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 Abstract—Software aging is a phenomenon of progressive 

degradation of software execution environment caused by 

software faults. In this paper, we propose software life-extension 

as an operational countermeasure against software aging and 

present the mathematical foundations of software life-extension 

by means of stochastic modeling. A semi-Markov process is used 

to capture the behavior of a system with software life-extension 

and to analyze the system’s availability and completion times of 

jobs running on it. The semi-Markov process can correctly model 

the time-based life-extension and allows us to derive the optimal 

trigger for starting life-extension in terms of system availability 

and mean job completion time. We also present an effective 

combination of software life-extension and software rejuvenation 

that can maximize the system availability compared with a system 

using either rejuvenation or software life-extension. 

 

Index Terms— Availability, job completion time, software 

aging, software life-extension, software rejuvenation 

ACRONYMS 

SMP semi-Markov process 

VM virtual machine 

CTMC continuous time Markov chain 

IFR increasing failure rate 

PRT preemptive-repeat discipline 

PRS preemptive-resume discipline 

LST Laplace-Stieltjes transform 

NOTATION 

𝐹𝑓(𝑡), 𝐹𝑒(𝑡) failure time distribution in UP state and 

life-extended state, respectively 

𝐺𝑟𝑐(𝑡), 𝐺𝑟𝑗(𝑡) recovery time distribution and rejuvenation 

time distribution 

u(𝑡) unit step function 

𝜏𝑅 , 𝜏𝐿 rejuvenation and life-extension trigger interval, 

respectively 

𝐴𝑅, 𝐴𝐿 , 𝐴𝐿𝑅 steady-state system availability by 

rejuvenation, life-extension and hybrid 

approach respectively 
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𝜋𝑖 steady-state probability in state i 

ℎ𝑖 mean sojourn time in state i 

𝐴𝑅
∗ , 𝐴𝐿

∗ , 𝐴𝐿𝑅
∗  maximum steady-state availabilities had by 

taking rejuvenation, life-extension, and hybrid 

approaches respectively 

𝜏𝑅
∗ , 𝜏𝐿

∗ optimum rejuvenation and life-extension 

trigger interval, respectively 

𝑟𝑓(𝑡), 𝑟𝑒(𝑡) failure rate functions with respect to 𝐹𝑓(𝑡) and 

𝐹𝑒(𝑡) 

𝜏𝐿 life-extension trigger interval 

𝑈𝐿𝑅 , 𝐷𝐿𝑅 fractions of up-time and downtime in 𝐴𝐿𝑅 

T(𝑥) random variable for job completion time for x 

units  of work requirement 

Φ𝑇
~(𝑠, 𝑥), 

Φ𝑇𝐿
~ (𝑠, 𝑥) 

LSTs of completion times of jobs running on 

aging system and system using life-extension, 

respectively 

𝐺𝑟𝑐
~ (𝑠) LST of recovery time  

𝑟 decrease in job processing rate 

I. INTRODUCTION 

OFTWARE faults or bugs are major sources of unreliability 

affecting software-based IT systems. As software is used 

extensively in mission-critical infrastructures such as 

telecommunication networks, industrial plants, banking and 

transportation systems, the impact of software bugs is more 

significant. Even if modern testing and debugging techniques 

are employed, complete removal of latent software bugs is 

extremely difficult and/or prohibitively expensive. Hence, 

software systems tend to suffer from residual bugs that lead to 

unexpected system failures. To mitigate the adverse effects of 

residual bugs on IT system reliability, maintenance operations 

such as software updates and data backups are essential in 

practice.  

Aging-related bugs are a category of bug by which the 

software aging problem is induced. Software aging is the 

phenomenon of progressive degradation of the software 

execution environment and it increases the failure rate of 

software [1]. A typical example of software aging is a 

progressive increase in memory consumption that causes 

memory leaks. Detection of aging related-bugs before 

execution is usually difficult because software aging only 

manifests itself in specific execution environments. 

Software rejuvenation is a well-known operational measure 

for mitigating the aging problem [2]. It is a preventive 

maintenance technique that cleans up the internal states of the 
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software execution environment by restarting or resetting 

before the software faces serious performance degradation 

and/or failure. Although software rejuvenation can prevent 

system failures due to software aging, it involves downtime 

overhead due to restarts. This downtime overhead may not be 

acceptable for certain applications. For example, software 

rejuvenation is unsuitable for applications that process long 

jobs over the course of days or even months, since it erases all 

the intermediate results by resetting the execution environment. 

