ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 
= 1 − 𝛽𝛽𝑎𝑎,1|2 ∙ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]. 

(11)   

From the expressions, we can derive the bounds of 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1  
and 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 as follows. 

1 − min(𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎],𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏]) ≤ 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 ≤ 1, 
1 − min(𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎],𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]) ≤ 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 ≤ 1. (12)   

The upper bound is given when the value of diversity is equal 
to zero, which means there is no intersection or conjunction of 
errors between the two modules. On the other hand, the lower 
bound is given when the value of diversity is equal to one, 
which means two models are identical or inputs are identical. 

B. Reliability model for DMDI 
Since DMDI architecture uses two sensor input data and two 

distinct ML models, both model diversity and input diversity 
can influence the architecture reliability. Let us first consider 
the reliability of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 . The probability that the two 
modules in 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 output errors simultaneously is given 
by 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]. Assume that input 𝑥𝑥1 causes an error 
of 𝑚𝑚𝑎𝑎 , the error probability of MLS can be given by 
conditioning whether 𝑥𝑥2 also causes an error of 𝑚𝑚𝑎𝑎. 
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𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] = 
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ∙ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 
∙ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] + 
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���, 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ∙ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 
∙ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎], 

(13)   

where 𝐸𝐸� = 𝑆𝑆 ∖ 𝐸𝐸  represents the complementary set of 𝐸𝐸  and 
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ∈ (0,1) . The first term of the above 
expression corresponds to the probability that 𝑥𝑥2 occurs in 𝐸𝐸𝑎𝑎 ∩
𝐸𝐸𝑏𝑏 , while the second term corresponds to the probability that 𝑥𝑥2 
occurs in 𝐸𝐸𝑎𝑎��� ∩ 𝐸𝐸𝑏𝑏. Define the parameters 

𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 = 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎], 
𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2� = 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���, 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎]. (14)   

Since P[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎]  complements P[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] , 
using the input diversity 𝛽𝛽𝑎𝑎,2|1 the reliability is expressed as 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 = 1 − �𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 ∙ 𝛽𝛽𝑎𝑎,2|1 + 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2�

∙ �1 − 𝛽𝛽𝑎𝑎,2|1�� ∙ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎]. 
(15)   

If 𝐸𝐸𝑎𝑎  and 𝐸𝐸𝑏𝑏  are identical, 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 = 1  and 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2� = 0 , 
which results in  𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 = 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 .  Expression (15) 
characterizes the reliability of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 by the combination 
of model similarity and input similarity. We discuss the 
relationship between different architecture options through the 
set of diversity-associated parameters in the following section. 

C. Matrix representation 
In the derivation of the reliability of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 above, we 

condition the error probability by the occurrence of error 
conjunction with 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎. Applying the same conditioning to 
the expression for the reliability of 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1, we have 
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏] = 

𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ∙ P[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 
∙ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] + 
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���, 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ∙ P[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 
∙ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎], 

(16)   

where 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ∈ (0,1). When we define 
𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2 = 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎], 
𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2� = 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���, 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎], (17)   

the reliability of 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 can be expressed as 
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 = 1 − �𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2 ∙ 𝛽𝛽𝑎𝑎,2|1 + 𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2�

∙ �1 − 𝛽𝛽𝑎𝑎,2|1�� ∙ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎]. 
(18)   

In a similar manner, the reliabilities of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1  and 
𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2  are derived by conditioning whether error 
conjunction occurs at 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎. 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1 = 1 − �𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2 ∙ 𝛽𝛽𝑎𝑎,1|2 + 𝛼𝛼𝑏𝑏,1|𝑎𝑎,1�∩2

∙ �1 − 𝛽𝛽𝑎𝑎,1|2�� ∙ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎], 
(19)   

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2 = 1 − �𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 ∙ 𝛽𝛽𝑎𝑎,1|2 + 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1�∩2

∙ �1 − 𝛽𝛽𝑎𝑎,1|2�� ∙ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎], 
(20)   

where 
𝛼𝛼𝑏𝑏,1|𝑎𝑎,1�∩2 = 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎���, 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎], 
𝛼𝛼𝑏𝑏,2|𝑎𝑎,1�∩2 = 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎���, 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]. (21)   

The expressions (15)(18)(19)(20) can be merged into the 
following matrix representation. 

𝑹𝑹𝑏𝑏|𝑎𝑎 = 𝑱𝑱2 − 𝑨𝑨𝑏𝑏|𝑎𝑎 ⋅ 𝑩𝑩𝑎𝑎
⊤ ⋅ 𝑷𝑷𝑎𝑎, 

where 
(22)   

𝑹𝑹𝑏𝑏|𝑎𝑎 = �
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2
�,     

 𝑱𝑱2 = �1 1
1 1� , 

 𝑨𝑨𝑏𝑏|𝑎𝑎 = �
𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2 𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2� 𝛼𝛼𝑏𝑏,1|𝑎𝑎,1�∩2
𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2� 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1�∩2

�,      

𝑩𝑩𝑎𝑎 = �
𝛽𝛽𝑎𝑎,2|1 1 − 𝛽𝛽𝑎𝑎,2|1 0
𝛽𝛽𝑎𝑎,1|2 0 1 − 𝛽𝛽𝑎𝑎,1|2

� , 

 𝑷𝑷𝑎𝑎 = �𝑃𝑃
[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 0

0 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]�. 

The matrix 𝑹𝑹𝑏𝑏|𝑎𝑎 represents the reliabilities of four different 
architectures. 𝑱𝑱2  is a two-dimensional all-ones matrix. The 
elements of 𝑨𝑨𝑏𝑏|𝑎𝑎 are associated with the intersection of errors 
in 𝐸𝐸𝑏𝑏  over 𝐸𝐸𝑎𝑎 , while the elements of 𝑩𝑩𝑎𝑎  represent the 
conjunction or non-conjunction of errors in 𝐸𝐸𝑎𝑎 , and 𝑷𝑷𝑎𝑎 
represents the error probabilities on 𝐸𝐸𝑎𝑎 by inputs x1 and x2. 

The matrix term 𝑩𝑩𝑎𝑎
⊤ ⋅ 𝑷𝑷𝑎𝑎 in (22) can be represented by the 

functions of 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 as follows. 
𝑩𝑩𝑎𝑎
⊤ ⋅ 𝑷𝑷𝑎𝑎

= �
𝛽𝛽𝑎𝑎,2|1 ⋅ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 𝛽𝛽𝑎𝑎,1|2 ⋅ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]

�1 − 𝛽𝛽𝑎𝑎,2|1� ⋅ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 0
0 �1 − 𝛽𝛽𝑎𝑎,1|2� ⋅ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]

� 

= �
1 − 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 1 − 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2

𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] + 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 − 1 0
0 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] + 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 − 1

�. 

 (23)   
Therefore, the expression (22) characterizes the relationships 
among the reliabilities of five different architectures out of six 
options (i.e., only 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2 is not associated). 

A similar derivation can be carried out by conditioning the 
error conjunction or non-conjunction in 𝐸𝐸𝑏𝑏 . As a result, the dual 
of 𝑹𝑹𝑏𝑏|𝑎𝑎 can be obtained by exchanging 𝐸𝐸𝑎𝑎 and 𝐸𝐸𝑏𝑏  in (22). 

𝑹𝑹𝑎𝑎|𝑏𝑏 = 𝑱𝑱2 − 𝑨𝑨𝑎𝑎|𝑏𝑏 ⋅ 𝑩𝑩𝑏𝑏
⊤ ⋅ 𝑷𝑷𝑏𝑏 , 

where 

𝑹𝑹𝑎𝑎|𝑏𝑏 = �
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2
�,     

 𝑨𝑨𝑎𝑎|𝑏𝑏 = �
𝛼𝛼𝑎𝑎,1|𝑏𝑏,1∩2 𝛼𝛼𝑎𝑎,1|𝑏𝑏,1∩2� 𝛼𝛼𝑎𝑎,1|𝑏𝑏,1�∩2
𝛼𝛼𝑎𝑎,2|𝑏𝑏,1∩2 𝛼𝛼𝑎𝑎,2|𝑏𝑏,1∩2� 𝛼𝛼𝑎𝑎,2|𝑏𝑏,1�∩2

� , 

 𝑩𝑩𝑏𝑏 = �
𝛽𝛽𝑏𝑏,2|1 1 − 𝛽𝛽𝑏𝑏,2|1 0
𝛽𝛽𝑏𝑏,1|2 0 1 − 𝛽𝛽𝑏𝑏,1|2

�,      

𝑷𝑷𝑏𝑏 = �𝑃𝑃
[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏] 0

0 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]�. 

