
 

Availability Modeling for Drone Image Processing 
Systems with Adaptive Offloading 

Fumio Machida  
Department of Computer Science 

University of Tsukuba  
Tsukuba, Japan 

machida@cs.tsukuba.ac.jp 
 

Ermeson Andrade 
Department of Computing 

Federal Rural University of Pernambuco 
Recife, Brazil 

ermeson.andrade@ufrpe.br 

Abstract— Availability of a computing process running on a 
flying drone is an essential quality aspect for mission-critical 
drone systems. Computing tasks such as image processing tasks 
can be lost when the process encounters a failure. Since the 
failure probability of the process depends on workload 
intensities, reducing drone workloads by computation offloading 
or load-balancing must have impacts on the system availability. 
While many existing studies discuss the performance-cost trade-
off associated with computation offloading, potential impacts on 
the system availability have not been deeply investigated yet. In 
this paper, we propose stochastic models for estimating the 
availability, the performance, and the energy consumption of a 
drone system with image processing tasks that can be either 
offloaded to a fog node or distributed to a collaborative drone. 
Our comprehensive numerical analysis with the proposed model 
clarifies the trade-offs among the availability, the throughputs, 
and the energy consumption under different computation modes. 
Furthermore, we propose an adaptive offloading scheme that 
can change the computation modes dynamically according to 
workload intensities and network conditions. A simulation study 
with a phased mission scenario shows that the proposed adaptive 
scheme can achieve high availability with 26% of energy 
reduction and less than 4% of throughput losses. 

Keywords—availability, energy consumption, drone, modeling, 
offloading 

I. INTRODUCTION 
Recent smart drone systems can adopt Artificial 

Intelligence (AI) processing on chips to recognize the 
environment around the drone from real-world images 
captured by cameras. Image processing tasks such as real-time 
object recognition and classification are typically 
computation-intensive and energy-consuming tasks. Thus, as 
an alternative computing mode, computation offloading to any 
available node in a networked computing infrastructure 
becomes a promising solution for the drone in order to reduce 
the workload and save battery life [1]. While performance-
energy trade-offs by computation offloading have been studied 
in the literature [2][3][25], little is known about the availability 
impacts. The availability of computing processes for image 
processing is an important quality aspect that is also affected 
by the types of computing nodes and communication links. 
Availability analysis and design are fundamental challenges in 
the Quality of Service (QoS) management for smart drone 
systems. 

The availability of image processing tasks on a drone is 
affected by several probabilistic and controlled factors. One of 
the significant probabilistic factors is the failure of a 
computing process on the drone that may be caused by 
software faults or bugs [4]. The failure rate of the drone’s 
application process may depend on the execution state, as the 
process is more failure-prone under high workload conditions 
than in an idle state [5]. The amount of workload is not stable 
during the mission period, and thereby the process failure rate 

is a probabilistic factor that can influence the availability. 
When tasks are offloaded to another computing node, the 
failure rate of the process at the offloaded node also needs to 
be considered. Besides, the reliability of communication links 
for offloading also affects the system availability. On the other 
hand, the choice of the computation mode, whether using 
computation offloading or not, is a controlled factor that 
impacts availability. The decision of computation mode needs 
to be carefully made in consideration with other probabilistic 
factors involved in the drone mission.   

In this paper, we conducted a comprehensive trade-off 
analysis among the availability, the performance, and the 
energy consumption of a drone-based image processing 
system considering three different computation modes. The 
image processing tasks are assumed to run on either a primary 
drone, a computation node in a fog computing infrastructure, 
or a nearby collaborative drone. To quantitatively analyze the 
availability, the performance, and the energy consumption 
under various probabilistic factors, we use stochastic reward 
nets (SRNs) [11] to model the state transitions of system 
components and network links. Based on the analysis of 
availability-performance-energy trade-offs among different 
computation modes, we propose a model-based adaptive 
offloading scheme named Adapt-off (Adaptive offloading) that 
selects the computation modes according to the workload 
states and communication link conditions. Adapt-off 
determines computation modes that can keep high availability 
under given conditions and save energy consumption by 
offloading or distributing tasks to other nodes when the 
expected performance loss is acceptable. Our simulated 
experiment shows that Adapt-off can save up to 26% of the 
energy consumption with less than 4% of throughput losses to 
keep high availability by changing computation modes 
according to different working conditions. 

The contribution of the work is summarized as follows. 

1. We analytically investigate the availability impact of a 
drone image processing system in three different 
computation modes: i) single drone processing, ii) fog 
offloading, and iii) drone load-balancing. 

2. Through the numerical experiments on the proposed SRN 
model with realistic parameter values, we show the trade-
offs to be considered among the availability, the 
performance, and the energy consumption of the drone’s 
image processing system. 

3. We proposed a model-based adaptive offloading scheme, 
called Adapt-off, and evaluate its effectiveness through 
simulation experiments. 

The rest of the paper is organized as follows. In Section II, 
we explain the system architecture and the different 
computation modes of a drone image processing system. In 
Section III, we introduce the availability measure and its trade-



offs to the performance and the energy consumption. In 
Section IV, we present SRNs for representing the system 
behavior considering the three computation modes. Section V 
details the numerical results and shows the effectiveness of 
Adapt-off. Section VI discusses the related work. Finally, 
Section VII presents our conclusion and briefly introduces 
future works. 

II. SYSTEM ARCHITECTURE 
We consider a smart drone system using AI to recognize 

the real-world environment and decide actions for an assigned 
mission such as disaster rescue, urban surveillance, and remote 
monitoring. Image processing is an essential computational 
task that needs to be processed for AI functions. Since image 
processing is a computation-intensive and energy-consuming 
task, it is not always effective to execute the tasks on the drone. 
Offloading tasks to other computation nodes through available 
communication networks can be considered as an alternative 
computation mode [1]. Alternative computation nodes may be 
a fog node in a fog computing infrastructure or another drone 
flying nearby [25]. Besides the single drone mode without 
relying on computation offloading, we can consider a fog 
offloading mode and a drone load-balancing mode shown in 
Figure 1. The architectures of the different computation modes 
are detailed below. 

