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Abstract— Recently, we have witnessed an increased use of 
systems employing Machine learning (ML) models. The 
dependability of such systems is significantly impacted by the 
inference results of ML models that may not always be correct. N-
version ML systems can be adopted for improving output 
reliability by detecting or correcting errors by combining multiple 
inference results.  In this study, we focus on a three-version ML 
system that combines the inference results of an ML model on 
diversified input data to make the system reliable for ML image 
classification tasks. The three-version image classification system 
uses only one deep-learning classifier while generating three 
inference results in response to diversified inputs. We use several 
image transformation methods to generate diversified input data 
for inferences. The system reliability is evaluated by the coverage 
of errors and the certainty of accurate predictions, as those metrics 
are decision method agnostic. We confirm that appropriately 
combined inference results from diversified data can increase the 
coverage of errors and improve reliability while maintaining the 
certainty of accurate predictions. In order to search for such 
effective combinations of diversification methods, we propose the 
neuron coverage improvement rate (NCIR) as an indicator of data 
diversity. Through the experiments, we show that the NCIR tends 
to have correlations with the coverage of errors and the certainty 
of accurate predictions, indicating the usefulness of the indicator.  

Keywords— Data diversity, Machine learning system, Neuron 
coverage, N-version system, Reliability 

I. INTRODUCTION 
Our daily lives depend heavily on Information and 

Communication Technology (ICT) systems. In recent years, 
advances in Machine learning (ML) technology have led to 
increasing examples of ICT systems using ML, such as 
autonomous driving, drone autopilot, and face or object 
recognition. ML models are trained from data and make 
inferences and predictions on real-world input data, which play 
an important role in many ML-based systems. However, the 
inference results of ML models are not always correct. If input 
data is out of the distributions of the training data set, it may 
produce erroneous inference results or predictions. In systems 
that require safety and high reliability, there is a risk that 
erroneous output from ML models can cause serious problems. 
For example, a traffic accident can happen if a self-driving car 
misrecognizes a traffic sign. Therefore, when designing ML 
systems, it is imperative to consider how to deal with inference 
errors to avoid undesirable consequences. 

To improve the system reliability against ML inference 
errors, we consider the N-version ML systems that use multiple 
input data to obtain diverse inference results [1]. We focus on 
image classification tasks for deep learning ML models and 
investigate how data diversification methods contribute to the 
reliability improvement of a three-version image classification 
system. We apply simple image transformation methods such 
as shift and rotation to obtain diversified input data from the 
original input data to be inferred. The obtained diversified input 
data is fed to the same ML model for inference, and multiple 
inference results are collected to determine the final output of 
the system. In this way, even if the ML model misclassifies the 
original input data, the misclassification can be invalidated or 
corrected by inference results from other diversified input data. 
Therefore, finding effective data diversification methods is key 
to improving system reliability by N-version ML system.  

This study aims to investigate the effective combinations of 
data diversification methods and find a way to search for such 
desirable combinations in terms of system reliability. First, to 
analyze the effectiveness of different combinations of data 
diversifications, we conduct the experiments with an image 
classification task using two image data sets and two deep 
neural networks. The evaluation metrics used in the 
experiments are the coverage of errors and the certainty of 
accurate predictions that characterize the diversity of multiple 
inference results in N-version ML systems [2]. We confirm that 
some combinations are very efficient in improving the coverage 
of errors without significantly decreasing the certainty of 
accurate predictions. However, finding such a combination 
remains an essential challenge. Then, we devise a neuron 
coverage to score the combination of diversified input data for 
the N-version ML system using neural networks. Neuron 
coverage was originally proposed as the test criteria of the 
neural networks, which is calculated by the ratio of activated 
neurons for test input data [7]. We exploit the idea and define 
the neuron coverage improvement rate (NCIR) to measure the 
degree of diversity in the combination of input data for the 
neural network. By measuring the NCIR for the same data used 
in the reliability evaluation, we observe non-negligible 
correlations among the coverage of errors, the certainty of 
accurate predictions, and NCIR in most cases. We suggest 
NCIR as an indicator to find a good combination of data 
diversification methods for N-version machine learning system.  