(24)   

Since expression (24) includes the term  
𝑩𝑩𝑏𝑏
⊤ ⋅ 𝑷𝑷𝑏𝑏

= �
𝛽𝛽𝑏𝑏,2|1 ⋅ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏] 𝛽𝛽𝑏𝑏,1|2 ⋅ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]

�1 − 𝛽𝛽𝑏𝑏,2|1� ⋅ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏] 0
0 �1 − 𝛽𝛽𝑏𝑏,1|2� ⋅ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]

�

= �

1 − 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2 1 − 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2

𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏] + 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2 − 1 0
0 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] + 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2 − 1

�. 

 (25)   
the relationships among the reliabilities of five different 
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architectures out of six options are represented by expression 
(24) (i.e., only 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 is not associated). By definition, 𝑹𝑹𝑏𝑏|𝑎𝑎 
and 𝑹𝑹𝑎𝑎|𝑏𝑏 satisfy the following relation. 

𝑹𝑹𝑎𝑎|𝑏𝑏 = 𝑹𝑹𝑏𝑏|𝑎𝑎
⊤  (26)   

Consequently, the relationships between the reliabilities of six 
different architectures can be characterized by diversity-
property matrixes 𝑨𝑨𝑏𝑏|𝑎𝑎,𝑨𝑨𝑎𝑎|𝑏𝑏 ,𝑩𝑩𝑎𝑎 and 𝑩𝑩𝑏𝑏 under the relation (26). 

In the above derivation, for a given event 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎, first, we 
assume error conjunctions in 𝐸𝐸𝑎𝑎  and then consider the 
intersection to 𝐸𝐸𝑏𝑏 . One can also derive a similar relationship in 
inverse order; i.e., first assume that the error occurs in the 
intersection of 𝐸𝐸𝑎𝑎 and 𝐸𝐸𝑏𝑏  and then consider the conjunction of 
errors by another input. The reliability matrices can be 
represented as 𝑹𝑹2|1 and 𝑹𝑹1|2 which satisfy the relation 𝑹𝑹1|2 =
𝑹𝑹2|1
⊤ . Since the derivation is mostly the same as described above, 

we omit to show this case for brevity. 
Both the equalities 𝑹𝑹𝑎𝑎|𝑏𝑏 = 𝑹𝑹𝑏𝑏|𝑎𝑎

⊤  and 𝑹𝑹1|2 = 𝑹𝑹2|1
⊤  can fully 

represent the relations among six architectures’ reliabilities and 
diversity-associated parameters. 

IV. ARCHITECTURE PROPERTY ANALYSIS 
Using the reliability model shown in expressions 

(22)(24)(26), we discuss the properties of these architectures 
that may help the decision of relevant architecture choice in 
terms of MLS reliability. The exact values of diversity 
parameters such as 𝑨𝑨𝑏𝑏|𝑎𝑎 and 𝑩𝑩𝑎𝑎 are not obtainable in practice. 
However, we can argue a preferable architecture through the 
analysis of the relation of these diversity values. In the 
following discussion, we first show the general property 
derived from the model and then present some special 
properties that can be shown under a specific type of joint 
distribution for the input data set. 

A. General properties 
An interesting question about the presented architecture 

model is which architecture achieves better reliability than 
another architecture under specific conditions on the diversity 
metrics. In other words, it is interesting to know if the value of 
the diversity metric can determine the preference of the 
architecture in terms of reliability. To investigate this, first, 
consider the reliabilities difference between the elements of 
𝑹𝑹𝑏𝑏|𝑎𝑎 and 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2. Define the reliability difference matrix by  

𝑯𝑯𝑏𝑏|𝑎𝑎 = 𝑹𝑹𝑏𝑏|𝑎𝑎 − 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 ⋅ 𝑱𝑱2. (27)   
By definition, 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  can be expressed either by 𝛽𝛽𝑎𝑎,2|1 ⋅
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] or by 𝛽𝛽𝑎𝑎,1|2 ⋅ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]. We can write 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 ⋅ 𝑱𝑱2 = 𝑱𝑱2 − 𝑩𝑩𝑎𝑎
+⊤ ⋅ 𝑷𝑷𝑎𝑎, (28)   

where 

𝑩𝑩𝑎𝑎
+ = [𝛽𝛽𝑎𝑎,2|1 𝛽𝛽𝑎𝑎,1|2]⊤ ⋅ [1 1] = �

𝛽𝛽𝑎𝑎,2|1 𝛽𝛽𝑎𝑎,2|1

𝛽𝛽𝑎𝑎,1|2 𝛽𝛽𝑎𝑎,1|2
�. 

(29)   

Applying (22) and (28) to (27),  
𝑯𝑯𝑏𝑏|𝑎𝑎 = 𝑱𝑱2 − 𝑨𝑨𝑏𝑏|𝑎𝑎 ⋅ 𝑩𝑩𝑎𝑎

⊤ ⋅ 𝑷𝑷𝑎𝑎 − (𝑱𝑱2 − 𝑩𝑩𝑎𝑎
+⊤ ⋅ 𝑷𝑷𝑎𝑎) 

= �𝑩𝑩𝑎𝑎
+⊤ − 𝑨𝑨𝑏𝑏|𝑎𝑎 ⋅ 𝑩𝑩𝑎𝑎

⊤� ⋅ 𝑷𝑷𝑎𝑎 . (30)   
The expression (30) shows that the conditions where DMDI 

and DMSI architectures achieve higher reliability than 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  can be provided by the sign of 𝑩𝑩𝑎𝑎
+⊤ − 𝑨𝑨𝑏𝑏|𝑎𝑎 ⋅ 𝑩𝑩𝑎𝑎

⊤ . 
Thus, we have the general property which characterizes the 
reliability difference of the architectures as described below.  

Lemma 1.  Given a parameter matrix 𝑨𝑨𝑏𝑏|𝑎𝑎, the reliabilities of 
𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 monotonically increase against 
the reliability of 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  as 𝛽𝛽𝑎𝑎,2|1  increases, while the 
reliabilities of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1  and 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2  monotonically 
increase against the reliability of 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  as 𝛽𝛽𝑎𝑎,1|2 
increases. 

The proof of the lemma is presented in Appendix. The lemma 
implies that the architectures employing double models (i.e., 
DMDI and DMSI) tend to be preferable compared with the 
single model architecture (i.e., SMDI) when input 𝑥𝑥1 has higher 
conjunction with 𝑥𝑥2  in 𝐸𝐸𝑎𝑎 . Note that the condition where the 
double-models architecture becomes preferable to single-model 
architecture is given by  𝑯𝑯𝑏𝑏|𝑎𝑎 > 0. In order to investigate the 
condition, we need to understand the lower and upper bounds 
of 𝑯𝑯𝑏𝑏|𝑎𝑎 with respect to 𝛽𝛽𝑎𝑎,2|1 and 𝛽𝛽𝑎𝑎,1|2, which are given in the 
following lemma. 

Lemma 2. Given a parameter matrix 𝑨𝑨𝑏𝑏|𝑎𝑎, the lower and upper 
bounds of 𝑯𝑯𝑏𝑏|𝑎𝑎  as the functions of 𝛽𝛽𝑎𝑎,2|1,𝛽𝛽𝑎𝑎,1|2 ∈ (0,1)  are 
given by  

inf 𝑯𝑯𝑏𝑏|𝑎𝑎 = �
−𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2� −𝛼𝛼𝑏𝑏,1|𝑎𝑎,1�∩2
−𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2� −𝛼𝛼𝑏𝑏,2|𝑎𝑎,1�∩2

� ⋅ 𝑷𝑷𝑎𝑎 , 

sup 𝑯𝑯𝑏𝑏|𝑎𝑎 = �
𝑯𝑯𝑏𝑏|𝑎𝑎
sup1 ⋅ 𝑷𝑷𝑎𝑎, 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] < 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎]

𝑯𝑯𝑏𝑏|𝑎𝑎
sup2 ⋅ 𝑷𝑷𝑎𝑎 , 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] ≥ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎],

 

𝑯𝑯𝑏𝑏|𝑎𝑎
sup1 =

⎣
⎢
⎢
⎢
⎡𝛼𝛼�1 ⋅

𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] − 𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2� ⋅

𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 𝛼𝛼�1

𝛼𝛼�2 ⋅
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] − 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2� ⋅

𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 𝛼𝛼�2⎦

⎥
⎥
⎥
⎤
, 

𝑯𝑯𝑏𝑏|𝑎𝑎
sup2 =

⎣
⎢
⎢
⎢
⎡𝛼𝛼�1 𝛼𝛼�1 ⋅

𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎]
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] − 𝛼𝛼𝑏𝑏,1|𝑎𝑎,1�∩2 ⋅

𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎���]
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]

𝛼𝛼�2 𝛼𝛼�2 ⋅
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎]
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] − 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1�∩2 ⋅

𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎���]
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]⎦

⎥
⎥
⎥
⎤
, 

where 𝛼𝛼�1 = 1 − 𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2 and 𝛼𝛼�2 = 1 − 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2. (31)   

The proof is presented in Appendix. Since all the elements of 
the lower bound inf 𝑯𝑯𝑏𝑏|𝑎𝑎  are negative, double-model 
architectures achieve lower reliabilities than the single-model 
architecture at the lower bound. By Lemma 1, the values of 
𝑯𝑯𝑏𝑏|𝑎𝑎 increases monotonically in terms of 𝛽𝛽𝑎𝑎,2|1 and 𝛽𝛽𝑎𝑎,1|2,  the 
sign of sup 𝑯𝑯𝑏𝑏|𝑎𝑎 determines changes in the preference. From 
Lemma 1 and Lemma 2, we have the following proposition. 