 
Figure 1. Three computation modes for drone image processing 

A. Single drone mode 
As a baseline computation mode, images captured by 

cameras on a drone are directly processed on a chip on the 
drone. The images are taken by a specific sampling rate that 
can be adjusted according to the status of the mission. For 
example, in a mission-critical condition such as finding 
survivors in a disaster-affected area, the processing rate should 
be higher to enhance the sensitivity. Object detection or human 
recognition is a typical example of image processing tasks that 
can be effectively handled by machine learning models [6][7]. 
We assume machine learning models are trained off-line and 
deployed to the drone in advance. The processing rate of the 
input images is determined by the deployed model as well as 
the performance of the software platform and the chip. The 
results of image processing are used in subsequent tasks such 
as issuing alerts and updating the trajectory. 

B. Fog offloading mode 
Computation tasks on the drone can be offloaded to a fog 

node in a fog computing infrastructure to reduce the 
computation costs and save battery life [1]. Fog computing is 
a virtualized platform that provides computing resources 
between end devices and traditional cloud data centers [8]. 
Any computing device accessible from the drone through the 

network can be considered a fog node. For commercial drones, 
they are typically controlled by users’ mobile devices. A drone 
establishes a secure network connection with a fog node over 
wireless communication links such Wi-Fi, 4G LTE, or 5G. In 
fog offloading mode, all images taken on the drone are sent to 
the fog node. The fog node can deploy machine learning 
models to process the images, while its processing rate 
depends on the computational resources used in the fog node. 

C. Drone load-balancing mode 
In a severe condition where the drone has no stable 

connection to the base station on the ground, collaboration 
with other drones flying in the same area can be considered 
another alternative computation mode. Two drones can 
communicate to each other via the local wireless network if 
they are flying at a sufficiently close distance. A primary drone 
may ask a helper drone to share image processing workloads 
via the wireless network connection. If the helper drone 
deploys the same machine learning model and has available 
computing resources, it can serve as a collaborative drone to 
load-balance the image processing tasks for the primary drone. 
Since the process on the helper drone is also constrained by the 
battery life, workloads may need to split between the drones 
by a certain ratio. 

III. AVAILABILITY AND PERFORMANCE 
In this section, we discuss the QoS aspect of different 

computation modes for a drone image processing system. The 
quality measures considered in our trade-off analysis are 
system availability, throughput performance, and drone energy 
consumption. While this section gives the definitions of the 
measures and clarifies their trade-offs concerned in the design, 
further analysis is conducted on our comprehensive models 
proposed in the subsequent sections. 

A. Availability 
The system is said to be available when the function of the 

system works properly at a given time instant. The system can 
become unavailable when any critical components in the 
system fail. The failed components need to be repaired during 
the operation to make the system available again. As 
component failures, in this study, we focus on computational 
process and network link failures. The process failure may be 
caused by software defects or any configuration errors. On the 
other hand, network link failures are mainly caused by 
environmental factors that deteriorate the quality of wireless 
communication links. The availability can be quantified by 
the probability that the system is in an available state. Let 𝜋𝜋𝑚𝑚,𝑠𝑠 
be the probability that the system in state s of the computation 
mode 𝑚𝑚. The computation mode 𝑚𝑚 is either the single drone 
(S), the fog offloading (F), or the drone load-balancing (D). 
For the single drone mode, the computation state s can be idle 
(i), processing (p), or down (d). The availability of the system 
in the drone mode 𝐴𝐴𝑆𝑆 can be expressed as  

𝐴𝐴𝑆𝑆 = 𝜋𝜋𝑆𝑆,𝑖𝑖 + 𝜋𝜋𝑆𝑆,𝑝𝑝, (1)   

where the total probability satisfies  

� 𝜋𝜋𝑆𝑆,𝑠𝑠
𝑠𝑠∈{𝑖𝑖,𝑝𝑝,𝑑𝑑}

= 1. (2)   

For the fog offloading and load-balancing modes, we should 
consider more states considering the availability of a fog node 
or a helper drone. 



B. Performance 
While several performance measures can be considered, 

we focus on the throughput performance of image processing 
tasks in this study. The throughput represents how many 
requests are processed in the system for a unit time. High 
throughput performance is encouraged for a smart drone 
system to improve the recognition capability. The maximum 
throughput is limited by the resource capacity, which is 
determined by the performance of the chip. Furthermore, 
system dynamics also affect the effective throughput that can 
be quantified by multiplying the processing state probability 
with processing rate. For the single drone mode, the 
throughput performance 𝑃𝑃𝑆𝑆 can be given by 

𝑃𝑃𝑆𝑆 = 𝜋𝜋𝑆𝑆,𝑝𝑝 ∙ 𝜇𝜇𝑑𝑑, (3)   

where 𝜇𝜇𝑑𝑑 represents the service rate for image processing on 
the drone. For the fog offloading and load-balancing modes, 
the throughput is affected by the service rate of the fog node or 
the helper drone as well as their state probabilities. 

C. Energy consumption 
Energy efficiency is a crucial factor in mission-critical 

drone systems, as they need to fly and complete the assigned 
tasks under the constraints of the limited battery life. The 
energy consumption of the drone depends on the computation 
workloads, and hence there is a trade-off between the 
computation performance and energy conservation. The more 
the drone processes captured images, the more it consumes 
the energy, while the throughput also increases. For the drone 
processing mode, the expected energy consumption 𝐸𝐸𝑆𝑆 can be 
estimated by 

𝐸𝐸𝑆𝑆 = 𝑒𝑒𝑖𝑖𝜋𝜋𝑆𝑆,𝑖𝑖 + 𝑒𝑒𝑝𝑝𝜋𝜋𝑆𝑆,𝑝𝑝 (4)   

where 𝑒𝑒𝑖𝑖 and 𝑒𝑒𝑝𝑝 represent the average energy consumption in 
idle and processing states, respectively. It is natural to assume 
that 𝑒𝑒𝑖𝑖 < 𝑒𝑒𝑝𝑝. When we change the mode to the fog offloading 
or the drone load-balancing, the state probability 𝜋𝜋𝑆𝑆,𝑝𝑝 
decreases, and hence the energy consumption can be reduced. 