It is vital for such applications to keep running as long as 

possible during their mission period. 

In our previous study [3], we presented an alternative 

countermeasure to software aging; called software 

life-extension, it is a preventive maintenance technique that 

prolongs the lifetime of software execution as long as possible 

in the face of software aging. If failures caused by software 

aging can be postponed for a while, users or applications may 

effectively use the extended residual lifetime. As an example, if 

the content of an application with a memory cache is preserved 

during the extended lifetime, it might be possible to finish the 

user sessions within its lifetime or save the cached content in 

persistent storage before encountering a failure. This approach 

is particularly useful for long-running mission-critical 

applications which require continuous up-time. 

In this paper, we further investigate the effectiveness of 

software life-extension against software aging. In contrast to 

the simple Continuous Time Markov Chain model presented in 

[3], we reformulate the system’s behavior with a semi-Markov 

process (SMP). The SMP allows us to use a general distribution 

for the failure time distribution and to correctly represent the 

behavior of a time-based software life-extension whose interval 

is deterministic. By analyzing the SMP, we find the optimum 

life-extension interval that can maximize the system 

availability. On the basis of the theoretical foundation of SMP, 

we can theoretically clarify the conditions under which the 

unique optimum life-extension interval exists that have never 

been addressed in the previous literature. Moreover, we 

propose an effective hybrid approach in which software 

life-extension is followed by rejuvenation. The extended SMP 

that captures the behavior of the system with the hybrid 

approach is then used to find the optimum combination of 

intervals for life-extension and rejuvenation that maximizes the 

system availability. We also show the impact of the software 

life-extension on the completion time distribution of jobs 

running on the software system. Through a numerical study, we 

show that the hybrid approach is a better option than relying on 

solely either rejuvenation or life-extension in terms of both 

system availability and job completion time. 

The rest of the paper is organized as follows. Section II 

introduces the general concept of software life-extension and 

reviews our feasibility study on it. Section III presents the SMP 

for software systems using rejuvenation, life-extension, and 

their combination. By conducting a steady-state analysis of 

SMP, we find the optimum life-extension interval that 

maximizes system availability. In Section IV, we analyze the 

job completion time distributions based on the SMPs in which 

the preemption type in each state is considered. In Section V, 

we describe a numerical study showing that the hybrid 

approach is the best in terms of system availability. The 

optimum life-extension interval in terms of mean job 

completion time is also presented. Section VI reviews related 

work and Section VII provides discussion. Finally, we 

conclude the paper in Section VIII. 

II. SOFTWARE LIFE-EXTENSION 

We consider software systems that may suffer from software 

aging. As introduced in the previous section, software 

rejuvenation is known to be an effective countermeasure to 

software aging and to improve the system availability. Software 

rejuvenation has been introduced for the sake of 

high-availability [2][8][11][13], system performance [18][21] 

[32] or job completion time performance [16]. Our new 

approach presented in this section is a potential alternative for 

software rejuvenation and it also aims to improve the 

availability and the performance of systems suffering from 

software aging problem. We start from the introduction to the 

concept of software life-extension. 

A. Concept 

The term software life-extension comes from a natural 

extension of the metaphor of software aging. Software aging 

represents the transient state of the software execution 

environment, where available resources gradually decrease due 

to aging-related software faults. The lifetime of software 

execution reaches its limit when the system depletes its 

resources as a result of the accumulated aging effects. Software 

life-extension aims at postponing such failures by impeding the 

progress of software aging. It is a temporal mitigation to extend 

the lifetime of the execution environment, but it does not 

provide a radical solution to the fault causing the software 

aging. To extend the lifetime of software execution, 

supplemental resources could be assigned to the execution 

environment if the application can make use of them. 

Alternatively, software aging can be impeded by decreasing the 

workload, provided that the rate of aging depends on the 

workload. These approaches do not require any changes to the 

source code and are often easily applicable by means of 

common maintenance operations, commands, or scripts. 

Therefore, software life-extension is a non-intrusive 

countermeasure to software aging. 

B. Means 

There are at least two conceptual ways to implement 

software life-extension: dynamic resource allocation and 

workload control. The first approach extends the lifetime of 

aged software through dynamic resource allocation in which 

the amount of resources is increased dynamically during 

execution. Recent advances in virtualization technologies make 

such resource allocations at runtime possible. For example, 

Xen hypervisor1 provides a functionality to virtualize hardware 

resources and allocate them to a Virtual Machine (VM). In this 

approach, we need standby resources which can be allocated 

dynamically and may be shared with other software execution 

1 Xen, http://www.xen.org/   
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environments. The use of standby resources may incur costs, 

such as higher resource usage costs imposed by the cloud 

and/or hosting service, and unavailability of other services 

sharing the standby resource. 