Proposition 1. Given a parameter matrix 𝑨𝑨𝑏𝑏|𝑎𝑎 , when (i,j)-
element of sup 𝑯𝑯𝑏𝑏|𝑎𝑎  is positive, there exists a unique 
changing point in the increasing value of 𝛽𝛽𝑎𝑎,2|1 (when j=1) or 
𝛽𝛽𝑎𝑎,1|2  (when j=2) at which the reliability of 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 
becomes lower than the reliability of 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1  (i,j=1), 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2  (i=2, j=1), 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1  (i=1, j=2), or 
𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2 (i,j=2). 

The values of 𝛽𝛽𝑎𝑎,2|1  and 𝛽𝛽𝑎𝑎,1|2  that give the changing points 
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satisfy 𝑯𝑯𝑏𝑏|𝑎𝑎 = 0. From (10), the condition can also be derived 
from the equation 𝑩𝑩𝑎𝑎

+⊤ = 𝑨𝑨𝑏𝑏|𝑎𝑎 ⋅ 𝑩𝑩𝑎𝑎
⊤. 

 
Figure 3. The example shows that the reliability of  𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 decreases as 

the value of   𝛽𝛽𝑎𝑎,2|1 increase. 

Figure 3 shows an illustrative example of Proposition 1. The 
reliability of 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  decreases by the increased 𝛽𝛽𝑎𝑎,2|1 , 
representing the higher conjunctions of errors. While  
𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 achieves the highest reliability when 𝛽𝛽𝑎𝑎,2|1 is low, it 
drops to the least option when 𝛽𝛽𝑎𝑎,2|1  is close to one. The 
implication is that 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 is a preferable architecture when 
we can obtain any confidence in the small value of 𝛽𝛽𝑎𝑎,2|1 (i.e., 
error conjunction of inputs 𝑥𝑥2 with inputs 𝑥𝑥1 seldom occurs). 

A similar property can be derived from the elements of 𝑹𝑹𝑎𝑎|𝑏𝑏 
in comparison with 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2. Define the reliability difference 
matrix by  

𝑯𝑯𝑎𝑎|𝑏𝑏 = 𝑹𝑹𝑎𝑎|𝑏𝑏 − 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2 ⋅ 𝑱𝑱2. (32)   
The matrix can be expressed as 

𝑯𝑯𝑎𝑎|𝑏𝑏 = �𝑩𝑩𝑏𝑏
+⊤ − 𝑨𝑨𝑎𝑎|𝑏𝑏 ⋅ 𝑩𝑩𝑏𝑏

⊤� ⋅ 𝑷𝑷𝑏𝑏 , 

𝑩𝑩𝑏𝑏
+ = [𝛽𝛽𝑏𝑏,2|1 𝛽𝛽𝑏𝑏,1|2]⊤ ⋅ [1 1] = �

𝛽𝛽𝑏𝑏,2|1 𝛽𝛽𝑏𝑏,2|1

𝛽𝛽𝑏𝑏,1|2 𝛽𝛽𝑏𝑏,1|2
�. 

(33)   

Note that (33) represents the same relation with (30), only by 
substituting a with b. Consequently, the duals of Lemma 1, 
Lemma 2, and Proposition 1 can be shown as well. 

Furthermore, the difference in the elements of 𝑹𝑹2|1  and 
𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1  can be characterized by the reliability difference 
matrix 𝑯𝑯2|1 = 𝑹𝑹2|1 − 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 ⋅ 𝑱𝑱2 , while the difference in 
the elements of 𝑹𝑹1|2 and 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2 can be characterized by the 
reliability difference matrix 𝑯𝑯1|2 = 𝑹𝑹1|2 − 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2 ⋅ 𝑱𝑱2. For 
𝑯𝑯2|1  and 𝑯𝑯1|2 , by similar derivation steps, we can show the 
monotonicity, the bounds, and the changing points in terms of 
𝛼𝛼𝑏𝑏|𝑎𝑎,1, 𝛼𝛼𝑎𝑎|𝑏𝑏,1, 𝛼𝛼𝑏𝑏|𝑎𝑎,2 and 𝛼𝛼𝑎𝑎|𝑏𝑏,2.  

B. Properties under restricted distributions 
The previous section shows the general property of the 

difference in architectures’ reliabilities regarding diversity 
metrics without restricting the type of input data distributions. 
However, Proposition 1 is still insufficient to judge the 
preferable architecture for given conditions on the diversity 
measures. For example, the preference between 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 
and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1 cannot be characterized through the property 
of either 𝑯𝑯𝑏𝑏|𝑎𝑎  or 𝑯𝑯𝑎𝑎|𝑏𝑏 . To derive any useful information to 
select the architecture, we may need more information about the 

input data distributions. In the following, we consider three 
special cases where additional assumptions restricting the type 
of input data distributions help architecture selection. 

1) Case 1: Input superiority is known 
First, we assume that input data 𝑋𝑋2 is more error-prone than 

𝑋𝑋1 for any error space 𝐸𝐸𝑗𝑗, and clarify the conditions on diversity 
measures to decide the preferable architecture in this case. The 
assumption is likely to hold in practice when there is a non-
trivial difference in sensors’ capabilities (e.g., an old sensor 
always induces more errors than the new sensor). The 
assumption can formally be described as, for any subset 𝐸𝐸∗ ⊆
𝐸𝐸𝑎𝑎 ∪ 𝐸𝐸𝑏𝑏 , the joint distribution 𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2)  satisfies 𝑃𝑃[𝑥𝑥1 ∈
𝐸𝐸∗] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸∗]. Under this assumption, we have relations 

𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎], 
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]. (34)   

The above two inequalities also yield relations 
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 ∩ 𝐸𝐸𝑏𝑏] ≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 ∩ 𝐸𝐸𝑏𝑏], 
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 ∩ 𝐸𝐸𝑏𝑏] ≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏 , 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 ∩ 𝐸𝐸𝑏𝑏]. 
 (35)   

Under this assumption, the architecture reliabilities satisfy 
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 ≥ �𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 ,𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1� ≥ 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2 . (36)   

The inequality indicates that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 , 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1  and 
𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2  are not considered the best architecture option 
regardless of the values of diversity measures. Then, the 
question is which architecture would be the best among 
𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 , 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  and 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2 . The answer to this 
question is provided in the following proposition. 

Proposition 2. Assume that the joint distribution 𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2) 
satisfies 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸∗] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸∗] for any subset 𝐸𝐸∗ ⊆ 𝐸𝐸𝑎𝑎 ∪
𝐸𝐸𝑏𝑏 . The most reliable architecture is given by either  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2,       if 𝛽𝛽𝑎𝑎,2|1 ≤

𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2�

1 − 𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2 + 𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2�
 and

 𝛽𝛽𝑎𝑎,2|1 ≤ 𝛽𝛽𝑏𝑏,2|1 ⋅
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ,

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2,       if 𝛽𝛽𝑏𝑏,2|1 ≤
𝛼𝛼𝑎𝑎,1|𝑏𝑏,1∩2�

1 − 𝛼𝛼𝑎𝑎,1|𝑏𝑏,1∩2 + 𝛼𝛼𝑎𝑎,1|𝑏𝑏,1∩2�
 and

 𝛽𝛽𝑎𝑎,2|1 ≥ 𝛽𝛽𝑏𝑏,2|1 ⋅
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ,

𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1, otherwise.

 

 (37)   

 
Figure 4. Boundary conditions of the most reliable architecture. 

1
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𝛽𝛽𝑎𝑎,2|1

𝛽𝛽𝑏𝑏,2|1

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2
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0

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3322563

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 
 

8 

The proof of the lemma is presented in Appendix. Figure 4 
visualizes the above conditions on �𝛽𝛽𝑎𝑎,2|1,𝛽𝛽𝑏𝑏,2|1� coordinates. 
As shown in Figure 4, intuitively 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 becomes the best 
architecture choice when we observe higher conjunction of 
errors (i.e., larger 𝛽𝛽𝑎𝑎,2|1 and 𝛽𝛽𝑏𝑏,2|1). 