D. Trade-off analysis 
The measures defined above represent different quality 

aspects, while they are correlated to each other in terms of the 
state probabilities. From the definitions, we can easily derive 
the trade-off relations among them. First, we can observe that 
𝜋𝜋𝑆𝑆,𝑝𝑝  affects all the measures as given in (1), (3), and (4). 
Increasing 𝜋𝜋𝑆𝑆,𝑝𝑝  results in higher availability and higher 
throughput, and an increase in energy consumption. There is a 
clear trade-off between availability/performance and energy. 
Next, by comparing 𝐴𝐴𝑆𝑆  and 𝑃𝑃𝑆𝑆 , it is noted that 𝜋𝜋𝑆𝑆,𝑖𝑖  only 
contributes to availability. It means that the throughput is not 
improved even when the system is highly available due to a 
higher idle state probability. In other words, high availability 
is considered a necessary condition for high throughput 
performance. On the other hand, by comparing 𝐴𝐴𝑆𝑆 and 𝐸𝐸𝑆𝑆, we 
observe that the higher value of 𝜋𝜋𝑆𝑆,𝑖𝑖 is preferable both in terms 
of the availability and energy efficiency because 𝑒𝑒𝑖𝑖 is smaller 
than 𝑒𝑒𝑝𝑝. In short, the balance between 𝜋𝜋𝑆𝑆,𝑖𝑖 and 𝜋𝜋𝑆𝑆,𝑝𝑝 is a matter 
to consider for making a good trade-off. Since 𝜋𝜋𝑆𝑆,𝑖𝑖 and 𝜋𝜋𝑆𝑆,𝑝𝑝 are 
varied under the constraint of total probability (2), component 
failure probabilities do affect the balance. Although we only 
discuss the trade-off in the single drone mode, the relations 
among the measures and the constraint are generally applicable 
to the fog offloading and the drone load-balancing modes. 

E. Limitation of the simple model 
The abovementioned formulation is helpful to understand 

the general relations among the quality measures, but some 
essential dynamics that affect these measures are dropped from 
such a simple analysis. Specifically, the following 
probabilistic factors are not adequately addressed and need 
more comprehension. 

1) Varying workload condition: A drone working on a 
real mission observes the varying demand for image 
processing according to the states of the mission. High 
throughput performance is achievable only under an 
acceptable level of high workload conditions. When the 
workload intensity is not so significant, the process mostly 
stays in the idle state, and the throughput is low. The balance 
between 𝜋𝜋𝑆𝑆,𝑖𝑖  and 𝜋𝜋𝑆𝑆,𝑝𝑝  is dominated by the workload state, 
while such a workload factor is not incorporated in the simple 
formula discussed above. 

2) State-dependent failure probability: The process 
failure probability in a processing state is not equal to that in 
an idle state. When the process is in an idle state, it has less 
opportunity to encounter a failure. Since the process failure 
rate is state-dependent, the balance between 𝜋𝜋𝐷𝐷,𝑖𝑖  and 𝜋𝜋𝐷𝐷,𝑝𝑝 
also affects the total process failure probability that in turn 
affects availability under the constraint (1). It means that the 
state probabilities cannot be computed without knowing 
different failure rates in different states. 

3) Dependence on the network link availability: When the 
drone chooses the fog offloading mode or the drone load-
balancing mode, the availability of communication links is 
another probabilistic factor that needs to be taken into account. 
In these modes, the system is not available if the 
communication links are not established. The throughput on 
the fog node or the helper drone cannot be counted when the 
links are not available even though the fog node or the helper 
drone works properly. Similar to the workload variation, the 
availability of communication links may change depending 
on the environment where the drone is flying. The variation 
of the link availability is not also incorporated in the simple 
formula discussed above. 

To overcome those limitations and to understand the 
availability trade-offs more comprehensively, we introduce the 
availability model for the smart drone system based on 
stochastic Petri nets that is presented in the next section. 

IV. AVAILABILITY MODELING 
We use SRNs for analyzing the availability of a smart 

drone system for the following reasons. First, SRNs provide a 
compact and relatively intuitive representation of stochastic 
behaviors of target systems by Petri net notations. Second, 
reward functions defined on SRNs allow us to estimate various 
performance measures such as steady-state availability and 
service throughput. In this section, we first briefly introduce 
SRNs and then present availability models for a drone system 
considering three computing modes. 

A. SRNs 
SRN is a variant of stochastic Petri nets (SPN) that supports 

reward functions to evaluate performance measures associated 
with the stochastic dynamics of the systems. An SPN is a 



directed bipartite graph that consists of two kinds of nodes 
called place and transition, represented by a circle and a 
rectangle, respectively. Places may have tokens, which are 
represented as dots in the graphical notation. Tokens in the 
places constitute a marking that corresponds to a specific 
system state. A transition is enabling when a specified number 
of tokens are deposited in the places connected by incoming 
arcs (i.e., a directed arc from a place to a transition). When an 
enabling transition fires, all the tokens are removed from the 
input places, and new tokens are deposited to the places 
connected by outgoing arcs (i.e., a directed arc from a 
transition to a place), resulting in a new making. In this manner, 
system state transitions can be modeled as the marking 
transitions in SPN. By assigning probability distributions 
representing the firing times for individual transitions, an SPN 
can be transformed into a state-space model. When we define 
reward functions on the set of markings of interests, we can 
compute any transient and steady-state rewards resulting from 
the stochastic behaviors of the systems. For further details on 
SRN, readers can refer to [10][11]. 

B. Drone processing model 
Figure 2 shows the SRN that models the state transitions of 

a drone image processing system in the drone processing mode. 
Repeated requests for image processing are represented by 
timed transition Treq that can fire by the request arrival rate 𝛾𝛾. 
The firing of Treq is constrained by guard [greq], which enables 
Treq when there is no token in Preq. In other words, we assume 
that one request can be buffered in the queue. A token is 
deposited in Preq by firing Treq, then subsequently immediate 
transition td-run fires if there is a token in Pd-idle. An immediate 
transition is a special type of transition that has zero transition 
time. The firing of td-run represents that the image processing 
starts on the drone. When a token is deposited in Pd-run, 
transitions Td-srv and Td-fail2 are enabled. If Td-srv fires first, a 
token is deposited in Pd-idle again, which represents the drone 
is ready for processing the next request. On the other hand, if 
Td-fail2 fires first, a token is deposited in Pd-fail, which 
corresponds to the failure state. The recovery of a failed 
process is represented by Td-recv. Meanwhile, Td-fail represents 
the process failure in the idle state. By assigning different 
failure rates 𝜆𝜆𝑑𝑑1 and 𝜆𝜆𝑑𝑑2 for Td-fail and Td-fail2, respectively, we 
can incorporate the state-dependent failure probabilities 
discussed in Section III-E. To compute the service availability, 
the throughputs, and the energy consumption, the reward 
functions are defined as shown in Table I. The definitions of 
the functions follow (1), (3), and (4). 𝜇𝜇𝑑𝑑 represents the service 
rate on the drone, and 𝑒𝑒𝑖𝑖 and 𝑒𝑒𝑝𝑝 represent the average energy 

consumption in idle and processing states, respectively. The 
state probability is computed by prob(#Px==1), representing 
the probability that a token is deposited in Px. 