The second approach controls the workload so as to decrease 

the load on the aged software. This approach is limited to 

applications that work with a workload manager or have a load 

balancer in the front-end. The workload is reduced by assigning 

jobs to other instances or dropping job requests at the workload 

manager or load balancer. Software aging is often associated 

with the workload of the software [5][6]; therefore, aging can 

be impeded by reducing the workload. Although this helps to 

extend the lifetime of the software, resource exhaustion is 

inevitable as long as the software continues executing. This 

approach can be considered to be like designing a system that 

can survive even in the case of a component failure. Unlike 

typical degradable systems, software life-extension using 

workload control does not guarantee that the software will 

continue to execute. Even after a life-extension, the software 

may eventually encounter a failure due to resource exhaustion 

because life-extension itself does not remove the root-cause. 

Similar to the first approach, workload control may also incur 

additional problems, such as workload reallocations that 

overload other instances and the workload manager rejecting 

requests.  

Consequently, although both of these approaches are feasible 

in a real system they require specific system configurations, 

preparations and resources. The appropriate means should be 

decided considering the application type and system 

environment. In section II.D, we show the feasibility of 

software life-extension by taking the dynamic resource 

allocation approach. 

C. Advantages and drawbacks  

Regardless of the above-mentioned means, the primary 

advantage of software life-extension over software 

rejuvenation is continuous execution even as the software ages. 

Although software rejuvenation clears the aging states in a 

relatively short amount of downtime, it interrupts the software 

execution and loses potentially valuable data in memory. In 

contrast, software life-extension can maintain availability 

without any interruptions as long as possible. When an 

application requests a job requiring a long execution time and 

the question is whether or not the job will complete, 

life-extension is preferable to rejuvenation. Software 

life-extension is also suitable for applications with 

predetermined mission times. We can use it to meet the mission 

time requirement when the software is likely to finish execution 

before the mission time is up. 

Another benefit of software life-extension is its capability of 

preserving memory content, as mentioned in the Introduction. 

The persistence of data accumulated in memory is essential to 

some forms of software. Software rejuvenation completely 

erases such data, and thus, it may cause a serious degradation in 

service quality. A typical example of such important memory 

content is paging data in an operating system. The deletion of 

paging data during a reboot causes a performance degradation, 

as reported in [7]. In contrast, software life-extension attempts 

to preserve memory content as long as possible. While the 

content of memory is eventually lost at the end of the system’s 

life, the user may wisely use the residual lifetime to make a 

backup or take a snapshot and save it in persistent storage. 

As discussed earlier, software life-extension incurs 

additional resource usage costs, performance degradations, and 

degradations to the availability of other services. These are 

potential drawbacks if they become unacceptably large or 

unpredictable. The trade-off is the additional lifetime in 

exchange for these costs. Although rejuvenation imposes an 

additional downtime cost, it does not require a specific system 

configuration (e.g., a load balancer) or any standby resources.  

Unlike the hot-fix approach that corrects the source code by 

removing the source of software aging [4], software 

life-extension does not remove the source. Hence, relying on 

software life-extension for a long time may hinder the chances 

of finding and removing the root cause of the aging, which is 

something that system administrators should be aware of when 

they consider using life-extension. 

D. Feasibility study  

In our previous study [3], we implemented software 

life-extension by using the dynamic memory allocation method 

provided by Xen hypervisor. This subsection briefly reviews 

this experimental study of VM-based software life-extension. 

In the experiment we used memcached2, which is an 

in-memory key-value store for caching objects usually used as 

a cache server for database systems. It simply implements a 

hash table whose content is read or inserted using the 

corresponding keys. Memcached has a configuration parameter 

that specifies the maximum size of memory for cache data. This 

memory does not include the memcached footprint, and it can 

be set to a value exceeding the available memory in the system. 

Thus, setting inadequate limits will cause a memory leak after a 

gradual increase in memory consumption (i.e., software aging). 

If such a limit is embedded in software relying on memcached, 

the problem cannot be easily located and removed. 

In order to mitigate the software aging of memory 

consumption, we used the dynamic memory allocation method 

provided by Xen hypervisor. When a suspicious aging trend in 

memory usage was detected, we allocated additional memory 

to the VM executing the application in order to postpone the 

potential memory leak. The feasibility of this approach was 

studied with the experimental test bed shown in Figure 1. 