2) Case 2: Model superiority is known 
Next, we assume that the errors in 𝐸𝐸𝑏𝑏  occurs more frequently 

than the errors in 𝐸𝐸𝑎𝑎  by any input data set and derive the 
conditions for deciding the preferable architecture in this case. 
The assumption restricts the shape of input data distributions, 
in particular over error spaces 𝐸𝐸𝑎𝑎  and 𝐸𝐸𝑏𝑏 , while it seems 
relatively acceptable in practice as the error frequencies are 
largely dominated by the ML models’ capabilities. The 
assumption can be described formally as; for any input data 𝑥𝑥𝑖𝑖 
follow the input data distribution 𝜇𝜇𝑋𝑋1(𝑥𝑥1)  or 𝜇𝜇𝑋𝑋2(𝑥𝑥2) , it 
satisfies 𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑏𝑏]. Under this assumption, we 
have the following relations. 

𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏], 
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]. (38)   

The two inequalities also yield the relations 
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] 

≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏], 
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏 , 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] 

≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]. 

(39)   

Under this assumption, the architecture reliabilities satisfy 
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 ≥ �𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 ,𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1� ≥ 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2 . (40)   

In this case, either 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 , 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1  or 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2 
becomes the most reliable architecture, which can be 
determined by the following proposition. We omit the proof, 
but it can be shown using the matrix 𝑯𝑯2|1 and 𝑯𝑯1|2 in a similar 
derivation step as shown in the proof of Proposition 2. 

Proposition 3. Assume that 𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑏𝑏] satisfies 
for any input data 𝑥𝑥𝑖𝑖  follow the input data distribution 
𝜇𝜇𝑋𝑋1(𝑥𝑥1) or 𝜇𝜇𝑋𝑋2(𝑥𝑥2). The most reliable architecture is given 
by either 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1,       if 𝛼𝛼𝑏𝑏|𝑎𝑎,1 ≤

𝛽𝛽𝑎𝑎,2|𝑎𝑎∩𝑏𝑏� ,1

1 − 𝛽𝛽𝑎𝑎,2|𝑎𝑎∩𝑏𝑏,1 + 𝛽𝛽𝑎𝑎,2|𝑎𝑎∩𝑏𝑏� ,1
 and 

𝛼𝛼𝑏𝑏|𝑎𝑎,1 ≤ 𝛼𝛼𝑏𝑏|𝑎𝑎,2 ⋅
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ,

𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2,       if 𝛼𝛼𝑏𝑏|𝑎𝑎,2 ≤
𝛽𝛽𝑎𝑎,1|𝑎𝑎∩𝑏𝑏� ,2

1 − 𝛽𝛽𝑎𝑎,1|𝑎𝑎∩𝑏𝑏,2 + 𝛽𝛽𝑎𝑎,1|𝑎𝑎∩𝑏𝑏� ,2
 and

𝛼𝛼𝑏𝑏|𝑎𝑎,1 ≥ 𝛼𝛼𝑏𝑏|𝑎𝑎,2 ⋅
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ,

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2, otherwise,

 

where 
𝛽𝛽𝑎𝑎,2|𝑎𝑎∩𝑏𝑏,1 = 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏], 
𝛽𝛽𝑎𝑎,2|𝑎𝑎∩𝑏𝑏� ,1 = 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎|𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏���], 
𝛽𝛽𝑎𝑎,1|𝑎𝑎∩𝑏𝑏,2 = 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏], 
𝛽𝛽𝑎𝑎,1|𝑎𝑎∩𝑏𝑏� ,2 = 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏���]. 

 (41)   
Proposition 3 indicates that 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  becomes the best 

architecture choice when we observe a higher intersection of 
errors (i.e., larger 𝛼𝛼𝑏𝑏|𝑎𝑎,1 and 𝛼𝛼𝑏𝑏|𝑎𝑎,2). 

3) Case 3: Complementary models and inputs are given 
In the above two possible scenarios with reasonable 

assumptions, we find that DMDI architectures are neither the 
best architecture nor the worst architecture choice. An 
interesting question is whether DMDI architectures can become 
the best option in terms of reliability under a reasonable 
assumption. The answer could be yes when the two input data 
distributions have a complementary relationship about the 
error-proneness of the different ML models. The assumption 
can be formally defined such that for any subsets 𝐸𝐸𝑎𝑎∗ ⊆ 𝐸𝐸𝑎𝑎 and 
𝐸𝐸𝑏𝑏∗ ⊆ 𝐸𝐸𝑏𝑏 , the joint distribution 𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2)  satisfies 𝑃𝑃[𝑥𝑥1 ∈
𝐸𝐸𝑎𝑎∗] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎∗]  and 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏∗] ≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏∗] . Under this 
assumption, we have 

𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎], 
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] ≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏]. (42)   

The two inequalities also yield the relations 
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] ≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 ∩ 𝐸𝐸𝑏𝑏] 

≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏 , 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎], 
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 ∩ 𝐸𝐸𝑏𝑏] 

≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏 , 𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]. 

(43)   

Under this assumption, the architecture reliabilities satisfy 
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 ≥ �𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 ,𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2� ≥ 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1 . (44)   

Using 𝑯𝑯𝑏𝑏|𝑎𝑎 and 𝑯𝑯𝑎𝑎|𝑏𝑏, we can show the next proposition that 
clarifies the conditions where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 can achieve the best 
reliability among other architectures. 

Proposition 4. Assume that the joint distribution 𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2) 
satisfies 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎∗] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎∗]  and 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏∗] ≤
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏∗] for any subsets 𝐸𝐸𝑎𝑎∗ ⊆ 𝐸𝐸𝑎𝑎 and 𝐸𝐸𝑏𝑏∗ ⊆ 𝐸𝐸𝑏𝑏 . The most 
reliable architecture is given by either one of the following. 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2,       if 𝛽𝛽𝑎𝑎,2|1 ≤

𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2�

1 − 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 + 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2�
 and 

𝛽𝛽𝑎𝑎,2|1 ≤ 𝛽𝛽𝑏𝑏,1|2 ⋅
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ,

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2,       if 𝛽𝛽𝑏𝑏,1|2 ≤
𝛼𝛼𝑎𝑎,1|𝑏𝑏,1�∩2

1 − 𝛼𝛼𝑎𝑎,1|𝑏𝑏,1∩2 + 𝛼𝛼𝑎𝑎,1|𝑏𝑏,1�∩2
 and 

𝛽𝛽𝑎𝑎,2|1 ≥ 𝛽𝛽𝑏𝑏,1|2 ⋅
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ,

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2, otherwise.

 

 (45)   
Figure 5 visualizes the above conditions on �𝛽𝛽𝑎𝑎,2|1,𝛽𝛽𝑏𝑏,1|2� 
coordinates. 

 
Figure 5. Conditions where DMDI architectures achieve the highest 

reliability. 

1

1

𝛽𝛽𝑎𝑎,2|1

𝛽𝛽𝑏𝑏,1|2

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎 ,1∩𝑏𝑏,2
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By symmetric assumption, we can also derive the conditions 
where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1  can achieve the best reliability. 
Alternatively, when we assume the input data distributions 
𝜇𝜇𝑋𝑋1(𝑥𝑥1)  and 𝜇𝜇𝑋𝑋2(𝑥𝑥2)  satisfy 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏]  and 
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] for any 𝑥𝑥1 and 𝑥𝑥2, we can show the 
conditions where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2  can achieve higher reliability 
than 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 and 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2. 

In a summary of the above discussions, we can have guides 
to decide the appropriate architecture in terms of reliability by 
restricting the shape of input data distributions. For instance, if 
we observe more errors from the sensor input 𝑥𝑥2 than the input 
𝑥𝑥1 , from Proposition 2, it is not encouraged to choose 
𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2 considering its reliability. In practice, the values of 
diversity measures are not very close to either zero or one. From 
(36) and (40), DMDI could be considered a neutral and 
conservative choice when there is not much information about 
the preference of input data and ML models. However, it is not 
a trivial decision to select 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 or 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1 because 
when either one choice achieves the best reliability, the other 
one becomes the least reliable architecture, as seen in (44). 