TABLE I.  REWARD FUNCTIONS FOR THE DRONE PROCESSING MODE 

Name Measure Function 
avail Service 

availability prob(#Pd-idle==1) + prob(#Pd-run==1) 

thru Throughput 
performance prob(#Pd-run==1) * 𝜇𝜇𝑑𝑑 

energy Energy 
consumption prob(#Pd-idle==1) * ei + prob(#Pd-run==1) * ep 

 

C. Fog offloading model 
Figure 3 shows the SRNs for the drone image processing 

system in the fog offloading mode. The model consists of three 
SRN subnets corresponding to a drone, a fog node, and a 
wireless link between them. The drone model is updated from 
the one presented in Section IV-B. It models that a request is 
offloaded to the fog node instead of being processed on the 
drone. To represent the system behavior, these subnets interact 
in the following way. When immediate transition td-off fires, a 
token is deposited in Pd-off, which represents the drone starts 
offloading a request. Due to guard function [goff], td-off is 
enabled only when Pl-up has a token, meaning that the 
communication link is available. When a token is deposited in 
Pd-off, by guard function [grun], Tn-run in the fog node model is 
enabled. The communication delay for request offloading is 
considered as the rate 𝜔𝜔, which is assigned to Tn-run. By firing 
Tn-run, it deposits a token in Pn-run, which subsequently enables 
td-idle by guard function [gidle] in the drone model. It represents 
that the fog node starts processing the offloaded request, and 
hence the drone can return to the idle state. The next request 
does not arrive unless the fog node becomes idle (i.e., a token 
is deposited in Pn-idle). Failure and recovery transitions are 
considered in all the subnets. In the fog node model, the 
different failure rates 𝜆𝜆𝑛𝑛1  and 𝜆𝜆𝑛𝑛2  are assigned to Tn-fail and 
Tn-fail2, respectively. The reward functions defined for 
computing the quality measures are shown in Table II.  

TABLE II.  REWARD FUNCTIONS FOR THE FOG OFFLOADING MODE 

Name Measure Function 
avail Service 

availability 
(prob(#Pd-idle==1) + prob(#Pd-off==1))*(prob(#Pn-

idle==1) + prob(#Pn-run==1))* prob(#Pl-up==1) 
thru Throughput 

performance prob(#Pn-run==1) * 𝜇𝜇𝑛𝑛 

energy Energy 
consumption prob(#Pd-idle==1) * ei + prob(#Pd-off==1) * eo 

 

Pd-idle Pd-run

Pd-fail

td-run

Td-srv

Td-fail2Td-fail1Td-recv

Treq Preq

[greq]

Figure 3. SRN for the fog offloading mode Figure 2. SRN for the drone processing mode 



 The service is available when all of the components are 
available. Since requests are processed in the fog node, 
throughput performance is affected by the service rate 𝜇𝜇𝑛𝑛 on 
the fog node. Meanwhile, the energy consumption is affected 
by both the average energy consumptions in the idle and 
offloading states that are denoted as 𝑒𝑒𝑖𝑖 and 𝑒𝑒𝑜𝑜, respectively. 

D. Drone load-balancing model 
Figure 4 shows the SRNs for the drone image processing 

system in the drone load-balancing mode. The model consists 
of three SRN subnets corresponding to the primary drone, the 
helper drone, and the wireless communication link between the 
drones. This model uses a helper drone instead of a fog node 
for processing requests. The places and transitions of the 
helper drone model are analogous to the ones in the fog node 
model in Section IV-C. Since the requests are load-balanced 
between two drones in this mode, there are two immediate 
transitions td-alloc and td-run for triggering the request allocation 
to the helper node or the execution on the drone, respectively. 
While each immediate transition can fire equally with the 
probability of 0.5, the firing of td-alloc is restricted by guard 
function [galloc], which is enabled when a token is deposited 
in Pdl-up (i.e., when the communication link is available). Most 
of the other transition rules are the same as presented in the fog 
offloading model. Table III shows the reward functions for 
computing the quality measures. It should be noted that the 
service is available even if the helper drone or the wireless link 
is not available since requests can be processed on the drone. 
We assume that the image processing rate on the helper drone 
is the same as the one for the primary drone. For energy 
consumption, 𝑒𝑒𝑜𝑜  represents the average energy consumption 
in the request allocation state on the drone. 

TABLE III.  REWARD FUNCTIONS FOR THE DRONE LOAD-BALANCING MODE 

Name Measure Function 
avail Service 

availability 
prob(#Pd-idle==1) + prob(#Pd-run==1) + prob(#Pd-

alloc==1) 
thru Throughput 

performance (prob(#Pd-run==1) + prob(#Pd2-run==1) * 𝜇𝜇𝑛𝑛 

energy Energy 
consumption 

prob(#Pd-idle==1) * ei + prob(#Pd-run==1) * ep + 
prob(#Pd-alloc==1) * eo 

 

E. Adaptive offloading model 
The three computation modes discussed above are not 

necessarily mutually exclusive during a mission period. We 
can consider distinct adaptive control of computation modes 
that are dynamically selected depending on workload 
conditions and accessibilities to a fog node or a collaborative 

drone. To determine the condition where computation mode 
is switched from one to another, we can exploit the model 
presented above to analyze the trade-offs among the expected 
quality measures. We call this approach Adapt-off and 
investigate its effectiveness compared with non-adaptive 
computation modes in phased mission scenarios detailed in 
Section V. 

The model for Adapt-off can be simply constructed by a 
combination of three SRNs for individual computation modes. 
On top of that, it requires a subnet for representing the selected 
mode, as shown in Figure 5. At each instant, the drone image 
processing system operates in either single drone (SD), fog 
offloading (FO), or drone load-balancing (DL) mode, which is 
represented by a token deposited in either PSD, PFO, or PDL, 
respectively. We assume that the mode transition times are 
negligible, and guard functions are assigned to all the 
immediate transitions. The guard functions represent the 
external rules to control the mode changes.  

