
Performance Analysis of Machine Learning-Based
Systems for Detecting Deforestation

1st Michel de Araújo
Department of Computing

Federal Rural University of Pernambuco
Recife, Brazil

michel.arruda@ufrpe.br

2nd Ermeson Andrade
Department of Computing

Federal Rural University of Pernambuco
Recife, Brazil

ermeson.andrade@ufrpe.br

3rd Fumio Machida
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

machida@cs.tsukuba.ac.jp

Abstract—Remote monitoring has become an important tool
for recognizing land and ground objects through sensor data
analysis. The use of Machine Learning (ML) algorithms for
classification of remote monitoring images has increased in recent
years. ML-based image classifiers have played an important
role in detecting deforestation, illegal mining or fire. However,
the precise classification of land use is a huge challenging
task, especially in remote tropical regions, due to the complex
biophysical environment and the limitations of the remote mon-
itoring infrastructure. This work aims at studying the trade-offs
between performance and accuracy of classification systems for
the Brazilian Amazon rainforest, taking into account different
computing platforms (server and edge), ML algorithms and
images sizes. Although there is a direct relationship between
image accuracy and quality, our experimental study shows that it
is possible to use low-cost computational environments to perform
image classification. The results indicate that Amazon rainforest
can be monitored with affordable computing resources such as
drones.

Index Terms—Performance, Machine Learning, Deforestation

I. INTRODUCTION

The use of Remote Sensing (RS) has become crucial for
various application areas, such as urban recognition and en-
vironmental protection. The Amazon rainforest, for example,
which is a symbol of biodiversity and also known as the lungs
of the world, depends a lot on RS due to its vast territory [1].
Since the 1990s, the Brazilian government’s INPE (National
Institute of Space Research) together with international re-
search institutions, such as United States Geological Survey
(USGS) and National Aeronautics and Space Administration
(NASA), have developed RS policies in the Amazon rainforest
aiming to map the use of this vast territory [1]. The use
includes housing, family farming, legal and illegal mining
and deforestation. Several algorithms, specifically those in the
Computer Vision (CV) and Pattern Recognition (PR) fields,
have been successfully developed to classify satellites images
such as Landsat 8 OLI (Operational and Land Imager) and
MODIS (Moderate Resolution Imaging Spectroradiometer).

Generally, the RS is carried out as follows. Geospatial
satellites take pictures of areas of interest over a period of time.
Then, the images are sent to remote servers, so that specialized
professionals analyze the images in search of changes, such as
new deforestation, fires, illegal mining, among others [2]. This

approach can be very time-consuming because it requires a
lot of manual work and attention from the professionals. Over
the years, several new approaches have been proposed for RS.
For instance, Maretto [2] proposed an autonomous process for
detecting Land Use and Land Cover (LULC) through Deep
Learning (DL) algorithms, such as CNN (Convolutional Neu-
ral Network) and its variations. That work represents a great
advance for the environmental protection, since images can be
analyzed automatically by computers with almost human-like
accuracy. Nevertheless, a major disadvantage of this approach
is the size of the pictures taken by satellites, which are
typically very large [3]. Consequently, it requires servers with
high computational power to process DL algorithms which
results in an expensive solution.

As Brazilian forests are vast, and the scale and intensity at
which illegal deforestation occur grows every year [4], it is
necessary to use tools capable of responding quickly to these
situations. Drone-based surveillance systems have been used
for that purpose [5]. With edge computing capabilities, drones
are a viable alternative for executing operations to combat il-
legal activities in the Amazon basin. Additionally, drones have
some advantages over traditional satellite monitoring system,
such as (i) drones are much cheaper and more accessible, (ii)
they are easy to use, (iii) drones can visit an area multiple
times a day, and (iv) images taken by a drone do not suffer
from the presence of clouds. However, the performance trade-
offs of using DL algorithms for detecting deforestation in these
edge-based platforms need to be investigated.