The rest of the paper is organized as follows. Section II 
describes the related work. Section III clarifies the motivation 
of the work. Section IV details the experimental configuration, 
data sets, and evaluation metrics. Section V explains the results 
of the reliability evaluation of a three-version image 
classification system using diversified input data. Section VI 
shows the results of NCIR and correlation analysis with the 
reliability metrics. Finally, Section VII describes the conclusion 
and future work. 

II. RELATED WORK 
This section describes related work on the reliability of N-

version ML systems and data diversification techniques used in 
data augmentation and adversarial training. 

A. N-version machine learning system 
The N-version ML system is inspired by the concept of N-

version programming (NVP). NVP is a software fault-tolerant 
design method in which N ( ≥ 2 ) functionally equivalent 
programs are independently developed and used from the same 
initial specification [3]. In programming, software version 
independence reduces the possibility of the same defect 
occurring in multiple software versions. N-version ML systems 
apply this concept to ML systems. While the previous work 
provides the reliability model for N-version ML systems with 
two versions, our system focuses on a three-version ML system 
for image classification tasks. A similar study evaluates an N-
version configuration system using several deep neural 
networks [4]. The experiments in that work considered three 
independent factors: independent learning, independent 
networks, and independent training data. The approach using 
multiple ML models trained from a different batch of training 
data also resembles ensemble learning [21]. In contrast to these 
existing studies, we attempt to improve the system reliability by 
solely using input data diversification at inference time without 
using diverse ML models. 

The reliability of the three-version system using a majority 
voting scheme has been investigated theoretically in the 
literature. Triple modular redundancy (TMR) is the low-level 
use of the 2-out-of-3 voting concept, which employs a voting 
system in which three modules simultaneously perform the same 
operation and output most of the same output [11]. If failures of 
individual versions are not independent of each other, the 
reliability model for the N-version system can be approximated 
by using the similarity parameter [20]. The reliability model of 
the triple-model with triple-input (TMTI) architecture is recently 
proposed and analyzed using diversity metrics [12]. Our study 
is complementary to the theoretical studies as we investigate the 
reliability of the three-version ML system using data 
diversification techniques through the experiments of image 
classifiers. 

B. Data diversification 
Data diversification is a widely used technique to improve 

the accuracy or robustness of machine learning models. Data 
augmentation encompasses techniques that enhance the size 
and quality of training datasets so that better ML models can be 
built. It is a commonly adopted training method that uses 
diversified input data at random. AutoAugument is designed to 

find the best policy to achieve the highest validation accuracy 
on a target dataset [17]. Mixup aims to train a neural network 
on convex combinations of pairs of examples and their labels, 
which increases the robustness against adversarial examples 
[18]. A mutation-based fuzzing to augment the training data of 
DNNs is proposed for enhancing robust accuracy. [19]. In our 
study, data diversification methods are used for the input data 
instead of training data.  

The study of adversarial examples has recently attracted 
attention in research on the behavior of ML models with 
intentionally perturbated input data. Adversarial examples are 
first introduced in an L-BFGS method to fool deep neural 
networks [5]. It shows that adversarial examples could be 
generalized to different models and training datasets. The Fast 
Gradient Sign Method (FGSM) is proposed as a technique to 
generate adversarial examples faster [13]. Besides, an efficient 
saliency adversarial map called Jacobian-based Saliency Map 
Attack (JSMA) is developed so that changes in a small portion 
of input features could fool the neural network [14][15]. In 
order to make adversarial examples more natural to human, 
Generative Adversarial Networks (GANs) is utilized as a part 
of the approach to generate adversarial examples of images and 
texts [16]. While adversarial examples are crafted for fooling 
ML models, in our study, on the contrary, we apply image data 
transformation to make ML models output correct inference 
results.  

III. MOTIVATION 
 The previous study has shown that the coverage of errors 

can be improved by combining different inference results from 
diversified input data without using different ML models [2]. 
However, it is not well investigated which diversification 
methods contribute to improving reliability more significantly. 
Furthermore, while the reliability improvement also depends on 
the combination of different diversification methods, there is no 
existing study to evaluate the impact of the combination of the 
diversified input data in an N-version ML system. This 
limitation motivates us to conduct experiments to evaluate the 
reliability of a three-version ML system using deep neural 
networks for image classification tasks with various 
combinations of diversified input data. In particular, we try to 
answer the following research questions through the 
experiments. 

RQ1: How do input data diversification methods by image 
transformations impact the reliability of a three-version image 
classification system?  