C. Property under the conditional independence 
In the proposed reliability model, we used the conditional 

diversity parameters such as 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 and 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2�. Although 
they have monotonic relation to 𝛼𝛼𝑏𝑏|𝑎𝑎,2 = 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎], 
their exact values are hard to be inferred from observations. 
Therefore, even if the input data distributions are restricted, as 
discussed in the previous section, it is still difficult to estimate 
how much the selected architecture achieves higher reliability 
than the others. In contrast, when we assume the independence 
of individual ML modules’ outputs, the difference in 
architectures’ reliabilities can be easily computed. In this 
section, we attempt to narrow this gap by introducing the 
assumption of conditional independence [35] between the 
different diversity measures. With the conditional 
independence assumption, the intersection of error spaces can 
be considered independently of the effects of error conjunctions. 
This means 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 = 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎 , 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] becomes 
equal to 𝛼𝛼𝑏𝑏|𝑎𝑎,2 = 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎], since the occurrence of 
the event 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎  does not affect the conditional event 
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]. Assuming that 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] < 1, we can 
also have 

𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2� = 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���, 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] 
= 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���] 

=
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] − 𝛼𝛼𝑏𝑏|𝑎𝑎,2 ⋅ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]

1 − 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] . 
(46)   

The reliability of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 expressed in (1) can be rewritten 
by two diversity-related parameters 𝛼𝛼𝑏𝑏|𝑎𝑎,2 and 𝛽𝛽𝑎𝑎,2|1 as 
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 = 1 − 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ∙ 

�𝛼𝛼𝑏𝑏|𝑎𝑎,2 ∙ 𝛽𝛽𝑎𝑎,2|1 +
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] − 𝛼𝛼𝑏𝑏|𝑎𝑎,2𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]

1 − 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] �1 − 𝛽𝛽𝑎𝑎,2|1�� 

= 1 −
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎]

1 − 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] ⋅ 

�𝛼𝛼𝑏𝑏|𝑎𝑎,2 ∙ �𝛽𝛽𝑎𝑎,2|1 − 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]� + 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] ∙ �1 − 𝛽𝛽𝑎𝑎,2|1��. 
 (47)   

Since the reliabilities of 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2 and 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 can also be 
expressed using these parameters 

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2 = 1 − 𝛼𝛼𝑏𝑏|𝑎𝑎,2 ⋅ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎], 
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 = 1 − 𝛽𝛽𝑎𝑎,2|1 ⋅ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎], (48)   

the reliabilities of these architectures can be directly compared 
under given individual modules’ reliabilities with two 
additional variables 𝛼𝛼𝑏𝑏|𝑎𝑎,2 and 𝛽𝛽𝑎𝑎,2|1. This model corresponds 
to the previous model presented in [2]. From (47) and (48), we 
obtain the next proposition. 

Proposition 5. Assume that the intersection of errors is 
conditionally independent of the conjunction of errors, i.e., 
𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 = 𝛼𝛼𝑏𝑏|𝑎𝑎,2  and 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2� = 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎���] . 
Given the modules’ reliabilities 𝑃𝑃�𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑗𝑗� ∈ (0,1), 𝑖𝑖 =
{1,2}, 𝑗𝑗 = {𝑎𝑎, 𝑏𝑏} , the most reliable architectures among 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 , 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2  and 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  can be determined 
by the following conditions on the values of 𝛼𝛼𝑏𝑏|𝑎𝑎,2 and 𝛽𝛽𝑎𝑎,2|1. 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2, if 𝜔𝜔�𝛼𝛼𝑏𝑏|𝑎𝑎,2,𝛽𝛽𝑎𝑎,2|1� − 𝛼𝛼𝑏𝑏|𝑎𝑎,2 ⋅ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] ≥ 0 and 

𝛽𝛽𝑎𝑎,2|1 ≥ 𝛼𝛼𝑏𝑏|𝑎𝑎,2 ⋅
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ,

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2, if 𝜔𝜔�𝛼𝛼𝑏𝑏|𝑎𝑎,2,𝛽𝛽𝑎𝑎,2|1� − 𝛽𝛽𝑎𝑎,2|1 ⋅ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ≥ 0 and 

𝛽𝛽𝑎𝑎,2|1 ≤ 𝛼𝛼𝑏𝑏|𝑎𝑎,2 ⋅
𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏]
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ,

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2, otherwise.

 

where 

𝜔𝜔�𝛼𝛼𝑏𝑏|𝑎𝑎,2,𝛽𝛽𝑎𝑎,2|1� =
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎]

1 − 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] ⋅ 

�𝛼𝛼𝑏𝑏|𝑎𝑎,2 ∙ �𝛽𝛽𝑎𝑎,2|1 − 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]� + 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] ∙ �1 − 𝛽𝛽𝑎𝑎,2|1��. 
 (49)   

Figure 6 visualizes the reliability differences of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2, 
𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2  and 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  by varying the parameter values 
𝛼𝛼𝑏𝑏|𝑎𝑎,2  and 𝛽𝛽𝑎𝑎,2|1  under given modules’ probabilities 𝑃𝑃[𝑥𝑥1 ∈
𝐸𝐸𝑎𝑎] = 0.1 , 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎] = 0.2  and 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] = 0.3 . The 
difference of architecture’s reliabilities is quantitatively 
comparable when we obtain the estimates of diversity measures 
as well as modules’ error probabilities. 

 
Figure 6. Reliability differences of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2, 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2 and 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2. 

In a similar way, the reliabilities of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1 , 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 
and 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2  can be directly compared by using the two 
variables 𝛼𝛼𝑏𝑏|𝑎𝑎,1  and 𝛽𝛽𝑏𝑏,2|1 . However, to compare all six 
architectures, we need at least four diversity-associated 
variables, such as �𝛼𝛼𝑏𝑏|𝑎𝑎,1,𝛼𝛼𝑏𝑏|𝑎𝑎,2,𝛽𝛽𝑎𝑎,2|1,𝛽𝛽𝑏𝑏,2|1�. 
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V. NUMERICAL EXPERIMENTS 
In this section, we present the results of numerical 

experiments to show the reliabilities of dependent double-
modules double-inputs MLS under hypothetical distribution 
and error functions. We examine that the properties derived 
from our reliability model presented in the previous section give 
the guides to choose the relevant architecture options without 
having complete knowledge of input data distribution and error 
functions.  

A. Hypothetical setting 
For the purpose of the experiments, we extend the domain of 

the joint distribution 𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2) to ℝ2. The two continuous 
random variables 𝑋𝑋1  and 𝑋𝑋2  are assumed to follow 
𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2). We adopt a bivariate normal distribution  

𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2) =
1

2𝜋𝜋𝜎𝜎𝑋𝑋1𝜎𝜎𝑋𝑋2�1 − 𝜌𝜌2
⋅ exp �−

𝑧𝑧
2(1 − 𝜌𝜌2)�, 

where 

𝑧𝑧 =
�𝑥𝑥1 − 𝜆𝜆𝑋𝑋1�

2

𝜎𝜎𝑋𝑋1
2 +

�𝑥𝑥2 − 𝜆𝜆𝑋𝑋2�
2

𝜎𝜎𝑋𝑋2
2 −

2𝜌𝜌�𝑥𝑥1 − 𝜆𝜆𝑋𝑋1��𝑥𝑥2 − 𝜆𝜆𝑋𝑋2�
𝜎𝜎𝑋𝑋1𝜎𝜎𝑋𝑋2

, 

 (50)   
𝜆𝜆𝑋𝑋1 and 𝜆𝜆𝑋𝑋2 are the means, 𝜎𝜎𝑋𝑋1 and 𝜎𝜎𝑋𝑋2 are the variances, and 𝜌𝜌 
is the correlation coefficient of 𝑋𝑋1 and 𝑋𝑋2. The dependence of 
two input data 𝑥𝑥1 and 𝑥𝑥2 can be characterized by the value of 𝜌𝜌. 
The marginal distributions are given by 𝑋𝑋1 ∼ 𝒩𝒩�𝜆𝜆𝑋𝑋1 ,𝜎𝜎𝑋𝑋1

2 � and 
𝑋𝑋2 ∼ 𝒩𝒩�𝜆𝜆𝑋𝑋2 ,𝜎𝜎𝑋𝑋2

2 � , where 𝒩𝒩(𝜆𝜆,𝜎𝜎2)  represents the normal 
distribution with mean 𝜆𝜆  and variance 𝜎𝜎2 . For the sake of 
visualization and reliability computation, we define error input 
spaces for individual ML models 𝑚𝑚𝑎𝑎  and 𝑚𝑚𝑏𝑏  by closed 
intervals on ℝ  as 𝐸𝐸𝑎𝑎 = [𝑒𝑒𝑎𝑎min, 𝑒𝑒𝑎𝑎max]  and 𝐸𝐸𝑏𝑏 = �𝑒𝑒𝑏𝑏min, 𝑒𝑒𝑏𝑏max� . 
An example relation between two different error spaces with a 
joint distribution of two input data can be visualized as shown 
in Figure 7, where the horizontal and vertical axes represent the 
values of 𝑥𝑥1 and 𝑥𝑥2, respectively.  