Several works have demonstrated the effectiveness of ML
algorithms for LULC and other image classification problems
[6]. However, to the best of our knowledge, none of the
existing works has considered the differences in performance
of these algorithms on edge and server platforms. Thus, this
work aims to study the trade-offs between performance and
accuracy of ML classification systems for detecting deforesta-
tion considering these platforms. More specifically, we exper-
imentally investigate the impacts of image sizes (8x8, 16x16,
32x32, 64x64, and 128x128) and ML algorithms (k-NN (K-
Nearest Neighbour), RF (Random Forests) and CNN) on the
accuracy and performance of edge and server platforms. Our
results reveal two important insights. First, the classification
time on the edge platform can be almost twice as long as



on the server platform due to its lower processing power.
Specifically for the CNN algorithm, the classification time
was of 0.123 seconds for the edge and 0.07 seconds for the
server, respectively. On the other hand, for the RF and k-NN
algorithms, the difference is negligible. Second, even reducing
the size of the images, it is still possible to obtain a good
accuracy for detecting deforestation. For CNN, for example,
an average accuracy of approximately 0.92 was obtained for
the 32x32 image size and 0.95 for the 64x64 size. We hope
this work can provide low-cost surveillance options that can
be used in developing regions with little access to capital (e.g.:
indigenous community).

The remainder of the paper is organized as follows. Section
II presents the related work. Section III introduces fundamental
concepts adopted in the paper. Section IV describes the pro-
posed approach. Section V describes the experimental results.
Finally, the Section VI presents the conclusions and briefly
introduces the future work.

II. RELATED WORKS

The use of ML for detecting deforestation is a relatively new
topic that has attracted the attention of researchers. In [7], a
detailed survey on the different ML algorithms for detecting
deforestation is presented. To position our paper and indicate
its contributions, we first summarize some related work that
has been done in the classification of satellite images. Next,
we discuss the related work with respect to drone applications.
Lastly, we provide a comparison of our work in relation to the
existing works in terms of context and evaluation.

Several techniques for classification of satellite images have
been developed in recent years. L. Zhang, L. Zhang, and B.
Du [8] showed the advantages of using RS and how DL
algorithms can be combined with satellite images to extract
value. Besides, the authors provided a technical explanation of
CNN, autoencoder, Restricted Boltzmann Machines (RBM),
and sparse coding algorithms, in addition to illustrating all
the basic processes of using DL techniques for RS. Zhu et
al. [9] performed an extensive review on the use of DL in
RS images. They explained a greater variety of algorithms
and how different spectral bands are used to perform different
classification tasks in RS images such as target detection,
semantic segmentation and pixel-wise classification.

Recently, drone-based systems have been used for image
classification. In [10], H. Hildmann and E. Kovacs presented
a review of the use of systems based on unmanned aerial vehi-
cles (UAVs) for activities related to safety, such as immediate
response to disasters and public and civil security. Peneque-
Gálvez et al. [5] conducted a feasibility study on the use of
drones by communities to monitor local deforestation. The
work showed the benefits not only for the community itself,
but also for partner organizations and the general public.

Considering the works available in the literature, none of the
studies aimed at evaluating the performance of server and edge
environments in the context of deforestation monitoring. In
addition, this work aims to evaluate various machine learning
algorithms developed for detecting deforestation in order to

explore the trade-offs between performance and accuracy. As
the computational resources required to run ML algorithms
varies widely, we also investigate the performance impacts of
these algorithms deployed in server and edge platforms.

III. BACKGROUND

A. Deforestation
Brazil has the largest tropical forest in the world with an

area of approximately five million square kilometers. This
forest is home to the richest biodiversity of any ecosystem on
the planet. Nevertheless, the rate of deforestation in Brazilian
tropical forests is among the highest globally. According to
INPE, 2,254 square kilometres of tropical forest were removed
from July 2018 to July 2019, an increase of 278% over one
year [11]. Deforestation is becoming a global problem with
extensive environmental and economic consequences, since
it reduces biodiversity, impacts on climate change by CO2
emission, and breaks up indigenous communities [12].