RQ2: How can we find effective combinations of data 
diversification methods in terms of output reliability? 

To address research question 1, we use two well-known 
image data sets, MNIST and CIFAR-10, and apply image 
transformation methods (shift and rotation) to generate 
diversified input data and obtain three different inference 
results by the same neural network. The reliability of the three-
version classification system is evaluated by the coverage of 
errors and the certainty of accurate predictions, which are 



neutral to the decision logic (i.e., the decision rule is not 
restricted to majority voting). The experimental results are 
shown in Section V. On the other hand, to address research 
question 2, we look at neuron coverage as an indicator of the 
diversity of input data combinations. We examine how the 
proposed metric NCIR correlates with the coverage of errors 
and the certainty of accurate predictions. The results are 
explained in Section VI. 

IV. EXPERIMENT PREPARATION 

A. Three-version image classification system 
  This study evaluates the reliability of a three-version ML 

system that combines the inference results of three ML modules 
shown in Figure 1. Each ML module deploys a neural network 
ML model that performs an image classification task. For input 
data for classification, handwritten digits from MNIST [8] and 
the images from CIFAR-10 [9] are used. Two different 
diversification methods are applied to the MNIST and CIFAR-
10 images. In Figure 1, the original data set is denoted as 𝑥𝑥 and 
the corresponding diversified data sets are represented as 𝑥𝑥′ and 
 𝑥𝑥′′. The ML modules 𝑚𝑚1, 𝑚𝑚2, and 𝑚𝑚3 classify the given input 
data independently, and finally integrate the classification 
results to determine the output using a certain decision method 
(e.g., majority voting). In this paper, we do not adhere to a 
specific decision method and instead focus on the diversity and 
correctness of inference results. 

 
Figure 1. The 3-version image classification system used in the experiment 

 

B. Image classification model 
The ML models used in the 3-version image classification 

system are LeNet [10] and AlexNet [22]. LeNet is the 
traditional convolutional neural network for image 
classification tasks. LeNet has a network structure where the 
convolutional and pooling layers are repeated and connected to 
all coupled layers. On the other hand, AlexNet is a well-known 
deep neural network for image classification. Both LeNet and 
AlexNet are trained on MNIST with 60000 training samples, 
128 batch sizes, 10 epochs, and RMSProp as the optimizer. On 
the other hand, the models for CIFAR-10 are trained with 
50000 training samples, 128 batch sizes, 20 epochs, and the 
optimizer RMSProp. The accuracies of the trained models in 
the corresponding test data sets are shown in TABLE I. 

 
TABLEⅠ THE ACCURACY OF TEST DATA FOR LENET AND ALEXNET 

 LeNet AlexNet 
MNIST 0.9864 0.9834 
CIFAR-10 0.5366 0.4489 

 

C. Input data diversification methods 
Two image transformation methods are used to diversify the 

input data: vertical and horizontal shifting of image data and 
rotation of image data. The three output results inferred with 
different input data are combined to evaluate the output results 
of the entire three-version image classification system. Figure 
2 shows samples of transformed MNIST images, and Figure 3 
shows the samples of transformed CIFAR-10 images. The first 
row shows the original image, the second row shows the image 
shifted vertically and horizontally, and the third row shows the 
rotated image. 

 
Figure 2. Diversified input data by image transformation in MNIST 

 
Figure 3. Diversified input data by image transformation in CIFAR-10 

 

D. Performance Indicators 
We use the coverage of errors and the certainty of accurate 

predictions as reliability evaluation indices for a three-version 
image classification system. Coverage of errors is the 
probability that one or more of the ML modules in a three-
version image classification system outputs correct results; 
even if one of the ML modules outputs incorrect results, the 
errors can be corrected or nullified using the output results of 
other ML modules. The higher coverage of errors leads to the 
lower probability that all ML modules output errors and the 
more reliable 3-version image classification system. The higher 
the number of versions becomes, the higher coverage of errors 
we get. 