In order to determine the most appropriate mode under a 
given condition, we define a utility function that specifies the 
preference of the mode in consideration of the availability, 
throughput, and energy consumption measures. Utility 
functions are often used for evaluating the aggregated quality 
of a service [35][36]. Let 𝐴𝐴𝑚𝑚,𝑃𝑃𝑚𝑚,  and 𝐸𝐸𝑚𝑚  be the expected 
availability, throughput, and energy consumption under the 
computation mode m for a given environmental state. We 
define the utility function as 

𝑈𝑈𝑚𝑚 = (𝑐𝑐𝐴𝐴𝐴𝐴𝑚𝑚)𝛼𝛼𝐴𝐴 ⋅ (𝑐𝑐𝑃𝑃𝑃𝑃𝑚𝑚)𝛼𝛼𝑃𝑃 ⋅ [𝑐𝑐𝐸𝐸(𝐸𝐸max − 𝐸𝐸𝑚𝑚)]𝛼𝛼𝐸𝐸  , (5)   

where 𝑐𝑐𝐴𝐴, 𝑐𝑐𝑃𝑃 , 𝑐𝑐𝐸𝐸 , 𝛼𝛼𝐴𝐴,𝛼𝛼𝑃𝑃 , and 𝛼𝛼𝐸𝐸 are the parameters to specify 
the preference of the performance, and 𝐸𝐸max is the maximum 
power consumption of the drone in the processing state. The 
value of 𝐸𝐸max − 𝐸𝐸𝑚𝑚 represents the energy efficiency and thus 
is preferred to be higher. As a result, the mode that can expect 
a higher utility value should be selected as the appropriate 
mode for the given condition. Note that the different parameter 
value assignments represent different preferences of the 
performance measures. For instance, if the user prioritizes the 
energy efficiency over the availability and throughput, a higher 
value of 𝑐𝑐𝐸𝐸  and/or  𝛼𝛼𝐸𝐸  should be used. We assume the 
parameter values are determined by users in advance in 
consideration of the mission and the expected environment.  

V. NUMERICAL EXPERIMENTS 
To compare the QoS of a drone image processing system 

in different computation modes, we conduct numerical 
experiments on the SRNs proposed in Section IV. In the first 

Figure 5. SRN for mode transitions Figure 4. SRN for the drone load-balancing mode 



experiments, we show general properties of individual modes 
where we assume a fog node and a helper drone are accessible 
with stable network links. In the second experiment, we 
analyze the impacts of the network reliability by varying the 
failure rates of communication links. Finally, we conduct 
simulated experiments to show the effectiveness of Adapt-off 
for a synthetic phased mission scenario. 

A. Experimental setting 
For the numerical experiments, we choose the default 

parameter values shown in TABLE IV.  

TABLE IV.  PARAMETER VALUES USED FOR THE EVALUATION 

Variable Description Value [1/hour] 
𝛾𝛾 Request arrival rate 720 
𝜈𝜈𝑑𝑑 Service rate on a drone 36000 
𝜈𝜈𝑛𝑛 Service rate on a fog node 36000 
𝜆𝜆𝑑𝑑 Process failure rate on a drone in an idle 

state 0.002976190 

𝜆𝜆𝑑𝑑2 Process failure rate on a drone in a 
processing state 0.013888889 

𝜇𝜇𝑑𝑑 Process recovery rate on a drone 3 
𝜆𝜆𝑛𝑛 Process failure rate on a fog node in an 

idle state 0.000462963 

𝜆𝜆𝑛𝑛2 Process failure rate on a fog node in a 
processing state 0.001388889 

𝜇𝜇𝑛𝑛 Process recovery rate on a fog node 2 
𝜔𝜔 Communication rate between a drone and 

a fog node or another drone 18000 

𝜆𝜆𝑙𝑙 Communication link disconnection rate 0.5 
𝜇𝜇𝑙𝑙 Communication link connection rate 360 
𝑒𝑒𝑖𝑖 Energy consumption of a drone in an idle 

state [W] 34 

𝑒𝑒𝑝𝑝 Energy consumption of a drone in a 
processing state [W] 64 

𝑒𝑒𝑜𝑜 Energy consumption of a drone in an 
offloading state [W] 45 

 

Note that some values cannot be deterministically given or 
known, and thus, we vary the values in our sensitivity analysis. 
While the default request arrival rate is set to 720 (per hour), 
representing that a request arrives every five seconds, the value 
is varied up to 7200 in our analysis. Since cameras on smart 

drones can shot images at more than one frame per second, the 
range of requests rate is in a feasible and reasonable range. We 
fix the service rate for image processing on drones to 36000 
(i.e., 0.1 second per request), while we vary the service rate of 
the fog node in the range of [360, 360000] in a sensitivity 
analysis. Similarly, the link disconnection rates are varied in 
the range [0.5, 120] for analyzing the sensitivity to link 
reliability in Section V-D. Other parameters are chosen 
arbitrarily for experiments based on some prior knowledge in 
the domain [12][13][28], which can be adjusted when any 
specific system configurations are given. 

We use SPNP [10] to implement the proposed SRNs and 
solve the models to compute the expected reward values. The 
Gauss-Seidel method is used for numerically computing the 
steady-state solution. We can obtain an exact solution for each 
model with given parameter values and hence do not need 
repeated experiments with random samples like simulation. 

B. Architecture comparison 
By setting the default parameter values to the proposed 

SRNs, we compute the service availabilities, the throughputs, 
and the expected energy consumptions for the three 
computation modes. Figure 6 shows the results of the 
computed values under different workloads (i.e., 𝛾𝛾 is varied 
from 720 to 7200) and computation modes. 

Interestingly, each computation mode has its own 
advantage in a specific quality measure. DL achieves the 
highest availability regardless of the workloads, SD yields the 
highest throughput performance, while FO is the best in terms 
of reduced energy consumption on the drone. It is reasonable 
that DL achieves the highest availability because the primary 
drone can continue the service even when the helper drone fails. 
In terms of the throughput, SD is preferable because it is not 
affected by the latency and bandwidth of communication 
channels. The energy consumption on the drone in FO is the 
smallest as it minimizes the workloads on the drone. The 
results clearly show that a desirable computation mode can 
vary depending on what quality measure is more prioritized 
during a drone mission.  

Figure 7. Sensitivity analysis of the service time on the fog node {0.01, 0.1, 0.5, 1 [sec]}. 

Figure 6. Comparison of the single drone (SD), the fog offloading (FO), and the drone load-balancing (DL) mode. 