B. Remote sensing (RS)
RS is a way of acquiring, processing, and interpreting

images and related data obtained from aircraft, satellites or
drones [13]. It has been used for many decades. The advan-
tages of RS include the ability to collect information over large
spatial areas, to identify natural features or physical objects
on the ground, to observe objects or areas on a systematic
basis, among others [8]. In the context of deforestation, remote
sensing is carried out using Satellite or drone-based systems.
Satellite or drone-based systems can cover areas that are
difficult to access, dangerous for humans or environmentally
sensitive. It can also identify where mining, new agriculture
fields, or other deforestation have replaced native forest and
serve as evidence for authorities to take actions against vio-
lators. It is worth to highlight, however, that different from
tradition satellite imagery, drones can obtain high-resolution
images from cloudy areas and do not have to wait for satellites
to pass over the monitoring area.

C. ML techniques for detecting deforestation
Machine Learning is a field of Artificial Intelligence. It

consists of algorithms that allow the machine to learn from
data, without being explicitly programmed. There are a good
number of ML techniques for detecting deforestation, such as
Support Vector Machine (SVM), CNN, Siamese Convolutional
Network (S-CNN), among others. SVM is one of the most
popular supervised machine learning algorithm used in image
classification systems because it performs well when the data
set has few labeled samples [14]. Random Forest methods
[15] are also commonly used in image classification tasks.
However, when it comes to accuracy, Deep Learning, which
is a class of machine learning algorithms, is the choice. It can
learn by employing several layers of neural networks, resulting
in a much better overall accuracy. As DL algorithms are much
more complex and typically require much more data to deliver
better predictions, they require more computational resources
to be trained and executed. Consequently, they might not be
a good fit for edge-based environments like drones.



IV. EXPERIMENTAL METHODS

A. Data structure

In this paper, a dataset from a 2017 Kaggle competition
called Planet: Understanding the Amazon from Space was
used. The objective of this competition was to label around
40000 images from Brazilian rainforest and build algorithms to
classify these images with respect to the land use. The dataset
consists of 40479 jpg images with the size of 256x256 pixels.
They are classified according to 17 different labels and each
image can have more than one label - thus being a multi-label
classification problem, as shown in Figures 1 and 2 and Table
I. For more information concerning the meaning of each of the
labels, the reader should refer to [16]. The dataset was divided
into a ratio of 80:10:10, where 80% was used for training, 10%
for test and 10% for validation. Library Scikit-Learn version
0.20.0 and TensorFlow version 2.2.0 were used for creating
and executing the models.

TABLE I
IMAGES NAMES AND ITS POSSIBLE LABELS.

Image name labels
train 0 haze, primary
train 1 agriculture, clear, primary, water
train 2 clear, primary
train 3 clear, primary
train 4 agriculture, clear, habitation, primary, road

B. Platforms

For the experiments, we adopted two platforms for the
classification task: a server platform and an edge platform.
As satellite images are, usually, sent to a remote server
for processing, we adopted initially a server platform for
the classification task. On the other hand, drone-based sys-
tems perform its classification task locally. Consequently, we
adopted an edge computing platform for the drone using a
Raspberry Pi model 4. The settings for the adopted platforms
are detailed in Table II.

TABLE II
ADOPTED PLATFORMS.

Conf. Server Edge
CPU Intel i5 4°Gen Cortex-A72

2.4 GHz Dual core 1.5 GHz Quad core
8 MB Cache 1 MB Cache

RAM Memory 8Gb DDR3 1300 Mhz 4Gb DDR3 2400 MHz
Disk Storage 500Gb HD 16Gb SD card

GPU Intel HD 4400 Broadcom VideoCore IV 400MHz

C. ML algorithms

Two ML and one DL algorithms were adopted to perform
the classification task, which are k-NN, RF and CNN. The
k-NN, which is the most basic one, was trained using several
numbers of closest neighbors, in order to find the best one for
each image size. k-NN is a peculiar algorithm for our problem
in question because to classify a new image it loads the entire
training set into memory and then performs the comparison

one by one. Thus, we anticipate it might not be suitable for
the edge platform, which has limited computational resources.