 
Figure 1. Test bed system for software life-extension 

 

In this test bed, a VM is created on Xen box, and 512MB of 

memory is initially allocated to the VM. The VM has another 
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2 Memcached, http://memcached.org/  
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512MB of swap space. A single instance of memcached is 

deployed on the VM, and it starts with a maximum limit of 

900MB. Although the limit is within the sum of available 

memory and swap space (512+512=1024MB), it does count the 

memcached footprint. A client program generates requests to 

the memcached for the load test that repeatedly inserts 1MB of 

unique data and reads it in a subsequent access. During the load 

generation, we do not insert any delays between consecutive 

requests. According to the number of insert requests, the 

memory consumption of memcached gradually increases 

because the data is cached in memory. When the number of 

insert events exceeds 500, memory swapping starts. If no 

counteractions are performed, the VM eventually crashes when 

it runs out of memory. Figure 2 shows the changes in free 

memory and swap usage in the VM during this experiment. The 

VM hanged up when it used up all of the free memory and 

available swap space. 

 
Figure 2. Decrease in free memory and increase in swap spaces 

 

We can postpone a failure by allocating additional memory 

to the VM, namely by using software life-extension. When the 

swap usage exceeds 400MB, we allocate 88MB of additional 

memory to the VM through Xen’s command line interface. The 

total memory is increased to 600MB and the lifetime of the VM 

is extended. Figure 3 shows the changes in the amount of free 

memory and swap usage as a result of software life-extension. 

The steep increase in swap usage pauses when the software 

life-extension is performed, but it begins again once the free 

memory is used up. The swap usage reaches 500MB around 

135 seconds. The VM does not immediately run out of memory, 

but the swap usage fluctuates around 500MB with a subtle 

upward trend. The execution state after software life-extension 

is not stable as in the beginning of the process, but the 

application can benefit from the prolonged lifetime.  

 
Figure 3. Changes in free memory and swap usage by software life-extension 

 

The effect is partly caused by the memory management 

mechanism in the operating system which attempts to survive 

with limited resources. The experimental results are discussed 

in detail in [3]. 

III. SYSTEM MODEL 

In order to study the advantages and drawbacks of software 

life-extension in relation to software rejuvenation, we presented 

continuous time Markov chain (CTMC) models in the previous 

paper [3]. The basic assumption of CTMC is that all the state 

transitions times are exponentially distributed. In this paper, we 

relax this assumption and devise a more general model using a 

semi-Markov process (SMP). The state transitions in SMP can 

follow any type of distribution. This property allows us to 

represent deterministic trigger for starting preventive 

operations (software rejuvenation and software life-extension). 

In the following subsections, we review the general SMP 

model for time-based software rejuvenation and the way to get 

the optimal software rejuvenation interval in terms of system 

availability. Next, we propose a SMP model for time-based 

software life-extension in which software life-extension is 

applied in a deterministic time interval after the latest restart. 

Interestingly, under specific conditions, software life-extension 

also has an optimal trigger interval in terms of system 

availability. We theoretically clarify this point in Section 0.B. 

Finally, Section 0.C describes an SMP model for a hybrid 

approach in which software life-extension is followed by 

software rejuvenation. 

A. Time-based rejuvenation model 

In 1995, Garg et al [8] were the first to model time-based 

software rejuvenation with Markov Regenerative Stochastic 

Petri Net (MRSPN). Later Suzuki et al. [9] and Chen et al. [10] 

introduced a three state SMP model that is equivalent to the 

original MRSPN model.  

 

 
Figure 4. SMP representing the system behavior with rejuvenation 

 

Figure 4 shows the general three-state SMP model for 

time-based software rejuvenation. In the previous decade, 

many researchers used this model to analyze the optimum 

software rejuvenation trigger interval for maximizing system 

availability or minimizing the downtime cost (e.g., [10][12]). In 

Figure 4, state 0 is the up state (the software is running). From 

state 0, the system enters either state 1, i.e., the rejuvenation 

state, or state 2, i.e., the failure state. The failure time 

distribution is represented by 𝐹𝑓(𝑡) , while the deterministic 

transition from state 0 to state 1 can be represented by a unit 

step function u(𝑡 − 𝜏𝑅), where 𝜏𝑅  is the rejuvenation trigger 

interval. The recovery time distributions from state 1 and state 2 

are represented by 𝐺𝑟𝑐(𝑡)  and 𝐺𝑟𝑗(𝑡) , respectively. The 

steady-state availability of the system AR is computed as the 
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steady-state probability of state 0 (𝜋0) [10]: 