C. Impacts of fog node’s service rate 
In the above comparison, we assume that the service rate 

on the fog node is equal to the drone. This assumption may not 
hold in real system configurations. The processing power of a 
fog node depends on the node type and available resources. In 
order to analyze the impacts of the fog node’s service rate on 
the availability, performance, and energy consumption, we 
conduct a sensitivity analysis by varying the value of 1/𝜈𝜈𝑛𝑛 in 
{0.01, 0.1, 0.5 and 1}. The results are shown in Figure 7. In 
addition to SD and DL, the results of FO-x are plotted, where 
x corresponds to the value of 1/𝜈𝜈𝑛𝑛 . While the service 
availability and the throughput are improved by using the fog 
node with higher processing rates, the energy consumption of 
the drone can also increase. Nevertheless, the advantage of FO 
against SD and DL in terms of low energy consumption still 
holds in all the range of the service rates. Moreover, for service 
availability and throughput, FO is the worst choice regardless 
of the service rates chosen. Therefore, we use the default value 
of 𝜈𝜈𝑛𝑛 in the following comparative analysis. 

D. Impacts of the link reliabilities 
Since FO and DL can be adopted when a fog node or 

another collaborative drone is accessible, the quality measures 
for these modes must be affected by the communication link 
reliability. To investigate this, we conduct sensitivity analyses 
by varying the disconnection rate of the communication links 
in [0.5, 120]. Figure 8 and Figure 9 show the results of the 
sensitivity analysis on FO and DL models, respectively. 

For FO, the availability and the throughput performance 
decrease by increasing the disconnection rate of the 
communication link. Meanwhile, the energy consumption is 
reduced by increasing the link failure rate. This is because the 
drone tends to be in an idle state to wait for the communication 
links to become available for the offloading. Nevertheless, 
choosing FO with an unreliable communication link is not 
encouraged, considering a significant loss in availability and 
throughput performance.  

For DL, the availability decreases due to the increased link 
disconnection rate, while the throughput is not much affected 
because the primary drone can process the requests even when 

the helper drone is not accessible. The difference in the energy 
consumption is also marginal between the cases with different 
link reliabilities, but lower link reliability contributes to 
smaller energy consumption, as expected. Considering the 
availability decrease due to the deterioration of the link 
reliability, choosing DL is not preferable, especially when 
request arrival rates are high. 

E. Evaluation of Adapt-Off 
The sensitivity analysis results above lead us to consider 

potential requirements for adaptively changing computation 
mode in accordance with communication link states and 
request demands. As introduced in Section IV.E, Adapt-Off is 
a model-based adaptive offloading scheme that can address 
such requirements. We evaluate the effectiveness of Adapt-Off 
through simulated phased mission scenarios.  

We consider two missions, both of which consist of four 
phases, as shown in Figure 10. Mission A consists of prefixed 
phases, while Mission B contains some randomized factors on 
the phases that also include the branches. Each phase of the 
mission has a specific request arrival rate 𝛾𝛾, a fog node link 
disconnection rate 𝜆𝜆𝑙𝑙𝑛𝑛, and a drone link disconnection rate 𝜆𝜆𝑙𝑙𝑑𝑑. 
For Mission A, the drone is supposed to sojourn in each phase 
equally for ten minutes. For mission B, the sojourn time in 
each phase is varied in the range of [8, 12] minutes. The value 
of 𝜆𝜆𝑙𝑙𝑛𝑛  is also randomly chosen from {0.5, 60, 120}, 
representing reliable, unstable, and unreliable communication 
links, respectively. The accessibility to a helper drone is also 
considered a probabilistic factor represented by split phases for 
phase 2 and phase 4. We assume that either phase 2a or phase 
2b occurs at communication links probability 0.5, and 
similarly, either phase 4a or phase 4b occurs at probability 0.5. 

To determine the computation mode from the conditions of 
each phase, we use the utility function as defined by (5) in 
Section IV-E. We set the parameter values of the function as 
shown in TABLE V.  

TABLE V.  PARAMETER VALUES FOR THE UTILITY FUNCTION 

Parameter 𝑐𝑐𝐴𝐴 𝑐𝑐𝑃𝑃 𝑐𝑐𝐸𝐸 𝛼𝛼𝐴𝐴 𝛼𝛼𝑃𝑃 𝛼𝛼𝐸𝐸 𝐸𝐸max 
Value 10 10 1 0.1 0.1 0.8 64 
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Figure 9. Sensitivity analysis of the communication disconnection failure rate {120, 60, 30, 10, 0.5 [1/hour]} for DL 
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Figure 8. Sensitivity analysis of the network disconnection rate {120, 60, 30, 10, 0.5 [1/hour]} for FO 



As the values of the availability and the throughput can be 
smaller than one, we multiply these values by ten (𝑐𝑐𝐴𝐴, 𝑐𝑐𝑃𝑃 = 10). 
The defined utility function assigns a relatively higher weight 
for energy efficiency ( 𝛼𝛼𝐸𝐸 = 0.8 ), but it depends on the 
preference of a user. We use these values just for comparative 
evaluation of Adapt-Off against non-adaptive methods. 

The utility function determines the decision rule of the 
mode. The utility values vary depending on the workload states, 
the availability of another drone, and the communication link 
qualities. Figure 11 shows the decision rule obtained from the 
defined utility function by varying the request arrival rates, the 
communication link failure rates for a fog node and a helper 
drone. The three matrices correspond to different workload 
conditions ( 𝛾𝛾 = 720, 4500, 7200 ). In each matrix, each 
column corresponds to a link disconnection rate of the drone-
drone communication, while each row corresponds to a link 
disconnection rate of the drone-fog-node communication. In 
each cell, the utility values of SD, FO, and DL are displayed 
vertically in this order. The node color represents the 
preferable mode which provides the highest utility value.  

For low workload condition (𝛾𝛾 = 720), if the reliability of 
the communication link to the fog node is not stable (𝜆𝜆𝑙𝑙𝑛𝑛 =
60, 120)  and there is no nearby helper drone, SD is the best 
computation mode. If the fog node link is stable (𝜆𝜆𝑙𝑙𝑛𝑛 = 0.5) 

and the communication link to the other drone is not stable 
(𝜆𝜆𝑙𝑙𝑑𝑑 = 120), FO is chosen as the best mode. For other cases 
under the low workload condition, it is better to employ a 
helper drone to change the mode to DL. For middle and high 
workload conditions ( 𝛾𝛾 = 4500, 7200 ), the boundaries 
among SD, FO, and DL change. The relative advantage of FO 
increases when workloads become higher, as FO is the most 
energy-efficient mode among others in such conditions. Based 
on the obtained decision rule, the desirable mode in each phase 
of Mission A is determined as shown in Figure 10. For Mission 
B, the mode is determined dynamically in the simulation 
experiments explained later in this section. 