The second algorithm adopted was the RF. Despite the
fact that the RF do not have high capacity for abstraction
of characteristics, it has been widely used for classification
of remote monitoring images. We conducted the training and
classification by varying the number of trees (n trees=100 and
n trees=500) in order to study the trade-offs between accuracy
and performance.

The third algorithm adopted in our analysis is a well known
algorithm in the field of Computer Vision called CNN. This
algorithm has high image classification capability and various
configurations. In this work, we adopted a CNN composed of
3 blocks with 2 convolution layers followed by a 2x2 Max-
pooling. We chose this architecture because it is a well known
architecture and particularly easy to use and understand. Note
that DL algorithms are generally highly complex and carry a
lot of information due to their high level of feature abstraction.
Consequently, the impact on the performance of this type of
algorithm is important to be studied, especially for edge-based
platforms.

As edge platforms are resource-constrained platform, all
algorithms were trained considering different image sizes
in order to analyze the trade-offs between image size and
accuracy. Thus, the images were reduced from their original
size to sizes of 128x128, 64x64, 32x32, 16x16 and 8x8. It
is worth to highlight that the algorithms were trained on the
server platform, but the classifications were performed on both
server and edge platforms.

D. Execution of the experiments

Two testbeds were implemented for the experiments: i) a
server testbed and ii) an edge testbed. The server testbed
consists of a server executing the image classification models
(k-NN, RF and CNN) for all the image sizes (8x8, 16x16,
32x32, 64x64, and 128x128). That is, for each model, all the
images of the validation dataset were classified considering
the image sizes of 8x8, 16x16, 32x32, 64x64, and 128x128.
After that, the average classification time was calculated.
We also obtained the confusion matrix for each of these
classifications in order to evaluate the models, as explained
in the next subsection. Similar to the server testbed, the edge
testbed consists of an edge computer that executes the same
image classification models for all the image sizes. Finally, we
remark that we only computed the average classification times
for the edge testbed, since the edge platform is no suitable for
training models due to its lack of computational resources.

E. Evaluation of the models

Since we consider a multi-label classification problem for
the data, we evaluated the models by Accuracy, precision, re-
call and F1 score [17]. Accuracy is the most intuitive measure
and it is simply a ratio of correctly predicted observations
to the total observations. precision, on the other hand, is the
ratio of correctly predicted positive observations to the total
predicted positive observations. recall is the ratio of correctly



Fig. 1. Kaggle scene and chips.

Fig. 2. Kaggle chips and possible labels for each image.

predicted positive observations to the all observations. Lastly,
F1 score is the weighted average of precision and recall, so
that this score takes both false positives and false negatives
into account. As we deal with land use, images classified
with potentially dangerous situations (such as illegal mining
or selective deforestation), we chose to prioritize the recall
metric because it provides the lowest possible number of false
negatives. Note that, in the context of deforestation, authorities
do not want deforestation activities to go unnoticed. Equations
1, 2, 3 and 4 show the definition of each metric, where TP,
TN, FP, and FN represent true positives, true negatives, false
positives, and false negatives, respectively.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 Score =
2 · precision · recall
precision+ recall

(4)

V. RESULTS

This section shows the results regarding the accuracy and
performance in terms of classification times of the ML algo-
rithms adopted to predict deforestation using server and edge
platforms.

A. Server platform

As the server platform was used for training the models,
we first present the results regarding this training. After that,
we show the classification times. We begin by presenting the
results for the CNN. After that, the results for the RF is
presented. Lastly, we detail the results for the k-NN.

For the CNN-based classifier, we used the threshold to
evaluate the accuracy of detecting deforestation. Threshold is
the probability of the prediction being classified as positive
or negative. For example, when the threshold is set to 0.4
and the CNN predicts the existence of a road in the image
with a probability of 0.5, the system classifies it as positive.
Otherwise, it is classified as negative. The purpose of the
threshold is to adjust the model’s sensitivity to the needs of
the problem. As it is important that no illegal deforestation
activity goes unnoticed, the higher the recall, the greater the
probability of detecting illegal deforestation.