Let 𝑚𝑚𝑖𝑖 ∈ 𝑀𝑀 denote the ML modules that comprise the 3-
version image classification system. For a total set of input data 
𝑆𝑆 , denote 𝐸𝐸𝑖𝑖 ⊂ 𝑆𝑆  as the data set that 𝑚𝑚𝑖𝑖  outputs incorrectly. 
The coverage of errors 𝐶𝐶𝐶𝐶𝐶𝐶 is given by 

𝐶𝐶𝐶𝐶𝐶𝐶 = 1 −
�⋂ 𝐸𝐸𝑖𝑖𝑚𝑚𝑖𝑖∈𝑀𝑀 �

|𝑆𝑆| . (1)   

where ⋂ 𝐸𝐸𝑖𝑖𝑚𝑚𝑖𝑖∈𝑀𝑀  represents the intersection of  𝐸𝐸𝑖𝑖 for 𝑚𝑚𝑖𝑖 ∈ 𝑀𝑀. 



In contrast, the certainty of accurate predictions represents 
the probability that all ML models output correct results. Since 
a three-version image classification system has three ML 
modules, the certainty of accurate predictions decreases 
because of the increased probability that any one of the ML 
modules output an error. It is better that we have a smaller 
decrease in the certainty of accurate predictions. The certainty 
of accurate predictions 𝐶𝐶𝐶𝐶𝐶𝐶 is given by 

𝐶𝐶𝐶𝐶𝐶𝐶 = 1 −
�⋃ 𝐸𝐸𝑖𝑖𝑚𝑚𝑖𝑖∈𝑀𝑀 �

|𝑆𝑆| . (2)   

where ⋃ 𝐸𝐸𝑖𝑖𝑚𝑚𝑖𝑖∈𝑀𝑀  represents the union of  𝐸𝐸𝑖𝑖  for 𝑚𝑚𝑖𝑖 ∈ 𝑀𝑀. We 
use these metrics for evaluating the reliability of the output of 
three-version image classification systems because they are 
agnostic to the decision method. 

V. RELIABILITY EVALUATION RESULTS 
The reliability evaluation of three-version image 

classification systems is conducted to address research question 
1. We use MNIST and CIFAR-10 data sets and generate 
diversified data by applying the image transformation methods 
described above. For various combinations of diversified input 
data, we compute the coverage of errors and the certainty of 
accurate predictions. 

A. Combination of shifted data 
First, we conduct experiments on vertical and horizontal 

shift diversification methods. Figure 4 shows the results of 
LeNet's and AlexNet’s classification of 10,000 vertically and 
horizontally shifted MNIST test images. Each bar represents 
the difference from the baseline accuracies presented in 
TABLE I. The label (x,y) represents the coordinate of the shift 
operation, where x and y represent horizontal and vertical shifts 
in pixels, respectively. As can be seen, the accuracies decrease  

 
Figure 4 Classification accuracies for shifted MNIST data by LeNet and 

AlexNet: The values show the difference in the baseline accuracies. 

when we use the shifted data. In particular, the accuracies 
considerably decrease with the images shifted by 2 pixels. 

Next, we evaluate a three-version image classification 
system that combines these inference results. Assuming a three-
version image classification system, as shown in Figure 1, the 
original input data is input to 𝑚𝑚1, vertically and horizontally 
shifted data are input to 𝑚𝑚2  and 𝑚𝑚3 , respectively. All 
𝑚𝑚1,𝑚𝑚2  and 𝑚𝑚3  install LeNet or AlexNet. The coverage of 
errors and the certainty of accurate predictions are computed 
and shown in Figure 5. The bar chart plots the differences in the 
baseline accuracies for individual combinations of input data. 
The labels on the x-axis represent the sets of coordinates of the 
selected shift operations. Compared to the baseline, a larger 
increase in the coverage of errors is favorable, while a smaller 
decrease in the certainty of accurate predictions is desirable. It 
can be seen that combining the inference results for the 
diversified data increases the coverage of errors and decreases 
the certainty of accurate predictions. There are two major 
combinations of inference results for shifted data. One is the 
combination of the inference on vertically or horizontally 
shifted data, such as up-and-down or right-and-left (e.g., the 
combination of (2,0) and (-2.0)). The other is the combination 
of the inference results on vertically shifted data with 
horizontally shifted data, such as up-and-right and down-and-
left (e.g., the combination of (2.0) and (0.2)). The combination 
of vertically or horizontally shifted data tends to provide higher 
certainty of accurate predictions and the coverage of errors.  

Since Figure 5 shows that the combination of up-and-down 
and right-and-left shifted data produced better results, we next 
evaluate combining the inference results of data shifted in the 
same direction, such as right-to-right, left-to-left, up-and-up, 
and down-and-down,  The results are shown in Figure 6.  