To evaluate the mission performance, we define the 
following aggregated performance measures corresponding to 
availability, performance, and energy consumption. 

1) Average availability: Expected service availability 
varies across the phases, and hence we compute the average 
availability of n phases in the mission for mode m by 

𝒜𝒜𝑚𝑚 =
1
𝑇𝑇
�𝐴𝐴𝑚𝑚,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

∙ 𝑡𝑡𝑗𝑗, (6)   

where 𝑇𝑇  is the total mission time, 𝐴𝐴𝑚𝑚,𝑗𝑗  represents the 
expected availability in computation mode m and phase j. 

Figure 10. Phased mission scenarios for evaluating Adapt-Off: Mission A consists of the phases with fixed parameter values, while Mission B contains 
randomized factors such as the duration of each phase, the fog node link failure rate, and the existence or absence of a helper drone. 

Mission A 

Mission B 

Figure 11. A mode decision rule of Adapt-Off: Three 3x4 matrices correspond to the decision rules for different workload conditions ( 𝛾𝛾 =
720, 4500, 7200). In each matrix, each row represents a link disconnection rate of drone-fog-node communication (𝜆𝜆𝑙𝑙𝑛𝑛 = 0.5, 60, 120), while each 
column represents a link disconnection rate of drone-drone communication (𝜆𝜆𝑙𝑙𝑑𝑑 = 0.5, 60, 120) or the state of no collaborative drone. In each cell, the 
expected utility values of SD, FO, and DL are displayed vertically in the order. The color of the cell represents the mode that maximize the utility value. 



2) Total throughput: The aggregated throughput can be 
summarized as the total number of requests processed during 
the mission, which can be expressed by 

𝒫𝒫𝑚𝑚 = �𝑃𝑃𝑚𝑚,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

∙ 𝑡𝑡𝑗𝑗, (7)   

where 𝑃𝑃𝑚𝑚,𝑗𝑗  represents the expected service throughput in 
phase j (one request per second) and computation mode m. 

3) Energy overhead: Since the energy consumption is the 
cost factor, we compute the energy overhead due to the image 
processing. The total energy overhead during the mission can 
be given by 

ℰ𝑚𝑚 = ��𝐸𝐸𝑚𝑚,𝑗𝑗 − 𝐸𝐸𝐵𝐵�
𝑛𝑛

𝑗𝑗=1

∙ 𝑡𝑡𝑗𝑗 , (8)   

where 𝐸𝐸𝑚𝑚,𝑗𝑗 represents the expected energy consumption [Ws] 
in computation mode m under the condition of phase j, and 𝐸𝐸𝐵𝐵 
is the baseline energy consumption that is the expected energy 
consumption in the idle state. 

For mission A, the mission performance is evaluated 
simply by numerical analysis of the SRNs in consideration of 
the decision rule. The solution of SRNs yields the expected 
values of 𝐴𝐴𝑚𝑚,𝑗𝑗 ,𝑃𝑃𝑚𝑚,𝑗𝑗 and 𝐸𝐸𝑚𝑚,𝑗𝑗 for 𝑚𝑚 ∈ {𝑆𝑆,𝐹𝐹,𝐷𝐷}, 𝑗𝑗 ∈ {1,2,3,4}, 
and subsequently the mission performances are computed by 
(6), (7), and (8). The results of the computed mission 
performances are summarized in Table VI. 

TABLE VI.  EVALUATION RESULTS OF ADAPT-OFF WITH MISSION A 

Computation mode SD FO DL Adapt-Off 
Average availability 0.998685 0.838004 0.998865 0.998560 
Total throughput 2137.6 1660.3 2094.8 2052.7 
Total energy overhead 6305.6 3583.1 4855.7 4613.7 
 

As can be seen, there is no perfect solution that can achieve 
the best score in all the criteria. However, we can observe that 
Adapt-Off always avoids the worst choice of the computation 
mode in each phase by adaptively changing the computation 
mode. DL is preferable in terms of availability, but it requires 
a collaborative drone, which may not always be available 
through a reliable link. For the performance, SD is the best 
choice with the highest cost of energy consumption. FO can 
reduce the energy overhead significantly but may face poor 
availability and performance. Adapt-Off maintains a good 
availability (>0.9985) with 26% of reduced energy overhead 
and less than 4% of throughput loss compared with SD. Adapt-

Off can effectively choose the alternative computation modes 
(FO and DL) depending on the phase of the mission. 

For Mission B, the computation modes of Adapt-Off are 
not deterministically given because the reliability of the link 
to the fog node and the accessibility to a nearby drone are not 
fixed. To analyze the impacts of such uncertainties, we 
conduct a simulation experiment based on the specification of 
Mission B as presented in Figure 10. In each iteration of the 
simulation, we change the phase sojourn times, the link failure 
rates to a fog node, and the accessibility to a helper drone. For 
each phase’s condition, Adapt-Off determines a desirable 
computation mode according to the decision rule shown in 
Figure 11. We compare the performance of Adapt-Off with 
other computation modes (i.e., SD, FO, and DL). For DL 
mode, we assume that the computation mode is set to SD if 
there is no nearby drone in phase 2 and phase 4. Figure 12 
shows the results of a hundred times of simulation. Each dot 
corresponds to one simulation result, and the underlying box 
charts show the quantiles. The average values are also 
summarized in Table VII. 

TABLE VII.  EVALUATION RESULTS OF ADAPT-OFF WITH MISSION B 

Computation mode SD FO DL Adapt-Off 
Average availability 0.998686 0.872481 0.976664 0.976428 
Total throughput 2114.3 1692.8 1921.2 1895.8 
Total energy overhead 6236.7 3655.5 4452.4 4329.2 
 

The results are generally consistent with our previous 
observations. SD achieves the highest availability and the high 
throughput while it incurs the largest energy overhead. In 
terms of energy overhead, FO is the best choice, but the low 
availability and poor throughput may be unacceptable. The 
reason for the poor performance of FO is the high variability 
of the fog link failure rates in Mission B. It is not desirable to 
keep FO during the phases with unreliable communication 
links to the fog node. On the other hand, DL achieves a 
comparable performance to Adapt-Off. Both DL and Adapt-Off 
can avoid the worst choice and achieve balanced performances. 
The good performance of DL in this scenario is partly caused 
by the phases without a helper drone. In phase 2b and phase 
4b, the mode is changed to SD because of inaccessibility to 
any helper drone. In a sense, the computation mode is 
adaptively changed in accordance with phase conditions 
similar to Adapt-Off. In summary, the results of experiments 
with two mission scenarios show that Adapt-Off can save the 
energy consumption of the drone without significantly 
sacrificing availability and throughput. 