Figure 3 shows the impacts of the threshold on Accuracy. In
this graph, the x-axis represents the values for the threshold,
while the y-axis represents the accuracy obtained by the CNN-
based classifier. As can be seen, the higher the threshold and
image sizes, the better the accuracy. However, accuracy by
itself may not be the best evaluation metric, specially for
the deforestation case. Thus, it is necessary to analyze other
metrics like precision and recall.

Fig. 3. Accuracy as function of the Threshold for for the CNN-based classifier.

Figure 4 shows the impacts of the threshold on precision and
recall. The left graph shows the relationship between threshold
and precision. The right graph shows the relationship between



threshold and recall. It is expected that by increasing image
sizes, the quality of the CNN-based classifier also increases.
However, we noticed that the increase in precision and recall
is almost imperceptible when the image size goes from 64x64
to 128x128. The results also show that the values of these
metrics are inversely proportional to each other and thus
understanding their differences is important when building an
efficient classification system. Therefore, the value chosen for
the threshold is 0.3, as it provides the most balanced values of
precision and recall. Table III summarizes the results for the
CNN-based classifier considering the threshold equal to 0.3.

Fig. 4. Precision and recall as function of the Threshold for the CNN-based
classifier.

TABLE III
RESULTS FOR THE CNN MODEL

Image size Precision Recall Accuracy F1 Score
8x8 0.69 0.791 0.905 0.737

16x16 0.744 0.872 0.928 0.803
32x32 0.76 0.898 0.935 0.823
64x64 0.815 0.907 0.95 0.859

128x128 0.847 0.904 0.956 0.875

Figure 5 shows the average times that the CNN model takes
to classify images of different sizes in the server platform. The
x-axis represents the image sizes, while the y-axis represents
the average times (in seconds) that the model takes to classify
these images. As expected, the results show that the larger the
image size is, the greater is its dimensionality and, therefore,
the longer the model takes to process all the information. Note
that the ratio between the longest and the shortest time is 1.57.

The next classifier trained and tested was the one based on
the RF. In this classifier, the parameter n trees represents the
number of estimators that the model should use in the training.
The greater the number of trees, the greater the complexity
of the model, and therefore, the heavier it becomes. Figure
6 and Table IV show the results of the training for the RF.
The left graph shows the relationship between precision and
number of trees, while the right graph shows the relationship
between recall and number of trees. The results reveal that
the image size does not seem to have a linear influence on the
results, since the size of the image with the best recall and
precision was 32x32. This result is expected, since traditional

Fig. 5. Average time to classify images for the CNN in the server platform.

ML algorithms cannot extract abstract features from images
like neural networks. As rule-based algorithms (e.g.: RF) work
very well with different features (multiple variables), and an
image is a matrix with one feature (the pixel value), the RF
model does not necessarily have a linear behavior when the
image size increases.

Fig. 6. Precision and recall as function of the number of trees for the Random
Forest algorithm.

TABLE IV
RESULTS FOR THE RF MODEL

Image size N trees Precision Recall Accuracy F1 Score
8x8 100 0.970 0.883 0.976 0.924
8x8 500 0.979 0.917 0.983 0.947

16x16 100 0.968 0.885 0.976 0.925
16x16 500 0.979 0.923 0.984 0.955
32x32 100 0.972 0.894 0.978 0.931
32x32 500 0.982 0.930 0.985 0.955
64x64 100 0.970 0.886 0.976 0.926
64x64 500 0.979 0.921 0.983 0.949

128x128 100 0.973 0.897 0.979 0.933
128x128 500 - - - -

Figure 7 shows the average time to classify the images
of different sizes in the server platform concerning the RF-
based classifier. In this graph, the x-axis represents the image
sizes and the y-axis represents the classification time for the
images. As expected, the model takes longer to classify images
with n trees = 500 because it is more complex. The ratio
between the longest and the shortest classification time is 6.02.
However, the server platform was unable to train the RF model
for n trees = 500 and image size of 128x128 due to the lack



of memory. Additionally, the results show that the image sizes
do not have much influence on the classification time.