 
Figure 7. Error input spaces over binormal distribution with 𝜌𝜌 = 0.5. 

The colored regions show the error spaces for 𝑥𝑥1 ∈
[−1.5,0.6], 𝑥𝑥1 ∈ [−0.9,0], 𝑥𝑥2 ∈ [−1.5,0.6]  and 𝑥𝑥2 ∈ [−0.9,0] , 

while the circles represent the counter lines shaped by the 
bivariate normal distribution with the parameters 
�𝜆𝜆𝑋𝑋1 , 𝜆𝜆𝑋𝑋2 ,𝜎𝜎𝑋𝑋1

2 ,𝜎𝜎𝑋𝑋2
2 ,𝜌𝜌� = (1,−1,1.5,1.5,0.5) . Note that the 

above hypothetical distribution and the error function are 
introduced as instances of the general distribution and the error 
function used in the reliability model. The visualization of this 
configuration gives an intuitive view of the interrelation 
between dependent input data and dependent error spaces. For 
example, consider the point (𝑥𝑥1, 𝑥𝑥2) = (−0.1, 2), ML model 
𝑚𝑚𝑏𝑏 outputs error for 𝑥𝑥1, but neither model outputs error for 𝑥𝑥2. 
The probability density of such a case can be given by 
𝜇𝜇𝑋𝑋1,𝑋𝑋2(−0.1, 2) . The probability of error output by an ML 
module can be computed by integrating the probability density 
of the corresponding input data and the error space. For 
example, the probability of 𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎 is given by 

𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] = �𝑓𝑓𝑎𝑎(𝑥𝑥1)𝑑𝑑𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2) = �𝑓𝑓𝑎𝑎(𝑥𝑥1)𝑑𝑑𝜇𝜇𝑋𝑋1(𝑥𝑥1) 

= � 𝜇𝜇𝑋𝑋1(𝑥𝑥1)𝑑𝑑𝑥𝑥1
𝑒𝑒𝑎𝑎max

𝑒𝑒𝑎𝑎min
. (51)   

B. Baseline comparison 
The benefit of the proposed dependent double-modules 

double-inputs MLS can be measured by the improved reliability 
compared with the MLS relying on a single module. The 
reliability can also be improved by adopting a simple 
redundancy scheme without using different sensor inputs, 
which corresponds to DMSI architectures in our study. Table I 
shows the reliabilities achieved by the different architectures, 
when we set �𝜆𝜆𝑋𝑋1 , 𝜆𝜆𝑋𝑋2 ,𝜎𝜎𝑋𝑋1

2 ,𝜎𝜎𝑋𝑋2
2 ,𝜌𝜌� = (1,−1,1.5,1.5,0) , 𝐸𝐸𝑎𝑎 =

[−0.4,0.1], 𝐸𝐸𝑏𝑏 = [0,0.5]. 

TABLE I.  RELIABILITY IMPROVEMENT BY DIFFERENT ARCHITECTURES 

Category Architecture Reliability 
Single model single input 𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎,1 0.901071 
 𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎,2 0.887099 
 𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷𝑏𝑏,1 0.883051 
 𝑆𝑆𝐷𝐷𝑆𝑆𝐷𝐷𝑏𝑏,2 0.906163 
Single model double inputs 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 0.988831 
 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2 0.989026 
Double models single input 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 0.978239 
 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2 0.979185 
Double models double inputs 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 0.990717 
 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1 0.986796 
 
We observe that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 achieves the highest reliability 

among other architecture options. In Table I, 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2  is 
0.990717 that is higher than 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1  and 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2 .  The 
results clearly show that the reliability of conventional DMSI 
systems can be further improved by exploiting two input data. 
In the following, we further investigate the impact of diversities.  

C. Architecture comparison by varying input similarity 
To analyze the impact of input similarity, next, we vary the 

correlation coefficient 𝜌𝜌 in the range of [-0.9,0.9] while keeping 
other parameters the same as the previous example. The 
dependency of two input data distributions resulting from 
𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2)  can be characterized by the correlation 
coefficient 𝜌𝜌. When |𝜌𝜌| is close to 1, 𝑋𝑋1 has a strong positive or 
negative correlation with 𝑋𝑋2.  
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Figure 8. Reliabilities of six architectures by varying 𝜌𝜌. 

The computed reliabilities of the six architectures are shown 
in Figure 8. As can be seen, the reliabilities of DMDI and SMDI 
architectures are affected by changing the values of 𝜌𝜌, while the 
reliabilities of DMSI architectures are not affected. The results 
make sense because DMSI architecture does not use multiple 
input data. Hence the correlation of different input data does not 
influence their reliabilities. Interestingly, DMSI architectures 
achieve the highest reliabilities when 𝜌𝜌 is close to −1 among 
the six architectures while they become the least reliabilities 
when 𝜌𝜌 > −0.7 . In most of the range, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2  is 
considered as the best architecture in terms of reliability. 

In practice, we do not know the exact distribution 
𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2) or error input spaces 𝐸𝐸𝑎𝑎 and 𝐸𝐸𝑏𝑏 . The comparative 
results of architecture reliabilities shown in Figure 8 are not 
obtainable from the real observation. However, the preferable 
architectures can be inferred partly from Proposition 4, since, 
under the given distribution and the error spaces, we can expect 
𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑎𝑎]  and 𝑃𝑃[𝑥𝑥2 ∈ 𝐸𝐸𝑏𝑏] ≤ 𝑃𝑃[𝑥𝑥1 ∈ 𝐸𝐸𝑏𝑏]  are 
likely hold. When we observe that the above relations are 
generally held in the target application, by Proposition 4, either 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 , 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  or 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑏𝑏,1∩2  can be selected as the 
preferable architectures. 

We investigate the influence of the conjunction of errors 
𝛽𝛽𝑎𝑎,2|1 and 𝛽𝛽𝑏𝑏,2|1. The value of 𝜌𝜌 is associated with the values of 
𝛽𝛽𝑎𝑎,2|1 and 𝛽𝛽𝑏𝑏,2|1. When error spaces and input data distribution 
are given, the diversity measure can be computed by 
𝛽𝛽𝑗𝑗,2|1 = Pr�𝑥𝑥2 ∈ 𝐸𝐸𝑗𝑗|𝑥𝑥1 ∈ 𝐸𝐸𝑗𝑗� 

=
∫ ∫ 𝜇𝜇𝑋𝑋1,𝑋𝑋2(𝑥𝑥1, 𝑥𝑥2)𝑑𝑑𝑥𝑥2

𝑒𝑒𝑗𝑗
max

𝑒𝑒𝑗𝑗
min 𝑑𝑑𝑥𝑥1

𝑒𝑒𝑗𝑗
max

𝑒𝑒𝑗𝑗
min

∫ 𝜇𝜇𝑋𝑋1(𝑥𝑥1)𝑑𝑑𝑥𝑥1
𝑒𝑒𝑗𝑗
max

𝑒𝑒𝑗𝑗
min

, 𝑗𝑗 = 𝑎𝑎, 𝑏𝑏. 
(52)   

 
Figure 9. Values of input diversities by varying 𝜌𝜌. 

By varying the value of 𝜌𝜌, the values of 𝛽𝛽𝑎𝑎,2|1 and 𝛽𝛽𝑏𝑏,2|1 change 
as plotted in Figure 9. As can be seen, there are negative 
correlations between them. The higher 𝜌𝜌 leads to the smaller 
𝛽𝛽𝑎𝑎,2|1 and 𝛽𝛽𝑎𝑎,1|2, resulting in the higher reliabilities of DMDI 
and SMDI architectures. From Proposition 1, the conditions 
where the reliability of 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  becomes lower than the 
reliabilities of DMSI and DMDI architectures are given by 
𝑩𝑩𝑎𝑎
+⊤ > 𝑨𝑨𝑏𝑏|𝑎𝑎 ⋅ 𝑩𝑩𝑎𝑎

⊤ . For 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1  and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 , the 
conditions on 𝛽𝛽𝑎𝑎,2|1 are given by; 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 < 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 ⇔

   𝛽𝛽𝑎𝑎,2|1 >
𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2�

1 − 𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2 + 𝛼𝛼𝑏𝑏,1|𝑎𝑎,1∩2�
�= 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 bound�,

𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 < 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 ⇔

   𝛽𝛽𝑎𝑎,2|1 >
𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2�

1 − 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2 + 𝛼𝛼𝑏𝑏,2|𝑎𝑎,1∩2�
�= 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 bound�.

 

 (53)   
Figure 10 plots the values of the above bounds together with 
𝛽𝛽𝑎𝑎,2|1 by varying 𝜌𝜌. 