 
Figure 6 Coverage of errors (Cov) and certainty of accurate prediction (Cer) 
by using two shifted MNIST data. The values show the differences from the 

baseline accuracies (0.9864 for LeNet and 0.9834 for AlexNet). 

Figure 5. Coverage of errors (Cov) and certainty of accurate prediction (Cer) by suing two shifted MNIST data. The values show the differences from the 
baseline accuracies (0.9864 for LeNet and 0.9834 for AlexNet) 



 
Figure 7 Classification accuracies for shifted CIFAR-10 data by LeNet and 

AlexNet: The values show the difference from the baseline accuracies. 

Compared with the results in Figure 5, combining the inference 
results for data shifted in the same direction has no significant 
improvement in the coverage of errors. 

The same experiment is performed for CIFAR-10. Figure 7 
shows the accuracies of LeNet and AlexNet's classifications for 
10,000 test images of CIFAR-10 shifted vertically and 
horizontally. While the results of LeNet are similar to those 
observed for MNIST, the accuracies of AlexNet are increased 
in some cases (shift with (1,0) and (-1,0)). We can expect 
improved system reliability by using these diversified images 
as input data. 

Figure 8 shows the reliabilities of a 3-version image 
classification system with different combinations of shifted 
CIFAR-10 images. Similar to the results for MNIST, 
combining inference results from diversified input data 
increases the coverage of errors and decreases the certainty of 
accurate predictions. However, the low certainty of accurate 
predictions indicates that the system becomes less reliable. 

 
Figure 9 Classification accuracies for rotated MNIST data by LeNet and 
AlexNet: The values show the difference from the baseline accuracies. 

 

B. Combinations of rotated data 
Next, we conduct experiments on diversification methods 

that rotate the images by a certain angle. Figure 9 shows the 
results of LeNet's and AlexNet’s classification of 10,000 
rotated MNIST test images. As can be seen, the classification 
accuracies decrease when using the rotated data. However, 
compared with the shifted data, the decrease is smaller, and the 
number of correct outputs has not decreased significantly when 
the rotation angle is small. 

Next, we evaluate the three-version image classification 
system that combines these inference results. Assuming a three-
version image classification system, as shown in Figure 1, the 
original input data is input to 𝑚𝑚1, right and left rotated data are 
input to 𝑚𝑚2  and 𝑚𝑚3 , respectively. All 𝑚𝑚1,𝑚𝑚2  and 𝑚𝑚3  install 
LeNet or AlexNet. The coverage of errors and the certainty of 
accurate predictions are computed and shown in Figure 10. It 
shows that the combined inference results for the rotated data 
increase coverage of errors and decrease the certainty of 

Figure 8. Coverage of errors (Cov) and certainty of accurate prediction (Cer) by suing two shifted CIFAR-10 data. The values show the differences from 
the baseline accuracies ((0.5366 for LeNet and 0.4489 for AlexNet) 

Figure 10. Coverage of errors (Cov) and certainty of accurate prediction (Cer) by suing two rotated MNIST data. The values show the differences from the 
baseline accuracies (0.9864 for LeNet and 0.9834for AlexNet) 



accurate predictions. When combining the rotated images larger 
than 10° or smaller than -10°, the certainty of accurate 
predictions decreases significantly.  

The same experiment is then performed for CIFAR-10. 
Figure 11 shows the accuracies of LeNet and AlexNet's for 
10,000 test images of CIFAR-10 rotated data. The accuracies 
are generally lowered by using the rotated data like the cases of 
vertically and horizontally shifted data. Interestingly, however, 
the accuracies of AlexNet slightly improve in some cases, 
especially when the degree of rotation is not so large. 

 
Figure 11 Classification accuracies for shifted CIFAR-10 data by LeNet and 

AlexNet: The values show the difference in the baseline accuracies. 

Finally, we evaluate the three-version image classification 
system that combines these inference results. The results are 
shown in Figure 12. As can be observed, combining the 
inference results with the rotated data increases the coverage of 
errors and decreases the certainty of accurate predictions. 
However, similar to the vertically and horizontally shifted data, 
the certainty of accurate predictions is too low to be considered 
reliable, especially when the rotation angle is large. 