Figure 12. Performance evaluation results of Mission B with different computation modes under varying phase sojourn times in [8, 12] minutes, fog 
link failure rates {0.5, 60, 120}, and accessibility to a helper drone. Each point corresponds to a simulation result. Box charts show the quantiles. 



F. Threats to validity 
An internal threat to the validity of the work is the 

granularity of the modeling we consider in our SRNs. The 
main objective of our study is to analyze high-level trade-off 
relations among the availability, performance, and power 
consumption in different computation modes. To achieve this 
goal and make the models tractable for analysis, we did not 
consider the details of communication channels, computation 
processes, and policies for offloading or load-balancing in the 
proposed model. The model can be improved by incorporating 
fine-grained models for communication channels [16][17], 
computation processes [18][19], and various offloading 
models for edge computing [34]. Despite the high expressive 
power of SRN, we may encounter a scalability issue of 
modeling and solution in such cases. An external threat of the 
validity is the ranges of the parameter values used in our 
experiments. Our findings are based on the parameter values 
determined by reasonable guesstimate for ordinal system 
configurations and use cases. However, parameter values 
potentially highly deviate from our guesstimates in specific 
systems and mission conditions. It is an important future work 
to validate the model with statistically estimated values from a 
specific real-world system. 

Verification of the constructed model is also an important 
aspect of model-based analysis. Verification refers to the 
process of determining that a model implementation correctly 
represents the conceptual model and is solved correctly [14]. 
In order to avoid potential errors in model implementation, we 
implemented the proposed SRNs independently with different 
tools. While the results of SPNP are presented in our 
experiments, the same SRNs are also implemented and 
evaluated in Mercury [15] by a different team. We confirmed 
the correctness of the implementation by comparing the 
availability values as shown in TABLE VIII. Note that both 
the availability computations are conducted using numerical 
solution methods. The tools also support simulation, but we do 
not use that function because estimating such high availability 
values by simulation is another challenge. 

TABLE VIII.  VERIFICATION OF THE MODEL WITH MERCURY 

 SD  FO  DL  
𝛾𝛾 SPNP Mercury SPNP Mercury SPNP Mercury 
720 0.9989363  0.9989363  0.9974227  0.9974226  0.9965814  0.9965813  

1800 0.9988279  0.9988279  0.9974670  0.9974669  0.9965003  0.9964998  
3600 0.9986493  0.9986493  0.9975356  0.9975355  0.9963649  0.9963638  
7200 0.9983068  0.9983068  0.9976458  0.9976457  0.9961054  0.9961062  

 

VI. RELATED WORK 
The performance of image processing and video analytics 

on smart drone systems are becoming a hot and challenging 
issue. Computation offloading is a commonly adopted strategy 
to make a better trade-off between performance and power 
consumption  [2][3][25]. The response time for a drone 
surveillance application and its energy efficiency can be 
improved by an adaptive task-offloading using Multipath TCP 
(MPTCP) [9]. For real-time video analytics, offloading tasks 
to the cloud or edge computing nodes can benefit through the 
reduction of cost [20], network bandwidths [21][22], and 
energy consumption on drones [2]. Instead of offloading tasks 
to any ground computation nodes, distributing the tasks to 
other nearby drones can also be considered [23][24][25]. 
Considering the trade-off between the performance and the 
energy consumption under geometrical constraints for drone 

trajectories, optimal task allocations for clusters and swarms 
of drones have been investigated [26][27]. However, none of 
the above studies incorporate service availability as a quality 
measure that must be affected by computation offloading. 

Several studies address the importance of reliability and 
availability of drone systems [12][28][29][30][31]. Every 
component on a drone, such as a mainframe, power plant, 
navigation system, electric components, and other sensors, can 
fail anytime during the flight. Reliability assessment and 
corrective maintenance procedures for drone systems are 
essential [12]. Reliability block diagrams were used to 
evaluate the reliability of a flight control system [28] and the 
survivability of a drone-based post-emergency monitoring 
system [29]. Fault trees and Markov chains can also be used to 
analyze the reliability of drone systems [31]. Reliability of 
tasks is considered as the constraints of fog-based computation 
offloading into a swarm of drones [32]. In contrast to these 
works, we presented comprehensive SRNs that can model 
dynamic behaviors of system components and analyze the 
trade-off among the availability, performance, and energy 
consumption. SRN is also used in a recent study [33], while 
the work only considers the trade-off between performance 
and availability. The trade-off in terms of energy-consumption 
was not discussed before. Moreover, our model covers both 
the fog-offloading mode and the drone load-balancing mode. 

VII. CONCLUSION 
This paper proposed availability models for quantitatively 

analyzing QoS trade-offs in a drone-based image processing 
system. We consider both the fog offloading mode and the 
drone load-balancing mode, in addition to the baseline single 
drone processing mode. Through comprehensive numerical 
experiments on our proposed model, we show that each 
computation mode has a distinct advantage in a specific quality 
measure: SD achieves the highest throughput performance, FO 
can minimize the energy consumption by offloading, and DL 
can maintain the highest availability. Based on these findings, 
we proposed Adapt-off that can change the computation mode 
to either FO or DL adaptively considering workload intensities 
and communication link reliabilities. The results of our 
simulation experiments with two mission scenarios show that 
Adapt-off can save the energy consumption of the drone 
without significantly sacrificing the availability and the 
throughput. 

There are several possible extensions of this work. In this 
paper, we consider the three computation modes in the basic 
configuration. If we have multiple drones and multiple fog 
nodes, the design spaces and offloading options are further 
enlarged. The availability model needs to be extended for 
incorporating more complex dependencies and dynamic 
behaviors among multiple system components. There is also 
room for improvement in the offload decision scheme of 
Adapt-off. In this paper, we only consider the utility-based 
decision rule, while there could be more advanced decision 
methods based on the expected quality values using our 
models. The validation of the model with a real system or other 
simulation tools is also an important future work. 
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