 
Figure 10. Bounds of 𝛽𝛽𝑎𝑎,2|1 for DMSI and DMDI architectures. 

𝛽𝛽𝑎𝑎,2|1 is constantly larger than 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 bound  regardless 
of 𝜌𝜌, which means 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 is always a better choice than 
𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 . On the other hand, 𝛽𝛽𝑎𝑎,2|1  is smaller than 
𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 bound in most of the range of 𝜌𝜌 (≥ −0.8), which 
indicates that 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2  is the better choice than 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 
unless 𝛽𝛽𝑎𝑎,2|1 tends to be large. 

D. Architecture comparison by varying model similarity 
Next, we investigate the effects of dependency between two 

ML models that have different error spaces. In this experiment, 
we fix the parameters of bivariate normal distribution 
�𝜆𝜆𝑋𝑋1 , 𝜆𝜆𝑋𝑋2 ,𝜎𝜎𝑋𝑋1

2 ,𝜎𝜎𝑋𝑋2
2 ,𝜌𝜌� = (1,−1,1.5,1.5,0.5) and the error space 

𝐸𝐸𝑏𝑏 = [0,0.5] . The other error space is given by 𝐸𝐸𝑎𝑎 =
[𝑒𝑒𝑎𝑎min, 𝑒𝑒𝑎𝑎min + 0.5]  where 𝑒𝑒𝑎𝑎min  is varying in the range of [-
0.5,0]. Figure 11 shows 𝐸𝐸𝑎𝑎 and 𝐸𝐸𝑏𝑏  in the interval [-0.5, 0.5]. 

 
Figure 11. The intersection of errors between 𝑬𝑬𝒂𝒂 and 𝑬𝑬𝒃𝒃. 

0-0.5 0.5
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When 𝑒𝑒𝑎𝑎min = −0.5, there is no intersection between 𝐸𝐸𝑎𝑎 and 𝐸𝐸𝑏𝑏 , 
and thus the value of model similarity is equal to zero. On the 
other hand, when 𝑒𝑒𝑎𝑎min = 0, 𝐸𝐸𝑎𝑎  becomes identical to 𝐸𝐸𝑏𝑏 , and 
hence the value of model similarity becomes one. Figure 12 
shows the reliabilities of the six different architectures by 
varying the value of 𝑒𝑒𝑎𝑎min. 

 
Figure 12. Reliabilities of six architectures by varying 𝑒𝑒𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚. 

As can be seen, the reliabilities of both DMSI architectures 
decrease by increasing the values of 𝑒𝑒𝑎𝑎min, while the reliabilities 
of SMDI and DMDI architectures are not much affected. Since 
the intersection of error spaces between 𝐸𝐸𝑎𝑎 and 𝐸𝐸𝑏𝑏  increases by 
the increase in 𝑒𝑒𝑎𝑎min , the error probabilities of DMSI 
architectures also increase accordingly. When 𝑒𝑒𝑎𝑎min is close to 
−0.5, the intersection over 𝐸𝐸𝑏𝑏  becomes extremely small, and 
then DMSI architectures achieve the highest reliabilities. In 
most of the range, however, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 achieves the highest 
reliability among the six architectures. Regardless of the 
position of 𝐸𝐸𝑎𝑎, the condition of Proposition 4 is likely to hold. 
Thus, by Proposition 4, we can infer that 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 or SMDI 
architectures are preferable, even if we do not know the exact 
distribution of input data or the error input spaces. 

We investigate the influence of the intersection of errors 
𝛼𝛼𝑏𝑏|𝑎𝑎,1  and 𝛼𝛼𝑏𝑏|𝑎𝑎,2  in this experimental setting. For the given 
input data distributions and the error spaces 𝐸𝐸𝑏𝑏 = [0,0.5] and 
𝐸𝐸𝑎𝑎 = [𝑒𝑒𝑎𝑎min, 𝑒𝑒𝑎𝑎min + 0.5] where 𝑒𝑒𝑎𝑎min = [−0.5,0], the diversity 
measures can be computed by  

𝛼𝛼𝑏𝑏|𝑎𝑎,𝑖𝑖 = Pr[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑏𝑏|𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎] 

=
∫ 𝜇𝜇𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖)𝑑𝑑𝑥𝑥𝑖𝑖
𝑒𝑒𝑎𝑎min+0.5
𝑒𝑒𝑏𝑏
min

∫ 𝜇𝜇𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖)𝑑𝑑𝑥𝑥𝑖𝑖
𝑒𝑒𝑎𝑎min+0.5
𝑒𝑒𝑎𝑎min

, 𝑖𝑖 = 1,2. 
(54)   

 
Figure 13. Values of model diversities by varying 𝑒𝑒𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚. 

By varying the value of 𝑒𝑒𝑎𝑎min, the values of  𝛼𝛼𝑏𝑏|𝑎𝑎,1 and 𝛼𝛼𝑏𝑏|𝑎𝑎,2 
change as shown in Figure 13. As expected, we can observe 
both 𝛼𝛼𝑏𝑏|𝑎𝑎,1  and 𝛼𝛼𝑏𝑏|𝑎𝑎,2  have positive correlations with 𝑒𝑒𝑎𝑎min , 
resulting in the lower reliabilities of DMSI architectures. 
Therefore, when we observe large values of 𝛼𝛼𝑏𝑏|𝑎𝑎,1 or 𝛼𝛼𝑏𝑏|𝑎𝑎,2, by 
the variant of Proposition 1, DMSI architectures are unlikely 
the appropriate architecture options in terms of reliability. 

E. Special distribution case 
For an instance of the restricted type of distribution discussed 

in Section IV-B, we consider the case where errors in 𝐸𝐸𝑏𝑏  occur 
more frequently than errors in 𝐸𝐸𝑎𝑎, and examine Proposition 3. 
Consider the bivariate normal distribution with the parameters 
�𝜆𝜆𝑋𝑋1 , 𝜆𝜆𝑋𝑋2 ,𝜎𝜎𝑋𝑋1

2 ,𝜎𝜎𝑋𝑋2
2 � = (0,0,1.5,1.5). Regardless of the value of 

correlation coefficient 𝜌𝜌, the marginal distribution is given by 
𝒩𝒩(0,1.5) . When we fix the error spaces 𝐸𝐸𝑎𝑎 = [−1.4,−0.9] 
and 𝐸𝐸𝑏𝑏 = [−1.0,−0.5] , it satisfies 𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑏𝑏] 
for most of input data 𝑥𝑥𝑖𝑖 that follows the input data distribution 
𝒩𝒩(0,1.5). The intuition of this relation can be given in Figure 
14, as we can see that the region of 𝐸𝐸𝑏𝑏  is always closer to the 
peak of probability density at (0.0) than the region of 𝐸𝐸𝑎𝑎.  

From Proposition 3, the most reliable architecture is either 
𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2, 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1 or 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,2 depending on the values 
of 𝛼𝛼𝑏𝑏|𝑎𝑎,1  and 𝛼𝛼𝑏𝑏|𝑎𝑎,2 . Since the given bivariate normal 
distribution has symmetry in marginal distributions, the 
condition can be simplified as 

�
𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1,  𝛼𝛼𝑏𝑏|𝑎𝑎,1 ≤

𝛽𝛽𝑎𝑎,2|𝑎𝑎∩𝑏𝑏� ,1

1 − 𝛽𝛽𝑎𝑎,2|𝑎𝑎∩𝑏𝑏,1 + 𝛽𝛽𝑎𝑎,2|𝑎𝑎∩𝑏𝑏� ,1
,

𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2, otherwise.
 (55)   

 

 
Figure 14. An example of error spaces satisfying 𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑎𝑎] ≤ 𝑃𝑃[𝑥𝑥𝑖𝑖 ∈ 𝐸𝐸𝑏𝑏]. 

Figure 15 shows the architecture reliabilities directly 
computed from the given distribution by varying 𝜌𝜌 in the rage 
of [−0.9,0.9]. Due to the symmetry marginal distributions, we 
can observe 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,1 = 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎∩𝑏𝑏,2  and 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩𝑏𝑏,2 =
𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,2∩𝑏𝑏,1. In the most of range of 𝜌𝜌, 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 achieves the 
highest reliability. 

x1

x2
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Figure 15. Reliabilities of different architectures by varying 𝜌𝜌. 

Figure 16 plots the 𝛼𝛼𝑏𝑏|𝑎𝑎,1 and the boundary condition given 
by Proposition 3. 

 
Figure 16. Bounds of 𝛼𝛼𝑏𝑏|𝑎𝑎,1 for DMSI architectures. 