C. Summary 
 In this experiment, we use image transformation methods 

to generate diversified versions of MNIST and CIFAR-10 
images and investigate the improved reliabilities by the three-
version image classification systems using LeNet and AlexNet. 
We confirm that different combination of data diversification 
methods has different effects on the increasing coverage of 
errors and decreasing the certainty of accurate predictions. For 
shift operation, combining the inference results of vertical and 
horizontal directions can improve the coverage of errors while 
maintaining high certainty of accurate predictions, considered 
good combinations. However, combining inference results for 
shifted data in the same direction, such as up-and-up or right-

and-right, does not make a significant increase in the coverage 
of errors. As for the rotation method, it is found that the 
coverage of errors increases as the angle of rotation increases. 
However, when the rotation angle increases more than 10° or -
10°, the certainty of accurate prediction tends to decrease 
significantly. Compared with the results of CIFAR-10, the 
evaluation results of MNIST show smaller decreases in the 
certainty of accurate predictions, implying that the three-
version architecture is more effective when applied to MNIST.  

Answer to RQ1: Diversification of input data by image 
transformation has improved the reliability of three-version 
image classification systems in MNIST and CIFAR-10. 
However, excessive image transformation leads to a significant 
decrease in the certainty of accurate predictions. 

In order to find an effective combination of diversification 
methods for improving the reliability of the three-version image 
classification system, one must conduct these experiments to 
evaluate the coverage of errors and the certainty of accurate 
predictions for any possible combinations. Such experiments 
are not efficient in a practical scenario. Any efficient methods 
to search for a good combination of diversification methods are 
needed. To this end, we look into the internal states of neural 
networks when predicting the labels with the diversified images, 
as we focus on deep neural networks as classifiers in this study. 
Inspired by the previous study that evaluates the neuron 
coverage of diversified testing samples [6], we leverage the 
neuron coverage to measure the diversity of inferences for a 
combination of diversified input data. Suppose the coverage of 
errors and the certainty of accurate predictions have any 
relation to the neuron coverage. In that case, we may exploit the 
neuron coverage to search for effective combinations for three-
version image classification systems. Thus, we focus on the 
evaluation of neuron coverage in the next section.   

VI. EVALUATION OF NEURON COVERAGE IMPROVEMENT RATE 
This section investigates the relationship between the 

reliability improvement of data diversification by image 
transformation methods and the neuronal coverage 
improvement rate. 

A. Neuron coverage 
In neural network models, when given input data, the 

neurons in the network output a certain vector value for that 

Figure 12. Coverage of errors (Cov) and certainty of accurate prediction (Cer) by suing two rotated CIFAR-10 data. The values show the differences from 
the baseline accuracies ((0.5366 for LeNet and 0.4489 for AlexNet) 



input data. When this vector value exceeds a threshold value, 
the neuron is considered to be activated. As defined below, the 
ratio of activated neurons to all neurons for given test samples 
is called neuron coverage.  

𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐴𝐴 𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝑛𝑛

𝐴𝐴𝐴𝐴𝐴𝐴 𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝐶𝐶𝑁𝑁𝑛𝑛 . (3)   

Neuron coverage has attracted attention as an indicator for 
evaluating the robustness of neural networks and has been 
utilized in neural network testing methods [7]. Meanwhile, 
recent studies have doubted its usefulness in testing [23][24]. 

B. Neuron coverage improvement rate 
It is known that testing neural networks with diversified 

input data improves neuronal coverage [6]. Therefore, the 
internal states of neuron coverage potentially indicate the 
degree of diversity for given diversified input data sets. We 
consider using neuron coverage to measure the diversity of 
input data combinations used in a three-version ML system. We 
investigate how different diversified data combinations affect 
neuronal coverage's value. To measure the difference in the 
neuronal coverage before and after adding inferences with 
diversified input data, we define the neuron coverage 
improvement rate (NCIR). The NCIR is computed by the 
following procedure. 

1. Measure the output value 𝐶𝐶(𝑥𝑥)  of each neuron when 
classifying a set of input data 𝑥𝑥. 

2. Compute the neuron coverage 𝑁𝑁(𝑥𝑥) with the threshold 𝜏𝜏 for 
the neural network with 𝑁𝑁 neurons. 

𝑁𝑁(𝑥𝑥) =
1
𝑁𝑁

� 1
𝑣𝑣(𝑥𝑥)≥𝜏𝜏

. 