Fig. 7. Average Time to classify images for the RF in a server platform.

The last classifier adopted for the server platform is the one
based on the k-NN. For training this classifier, we vary the
parameter k neighbors from 1 to 40. k neighbors is used to
reflect the potential relationship of the error derivation at the
time of forecasting. Figure 8 shows the the error rate results
for the values of k neighbors, while Table V presents the
k neighbors that lead to the minimum error rate for each
image size. For instance, the k neighbors = 19 is the best
parameter for 64x64 image size.

Fig. 8. Error rate as function of the k neighbors.

TABLE V
K NEIGHBORS NUMBERS FOR THE LEAST ERROR RATE.

Image size k neighbors Error rate
8x8 18 0.0837

16x16 15 0.0842
32x32 25 0.0854
64x64 19 0.0839

Figure 9 and Table VI present the results metrics for
the k-NN-based classifier considering the best K neighbors
showed in Table V. It shows that the accuracy increases with
the increase of the image sizes. However, recall does not have
a monotonic relationship with the image sizes (see Figure 9).
This behavior is similar to the RF behavior explained earlier.
It is also worth to highlight that the ratio between the highest

and the lowest value for the precision and recall is only 1.02.
Consequently, the best option for k-NN is 64x64 size images.
Additionally, the server platform was unable to train the model
for images of 128x128 due to lack of RAM. This show that
although CNN models are more complex due to their deep
layers of feature extraction, they are much more optimized
than the k-NN and RF models when it comes to the use of
computing resources.

Fig. 9. Precision and recall as function of the image sizes for the k-NN-based
classifier.

Figure 10 shows the result of the classification analysis for
the k-NN-based classifier. The results clearly show that as the
image sizes increase, the classification times also increase. The
ratio between the highest and the lowest classification time for
the k-NN is 35.5. This means it is necessary to reduce the
image size in order to increase the server performance.

TABLE VI
RESULTS FOR K-NN MODEL

Image size Precision Recall Accuracy F1 Score
8x8 0.789 0.552 0.896 0.628

16x16 0.793 0.536 0.898 0.640
32x32 0.795 0.536 0.899 0.640
64x64 0.808 0.547 0.902 0.652

Fig. 10. Average classification times for the k-NN in a server platform.



B. Edge platform

In this subsection, we describe the results for the edge
platform (Raspberry Pi Model 4). In this platform, as explained
earlier, only the classifications for the images were performed,
since the edge platform is not suitable for training the models
due to the lack of computational resources. Figure 11 shows
the classification times for the CNN model. Similar to the
server platform, the classification time increases as the image
size increases. Note that the ratio between the longest and the
shortest time is only 1.089, which is smaller than in the server
platform. However, the edge platform was unable to classify
128x128 images due to the lack of RAM.

Fig. 11. Average classification times for the CNN in an edge platform.

Figure 12 shows the results of the classification for the RF-
based classifier Note that it only shows the results for ntrees =
100. The result for n trees = 500 is not shown because the
edge platform was unable to run the RF model due to lack of
memory. The result shows that the classification time depends
on the size of the image. Nevertheless, the ratio between the
longest and the shortest time is only 1.03.

Fig. 12. Average classification times for the RF in an edge platform.

Finally, Figure 13 shows the results of the classification
time for the k-NN model. As expected, the results show that
the larger the image size, the longer the classification time.
However, the edge did not have enough memory (RAM) to run
the k-NN model for 64x64 image size. The ratio between the
longest and the shortest time is 6.6, which is quite significant.

Fig. 13. Average classification times for the k-NN in an edge platform.