The value of 𝛼𝛼𝑏𝑏|𝑎𝑎,1 becomes lower than the boundary when 𝜌𝜌 =
0.9,  at which 𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷𝑎𝑎∩𝑏𝑏,1  achieves higher reliability than 
𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 as observed in Figure 15. The result confirms the 
condition of Proposition 3. Unless we are confident that  𝛼𝛼𝑏𝑏|𝑎𝑎,1 
is very small value from empirical observation,  𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎,1∩2 can 
be chosen as the preferable architecture option. 
Remark. The bivariate normal distribution and the error spaces 
used in the above example help to visualize the dependence of 
error input space over the joint distributions of dependent two 
input data as shown in Figure 7. Note that the properties 
examined in this section are not limited to the above 
hypothetical setting since we derived them theoretically in 
Section IV. 

VI. APPLICATION AND LIMITATION 
As presented in the motivating example, the potential 

application of the proposed dependent double-modules double-
inputs MLS is a perception system in a self-driving vehicle. For 
example, traffic signal recognition is one of the important 
perception tasks in autonomous vehicle architecture [39]. A 
common approach to exploiting redundant architecture for 
improved reliability relies on modular redundancy, 
corresponding to DMSI architectures in this paper. Our study 
analytically clarified how reliability could be further improved 
by the architectures using diverse inputs. In the self-driving 
vehicle scenario, the system may be equipped with multiple 
cameras, and hence the system can adopt SMDI and DMDI 
architectures.  

The experiment results show that our reliability model and the 
derived properties provide guides to choosing the preferable 
architecture options based on the diversity measures. However, 
to determine the best architecture option, finding the values of 
diversity measures is necessary. In practice, we may need to 
rely on empirical estimates of the diversity measures from the 
limited samples that are subject to estimation errors. Although 
finding the best architecture option is not always easy, our 
reliability model can be useful for selecting the preferable 
architectures by screening undesirable architecture options. For 
instance, consider the traffic signal recognition scenario in 
Section II-A. We can train multiple ML models independently 
and test them with real-world test samples. ML models can be 
ranked by the test accuracy that provides information about the 
model's superiority. In this case, SMDI architecture relying on 
a lower-ranked model is not a recommendable option, and thus 
they can be removed from the candidates. From Proposition 3, 
we can narrow down the candidates to SMDI with the best-
ranked model or DMSI using the top two-ranked models. 
Suppose errors from the top two-ranked models are mostly 
overlapped, indicating a higher intersection of errors between 
the two models. In that case, SMDI with the best-ranked model 
is presumed to be the best option by Proposition 3.   

The presented models are limited to two-version architectures. 
The reliability can be further improved by increasing the 
redundancy (e.g., using three or more versions). The reliability 
models with three or more versions of ML systems need to be 
considered in that case. However, real-world application 
systems such as autonomous vehicles may have stringent cost 
and latency requirements that may not allow extra redundancy. 
When the redundancy level is limited to two due to cost or 
performance constraints, the guidelines derived from our 
analysis are useful.  

VII. RELATED WORK 
MLS quality assurance has recently become a hot issue in 

software and system engineering research. MLS is 
fundamentally built as a software system, and therefore 
developers of MLS apply and improve the traditional software 
engineering methodologies to assure the quality of ML 
application systems [14]. In this regard, machine learning 
testing is one of the important challenges actively discussed 
today [10]. Compared to traditional software testing, MLS 
testing needs to deal with an oracle problem [19]. The correct 
output for arbitrary input is not given when testing an MLS. The 
software systems without reliable test oracle are known as non-
testable programs [20]. To address the oracle issue of MLS, 
Murphy and Kaiser [21] presented a metamorphic testing 
approach in which a pseudo-oracle [22] for new test cases is 
created by modifying the inputs used in the initial test cases. 
Metamorphic testing has been recently applied for testing 
image classifiers [15], a deep learning-based forecaster [16], 
and graph convolutional neural networks [17]. Further recent 
advances in ML testing techniques are reviewed in a 
comprehensive survey report [23]. Our study is not an MLS 
testing method, but the presented architecture reliability 
analysis can complement developing highly reliable MLSs. 
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Another important technical challenge in MLS quality 
management is the runtime validation of MLS execution. Even 
if an MLS passes reasonably designed test scenarios, the 
outputs of MLS are significantly influenced by real input data 
given in users' environments. The discrepancy between the 
assumed input data in the development phase and the real input 
data observed in the operation phase likely causes undesirable 
outputs at runtime. Wu et al. leveraged the data validation 
technique to detect real-world corner cases for DNN-based 
systems [24]. Considering a cyber-physical system employs 
ML components, Dreossi et al. proposed a method to analyze 
the input space for ML classifiers that can lead to undesirable 
consequences in the cyber-physical system [25]. While we also 
consider the operational phase of MLS, our focus is not on 
validation but evaluation of reliability by N-version MLS. 

Redundant configurations of ML components can improve 
the reliability of MLS. N-version machine learning has been 
presented to improve the reliability of MLS’s outputs [2]. The 
relationship between the reliability of N-version MLS and the 
diversities in ML models and input data has been analyzed in 
our previous study [2]. The experimental studies also showed 
that the coverage of errors could be improved by using diverse 
ML models and different input data sets [6]. Similar 
experiments have been done by Xu et al. in which N-version 
deep neural networks are used to complement individual error 
cases and make a fault-tolerant system [5]. A Multi-version 
approach has also been used for ML applications using deep 
neural networks to make more robust steering control in an 
autonomous vehicle [26]. PolygraphMR also introduced 
modular redundancy to reduce wrong answers with high 
confidence [18]. In this paper, extending the diversity measures 
introduced in [2], we present more comprehensive and general 
reliability models. To the best of our knowledge, our study is 
the first work to show the reliability properties of dependent 
double-modules double-inputs MLS via diversity measures. 

Using multiple learners to compose a better ML model is a 
commonly adopted ML technique known as the ensemble 
method [27]. Ensemble methods are also shown to be effective 
in improving the ML model's reliability against faults in the 
training data sets [42]. To obtain a better ensemble, individual 
learners should have differences among them. It is studied that 
the minimum margin of the ensemble is associated with the 
diversity among the individual learners [28]. Several diversity 
measures were proposed to analyze the association with the 
accuracy of ensemble methods [29][30][31][32]. Although 
diversity is believed to play a fundamental role in ensemble 
accuracy, the right formulation and measures for diversity are 
unsolved issues [33]. Empirical studies show that diverse ML 
models can be constructed by using different data sets, 
sampling methods, training algorithms, and neural network 
architectures [5][6][34]. While the similarity metrics such as the  
Bhattacharyya coefficient [40] and the Fréchet distance [41] 
can be used for measuring the distance between two input data 
distributions,  the reliability cannot be characterized without the 
error function and the joint distribution of two input. In this 
paper, we focus on the reliability of MLS outputs that are 
directly related to the accuracies of individual ML models used 

in the system. While highly accurate ML models likely improve 
the reliability of MLS, it is valid only when real input data 
distributions follow the assumption or expectation. Instead of 
the accuracy of the ML model, we discuss the reliability of MLS 
attributed to redundant configurations that consist of different 
input data and ML models. Since both input data sets and ML 
models are not independent, we cannot formulate the problem 
by a simple combinatorial logic and similarity metrics for 
distributions, which is the challenge addressed in this paper. 

VIII. CONCLUSION 
This paper proposed the reliability model for an N-version 

MLS that employs two ML modules for classification tasks and 
determines the system output on a consensus basis. The system 
has six architecture options depending on the choice of input 
data and ML models used in the modules. We defined two 
diversity measures to quantify the similarities of ML models’ 
capabilities and the interdependence of errors by input data sets. 
The diversity measures are used to formulate the reliabilities of 
six different architectures. With the proposed matrix 
representation of the reliability model, we showed some 
properties that can guide the choice of preferable architecture 
when given individual ML models’ reliabilities and diversity 
measures. Among possible architectures, DMDI architecture, 
which exploits both model diversity and input diversity, can be 
regarded as a neutral and a conservative option since the values 
of diversity measures are unlikely to be close to zero or one in 
practice. We also presented the numerical results to give an 
intuitive understanding of our proposed models and properties.  

A future study could explore extending the reliability model 
to multi-modules multi-inputs MLS. This paper focuses on a 
dependent double-modules double-inputs MLS that can be a 
building block of a larger N-version system. Another important 
future research direction is the validation of the models with 
real-world datasets. Our previous work also presented some 
experimental results that show two potential ways to diversify 
the outputs of redundant MLS [6]. Because the input data 
distributions and error spaces are hard to obtain empirically, 
future studies are required to narrow the gap between the 
limited empirical results and the theoretically derived properties. 
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