3. Generate the diversified input data sets 𝑥𝑥′ and 𝑥𝑥′′ from 𝑥𝑥. 
Then, measure the output values 𝐶𝐶(𝑥𝑥′)  and 𝐶𝐶(𝑥𝑥′′) of each 
neuron when classifying 𝑥𝑥′ and 𝑥𝑥′′, respectively. 

4. Compute 𝐶𝐶max(𝑥𝑥, 𝑥𝑥′, 𝑥𝑥′′) = max�𝐶𝐶(𝑥𝑥), 𝐶𝐶(𝑥𝑥′), 𝐶𝐶(𝑥𝑥′′)�. 

5. Compute the neuron coverage 𝑁𝑁(𝑥𝑥, 𝑥𝑥′, 𝑥𝑥′′)  for the three-
version image classifier using 𝑥𝑥, 𝑥𝑥′, 𝑥𝑥′′ as input data. 

𝑁𝑁(𝑥𝑥, 𝑥𝑥′, 𝑥𝑥′′) =
1
𝑁𝑁

� 1
 𝑣𝑣max(𝑥𝑥,𝑥𝑥′,𝑥𝑥′′)≥𝜏𝜏

. 

6. Compute NCIR by comparing 𝑁𝑁(𝑥𝑥) and 𝑁𝑁(𝑥𝑥, 𝑥𝑥′, 𝑥𝑥′′). 

𝑁𝑁𝐶𝐶𝑁𝑁𝑁𝑁 =
𝑁𝑁(𝑥𝑥, 𝑥𝑥′, 𝑥𝑥′′) −𝑁𝑁(𝑥𝑥)

𝑁𝑁(𝑥𝑥)
. 

Figure 13. NCIR for the three-version image classification system using shifted MNIST data 

Figure 14. NCIR for the three-version image classification system using shifted CIFAR-10 data 
 

Figure 15. NCIR for the three-version image classification system using rotated MNIST data 

Figure 16. NCIR for the three-version image classification system using rotated CIFAR-10 data 



C. Results 

First, the NCIRs are computed for three-version image 
classification systems using vertically and horizontally shifted 
data. We use the same configurations as explained in section V-
A. The neuron coverages are computed with respect to the 
threshold 𝜏𝜏 = 0.2 (following the previous literature [6]). The 
computed NCIRs for MNIST and CIFAR-10 are shown in 
Figure 13 and Figure 14, respectively. We observe that the 
combinations using 1px shifted data generally have smaller 
NCIRs than the combinations using 2px shifted data, meaning 
that more neurons are activated by the data with larger changes 
from the original data. This trend has a certain similarity to what 
was observed in the evaluation of the coverage of errors and the 
certainty of accurate predictions presented in Figure 5 and 
Figure 8.  

Next, the NCIRs are computed for three-version image 
classification systems using rotated data of MNIST and 
CIFAR-10. We use the same configurations as explained in 
section V-B. The computed NCIRs for MNIST and CIFAR-10 
are shown in Figure 15 and Figure 16, respectively. Similar to 
the trends observed in the coverage of errors and the certainty 
of accurate predictions shown in Figure 10 and Figure 12, the 
NCIRs tend to increase as the angle of rotation increases. The 
results motivate us to carry out the correlation analysis between 
the coverage of errors, the certainty of accurate predictions, and 
the NCIR. 

D. Correlation analysis 
Following the observations in the NCIR results, we conduct 

the correlation analysis among the coverage of errors, the 
certainty of accurate predictions, and NCIR. The correlation 
matrix is summarized in TABLE  Ⅱ and TABLE Ⅲ. Each entry 
of the matrix shows the correlation coefficient between two 
measures for comparison. At a glance, we can see strong 
correlations in most entries as their absolute values are larger 
than 0.5, except for the case with the LeNet applied to MNIST. 
As the coverage of errors and NCIR have positive correlations, 
we can use NCIR as the indicator to choose the diversified data 
for improving the coverage of errors. On the other hand, 
negative correlations are observed between the certainty of 
accurate predictions and NCIR. This implies that NCIR also 
gives an indicator of the certainty of accurate predictions such 

that a higher NCIR may compromise the certainty. The relation 
is also confirmed by the negative correlation between the 
coverage of errors and the certainty of accurate predictions, 
which reveals the trade-off between the two measures. The best 
trade-off may depend on the application as well as the decision 
method. We can conclude that the NCIR effectively represents 
the coverage of errors and the certainty of accurate predictions 
observed in three-version image classification systems using 
the diversified input data. 