𝐴𝑅 = 𝜋0 =
ℎ0

ℎ0 + ℎ1 (1 − 𝐹𝑓(𝜏𝑅)) + ℎ2𝐹𝑓(𝜏𝑅)
 (1) 

where h0, h1 and h2 are the mean sojourn times for the 

corresponding states: 

ℎ0 = ∫ (1 − 𝐹𝑓(𝑡)) 𝑑𝑡
𝜏𝑅

0

, ℎ1 = ∫ (1 − 𝐺𝑟𝑗(𝑡)) 𝑑𝑡
∞

0

,

ℎ2 = ∫ (1 − 𝐺𝑟𝑐(𝑡))𝑑𝑡
∞

0

 

(2) 

Dohi et al. [11] showed that expression (1) is strictly convex 

with respect to 𝜏𝑅 if 𝐹𝑓(𝑡) has the property of increasing failure 

rate (IFR). Since it is natural to assume that the IFR is caused by 

software aging, the above condition is likely to hold. If we 

assume 
𝑑𝐴(0)

𝑑𝜏𝑅
> 0 and 

𝑑𝐴(∞)

𝑑𝜏𝑅
< 0, the steady-state availability is 

maximized at 𝜏𝑅
∗ , which satisfies the following equation. 

(1 − 𝐹𝑓(𝜏𝑅
∗ )) [ℎ1 (1 − 𝐹𝑓(𝜏𝑅

∗ )) + ℎ2𝐹𝑓(𝜏𝑅
∗ )]

−
𝑑𝐹𝑓(𝜏𝑅

∗ )

𝑑𝜏𝑅

ℎ0(ℎ2 − ℎ1) = 0 
(3) 

The maximum steady-state availability is 

𝐴𝑅
∗ =

1 − 𝐹𝑓(𝜏𝑅
∗ )

1 − 𝐹𝑓(𝜏𝑅
∗ ) +

𝑑𝐹𝑓(𝜏𝑅
∗ )

𝑑𝜏𝑅
(ℎ2 − ℎ1)

 
(4) 

The optimum rejuvenation interval 𝜏𝑅
∗  is not represented 

symbolically as it is determined in non-linear equation (3). 

However, it can be obtained by taking a numerical approach as 

in [12]. 

B. Time-based life-extension model 

We construct an SMP model for software life-extension in an 

analogous way to software rejuvenation. The system is 

assumed to be failed with failure distribution 𝐹𝑓(𝑡), which is 

IFR due to software aging. If we apply software life-extension 

before a system failure, the system enters a new state whose 

failure rate must be smaller than the original state. To represent 

this state transition, we add a new life-extended state to the 

SMP. The proposed general SMP model is shown in Figure 5. 

 

 
Figure 5. SMP representing the behavior of a system with life-extension 

 

Similar to the rejuvenation model, state 0 and state 2 

represent the up and failed states, respectively. State 1 is a 

life-extended one that has an incoming transition from state 0 

and an outgoing transition to state 2. Unlike what happens with 

software rejuvenation, the system eventually fails regardless of 

whether life-extension is applied or not. In other words, 

software execution ends only in state 2. However, we can 

extend the lifetime of the software execution at an appropriate 

time. The failure time distribution changes from state 0 to state 

1. We denote the failure time distribution in state 1 as 𝐹𝑒(𝑡). If 

the software life-extension is applied in a deterministic time 

interval 𝜏𝐿 , the distribution from state 0 to state 1 can be 

represented as a unit step function u(𝑡 − 𝜏𝐿). We use the same 

distribution 𝐺𝑟𝑐(𝑡) for the recovery transition from state 2. Our 

previous study [3] assumed that the failure time distribution is 

hypo-exponential, but the presented SMP model allows 𝐹𝑓(𝑡) 

to be a general distribution. The SMP model is a generalization 

of our previous model for software life-extension. Note that the 

Markov property in state transition from state 0 to state 1 may 

impact on the applicability of the model if the failure time 

distribution  𝐹𝑒(𝑡) depends on the time spent in the state 0. We 

will discuss such a special case in Section VII. 