C. Performance Comparison

In this subsection, we present a comparative summary of
the results reported in the previous subsections. Table VII
summarizes all classification times for each algorithm used in
this paper. The “Ratio” column means the ratio between the
classification times on server and edge platforms. The smaller
the ratio, the greater the difference between the performance of
the platforms. As the ratio approaches one, the performance of
the platforms gets close. The first fact to highlight is that there
were cases where the edge was unable to classify the images
and others that the server was unable to train the model. For
these cases, the symbol − was designated. Specifically, the
server was unable to train the RF model for 128x128 size
image with n trees = 500 nor the k-NN model for 128x128
size image. The edge, on the other hand, was unable to perform
the classification for the CNN with 128x128 size image, the
RF with n trees = 500 and the k-NN with 128x128 and
64x64 size images.

For the CNN-based classifier, it is possible to observe that
the variation of the classification time for the edge platform,
considering different image sizes, is very small. This is a
positive result, as drone-based systems can use larger image
sizes (e.g.: 64x64) without losing too much performance.
Considering the server platform, however, the difference is
more significant. The longest classification time is almost 2.3
times the shortest. Therefore, using 128x128 image size on
the server platform requires a small reduction in performance
compared to other image sizes. Finally, it is important to notice
that, as the image size increases, the classification time of both
platforms becomes closer, as can be seen in Table VII.

It is also worth to notice that the variation of classification
times for RF model, considering the same number of trees,
is small. The only exception is for the 128x128 image size,
where the edge is 2.45 times slower than the server. In that
way, it is possible to use larger size images without worrying
too much about performance. That is, drone-based systems
could benefit from this classifier, since they are resource-
constrained. For the k-NN-based classifier, the result show
a clear positive correlation between the image size and the
classification time for both platforms. Additionally, for the k-



TABLE VII
CLASSIFICATION TIMES (IN SECONDS)

Alg. Img. size N trees Server Edge Ratio (server/edge)

CNN

8x8 - 0.07 0.1232 0.568
16x16 - 0.081 0.1239 0.653
32x32 - 0.088 0.1251 0.703
64x64 - 0.113 0.1342 0.842

128x128 - 0.158 -

RF

8x8 100 0.097 0.101 0.96
8x8 500 0.44 - -

16x16 100 0.083 0.1043 0.795
16x16 500 0.486 - -
32x32 100 0.094 0.1042 0.902
32x32 500 0.5 - -
64x64 100 0.086 0.1048 0.82
64x64 500 0.446 - -

128x128 100 0.098 0.405 0.241
128x128 500 - - -

k-NN
8x8 - 0.009 0.032 0.281

16x16 - 0.025 0.070 0.357
32x32 - 0.086 0.211 0.407
64x64 - 0.320 - -

128x128 - - - -

NN model, the relationship between recall and image size is
not well defined. One possible hypothesis is that the k-NN
takes into account only a pixel-by-pixel comparison with other
images in the dataset, being unable to extract more complex
features than the pixel value itself.

VI. CONCLUSIONS

Drone-based real-time image analysis using ML algorithms
is a promising solution for monitoring deforestation in the
vast Brazilian Amazon rainforest. This work analyzed the
performance-accuracy trade-offs of three common ML-based
classifiers, two different computing platforms, and five differ-
ent sizes of images. Our experimental study revealed that ML-
based image classifiers are a viable solution for monitoring de-
forestation even when using low quality images and resource-
constrained edge devices that can be used in drone-based
systems. To investigate the actual performance of drone-based
image classification, in our future work, we plan to consider
some environmental factors such as the status of wireless
communication link, the battery usage, and the interference
from other processes.

ACKNOWLEDGMENT

This research was partially funded by CNPq - Brazil, grant
406263/2018-3. The work was also supported in part by
the grant of University of Tsukuba Basic Research Support
Program Type S.

REFERENCES

[1] P. A. H. Organisation, “Tracking amazon deforestation from
above,” 2019. [Online]. Available: https://www.paho.org/pt/topicos/
doencas-cardiovasculares

[2] B. São José dos Campos, “Automating land conver change detection: a
deep learning based approach to map deforested areas,” Ph.D. disserta-
tion, Instituto Nacional de Pesquisas Espaciais, 2020.