Answer to RQ2: NCIR can be used as an indicator to search 
for effective combinations of diversified input data for three-
version image classification systems. The higher NCIR likely 
improves the coverage of errors and decreases the certainty of 
accurate predictions.  

 
Considering MNIST data, Figure 13 shows that the highest 

NCIRs are observed when the inference results for the original 
data, the data shifted up 2 pixels and the data shifted down 2 
pixels are combined (the bar labeled with ((0,2),(0,-2))). This 
value is higher than the NCIR at the inference results of the data 
with the largest rotation combined (the bar labeled with (20°,-
20°) in Figure 15). The certainty of accurate predictions drops 
significantly when the angle of rotation is large, as observed in 
Figure 10. In contrast to this, Figure 5 shows that the 
combination of data shifted 2 pixels up and 2 pixels down have 
no significant decrease in the certainty of accurate predictions. 
From this observation, for MNIST data, it is considered the best 
option to combine the inference results of the original data with 
those of the data shifted 2 pixels up and 2 pixels down, as it 
increases the coverage of errors while minimizing the decline 
in the certainty of accurate predictions. 

VII. CONCLUSION 
This paper investigated how data diversification by image 

transformations can improve the reliability of three-version 
image classification systems. Experiments are conducted to 
evaluate the coverage of errors and the certainty of accurate 
predictions for the images of MNIST and CIFAR-10. The 
results show that combining the inference results with 
diversified input data leads to higher reliability of the system. 
However, a significant transformation (e.g., 20° of rotation) 
considerably reduces the certainty of accurate predictions, 

TABLE Ⅲ. CORRELATION MATRICES BY ROTATED IMAGE DATA 

 LeNet - MNIST   AlexNet - MNIST   LeNet – CIFAR-10   LeNet – CIFAR-10 
 NCIR Cov Cer   NCIR Cov Cer   NCIR Cov Cer   NCIR Cov Cer 
NCIR 1    NCIR 1    NCIR 1    NCIR 1   
Cov 0.922147 1   Cov 0.95038 1   Cov 0.985971 1   Cov 0.979287 1  
Cer -0.94954 -0.7973 1  Cer -0.968351 -0.85388 1  Cer -0.99642 -0.96877 1  Cer -0.995203 -0.955229 1 

 

TABLE Ⅱ. CORRELATION MATRICES BY VERTICAL AND HORIZONTAL SHIFTED IMAGE DATA 

 LeNet - MNIST   AlexNet - MNIST   LeNet – CIFAR-10   LeNet – CIFAR-10 
 NCIR Cov Cer   NCIR Cov Cer   NCIR Cov Cer   NCIR Cov Cer 
NCIR 1    NCIR 1    NCIR 1    NCIR 1   
Cov 0.410167 1   Cov 0.692934 1   Cov 0.985996 1   Cov 0.890488 1  
Cer -0.76677 -0.3687 1  Cer -0.96591 -0.68374 1  Cer -0.98808 -0.98946 1  Cer -0.948481 -0.939934 1 
 



resulting in the ineffectiveness of the three-version image 
classification system. In order to search for effective 
combinations of data diversification methods, we proposed 
NCIR as an indicator to represent the diversity of input data 
combinations. Our correlation analysis revealed that NCIR had 
correlations with the coverage of errors and the certainty of 
accurate predictions. Therefore, NCIR can be used as the 
indicator to choose the effective combinations of diversification 
methods. 

We can extend our work in several directions. It is possible 
to conduct similar experiments on more realistic image 
classification tasks such as traffic signs recognition, object 
recognition, and face recognition. Data diversification methods 
can also be extended by considering more natural perturbations. 
For example, the effects of various input data (cloudiness, 
cracks, reflections due to light, etc.) could be applied. While the 
reliability can be improved by using multiple inference results, 
the trade-off with other quality measures, such as performance 
and energy consumption, might be a major concern in system 
engineering. Designing high-performance and energy-efficient 
systems while maintaining system reliability is also a future 
challenge.  
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