[3] “Global forest change 2000–2018,” 2019. [Online]. Available:
https://earthenginepartners.appspot.com/science-2013-global-forest/
download v1.6.html

[4] INPE, “Monitoramento do desmatamento da floresta amazônica
brasileira por satélite,” 2020. [Online]. Available: http://www.obt.inpe.
br/OBT/assuntos/programas/amazonia/prodes

[5] J. Paneque-Gálvez, M. K. McCall, B. M. Napoletano, S. A. Wich, and
L. P. Koh, “Small drones for community-based forest monitoring: An
assessment of their feasibility and potential in tropical areas,” Forests,
vol. 5, no. 6, pp. 1481–1507, 2014.

[6] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep
learning in remote sensing applications: A meta-analysis and review,”
ISPRS journal of photogrammetry and remote sensing, vol. 152, pp.
166–177, 2019.

[7] H. Mayfield, C. Smith, M. Gallagher, and M. Hockings, “Use of
freely available datasets and machine learning methods in predicting
deforestation,” Environmental modelling & software, vol. 87, pp. 17–
28, 2017.

[8] L. Zhang, L. Zhang, and B. Du, “Deep learning for remote sensing
data: A technical tutorial on the state of the art,” IEEE Geoscience and
Remote Sensing Magazine, vol. 4, no. 2, pp. 22–40, 2016.

[9] X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and
F. Fraundorfer, “Deep learning in remote sensing: A comprehensive
review and list of resources,” IEEE Geoscience and Remote Sensing
Magazine, vol. 5, no. 4, pp. 8–36, 2017.

[10] H. Hildmann and E. Kovacs, “Using unmanned aerial vehicles (uavs)
as mobile sensing platforms (msps) for disaster response, civil security
and public safety,” Drones, vol. 3, no. 3, p. 59, 2019.

[11] B. Specktor, “Amazon deforestation shot up by 278% last month,
satellite data show,” 2019. [Online]. Available: https://www.livescience.
com/66120-amazon-rainforest-deforestation-bolsonaro.html

[12] M. Kanninen, D. Murdiyarso, F. Seymour, A. Angelsen, S. Wunder, and
L. German, Do trees grow on money? The implications of deforestation
research for policies to promote REDD. Cifor, 2007, vol. 4.

[13] U. S. G. Survey, “Doenças cardiovasculares.” [Online]. Available:
https://www.paho.org/pt/topicos/doencas-cardiovasculares

[14] S. Dhingra and D. Kumar, “A review of remotely sensed satellite
image classification.” International Journal of Electrical & Computer
Engineering (2088-8708), vol. 9, no. 3, 2019.

[15] M. Pal, “Random forest classifier for remote sensing classification,”
International journal of remote sensing, vol. 26, no. 1, pp. 217–222,
2005.

[16] Planet, “Planet: Understanding the amazon from
space,” 2021. [Online]. Available: https://www.kaggle.com/c/
planet-understanding-the-amazon-from-space/data

[17] N. S. Chauhan, “Model evaluation metrics in machine
learning,” 2020. [Online]. Available: https://www.kdnuggets.com/2020/
05/model-evaluation-metrics-machine-learning.html

https://www.paho.org/pt/topicos/doencas-cardiovasculares
https://www.paho.org/pt/topicos/doencas-cardiovasculares
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.6.html
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes
https://www.livescience.com/66120-amazon-rainforest-deforestation-bolsonaro.html
https://www.livescience.com/66120-amazon-rainforest-deforestation-bolsonaro.html
https://www.paho.org/pt/topicos/doencas-cardiovasculares
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space/data
https://www.kdnuggets.com/2020/05/model-evaluation-metrics-machine-learning.html
https://www.kdnuggets.com/2020/05/model-evaluation-metrics-machine-learning.html

	Introduction
	Related works
	Background
	Deforestation
	Remote sensing (RS)
	ML techniques for detecting deforestation 

	Experimental methods
	Data structure
	Platforms
	ML algorithms
	Execution of the experiments
	Evaluation of the models

	Results
	Server platform
	Edge platform
	Performance Comparison

	Conclusions
	References