Using the two-stage method for SMP [14], the steady-state 

availability of the system can be computed from the sum of 

steady-state probabilities for state 0 and state 1: 

𝐴𝐿 = 𝜋0 + 𝜋1 =
ℎ0 + ℎ1 (1 − 𝐹𝑓(𝜏𝐿))

ℎ0 + ℎ1 (1 − 𝐹𝑓(𝜏𝐿)) + ℎ2

 (5) 

where 

ℎ0 = ∫ (1 − 𝐹𝑓(𝑡)) 𝑑𝑡
𝜏𝐿

0

, ℎ1 = ∫ (1 − 𝐹𝑒(𝑡))𝑑𝑡
∞

0

,

ℎ2 = ∫ (1 − 𝐺𝑟𝑐(𝑡))𝑑𝑡
∞

0

 

(6) 

Steady-state availability AL can be considered as a function 

of 𝜏𝐿. Define the failure rate function 𝑟𝑓(𝑡) 

𝑟𝑓(𝑡) =
1

1 − 𝐹𝑓(𝑡)

𝑑𝐹𝑓(𝑡)

𝑑𝑡
 (7) 

Similar to the analysis of optimum rejuvenation interval 

reviewed in the previous section, it is interesting to clarify the 

condition where the value of AL is maximized. Since the 

life-extension changes the state to prolong the time to failure, 

the effectiveness of life-extension relies on the relation between 

the failure time distribution 𝐹𝑓(𝑡)  and 𝐹𝑒(𝑡) . The following 

theorem indicates that the optimal trigger of life-extension 

determines by the relation of the failure rate function 𝑟𝑓(𝑡) and 

the mean sojourn time ℎ1, which are characterized by 𝐹𝑓(𝑡) and 

𝐹𝑒(𝑡), respectively.  

 

Theorem 1. When the failure time distribution 𝐹𝑓(𝑡) is IFR 

and the mean sojourn time in the life-extended state ℎ1 satisfies 

the inequality, 𝑟𝑓(0) < 1 ℎ1⁄ < 𝑟𝑓(∞), there is a unique value 

𝜏𝐿
∗ that maximizes the value of AL. 

 

Proof. In the following proof, we show that 𝐴𝐿(𝜏𝐿) is concave 

in the range of 𝜏𝐿 > 0 under the given condition. First taking 

the derivative of 𝐴𝐿(𝜏𝐿) in terms of 𝜏𝐿, we get  

𝑑𝐴𝐿(𝜏𝐿)

𝑑𝜏𝐿

=
ℎ2 (1 − 𝐹𝑓(𝜏𝐿) − ℎ1

𝑑𝐹𝑓(𝜏𝐿)

𝑑𝜏𝐿
)

(ℎ0 + ℎ1 (1 − 𝐹𝑓(𝜏𝐿)) + ℎ2)
2 (8) 

The sign of the derivative depends on the numerator and 

especially on the following term, 

1 −
1

1 − 𝐹𝑓(𝜏𝐿)
ℎ1

𝑑𝐹𝑓(𝜏𝐿)

𝑑𝜏𝐿

= 1 − ℎ1𝑟𝑓(𝜏𝐿) (9) 

1 0 2
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The failure rate function 𝑟𝑓(𝑡)  is a strictly monotonically 

increasing function, as the corresponding distribution 𝐹𝑓(𝑡) is 

IFR. The sign of (9) changes from negative to positive at a 

certain value in the range of 𝜏𝐿 > 0 under the given condition 

𝑟𝑓(0) < 1 ℎ1⁄ < 𝑟𝑓(∞) . As a result 𝐴𝐿(𝜏𝐿)  is a concave 

function in 𝜏𝐿 > 0  and the value is maximized at 𝜏𝐿
∗  that 

satisfies ℎ1 = 1 𝑟𝑓(𝜏𝐿)⁄ . 

The optimum interval 𝜏𝐿
∗ is not represented symbolically, but 

the value can be numerically obtained in a similar way as the 

optimum software rejuvenation interval. 

Intuitively, the failure rate in state 0 increases over time, and 

whenever it reaches the mean failure rate in state 1 (1 ℎ1⁄ ), it is 

the best timing at which to move to state 1. Instead of a 

decreased failure rate in state 1, there may be a performance 

penalty after life-extension; this is addressed in the job 

completion time analysis presented in Section IV. 

C. Hybrid approach model 

Software rejuvenation and software life-extension are not 

exclusive. Rather, they can be combined together in an epoch of 

the execution lifecycle. We devised such a hybrid approach in 

which software life-extension is followed by software 

rejuvenation. The corresponding SMP is drawn in Figure 6. 

 

 
Figure 6. SMP representing the system behavior with both rejuvenation and 

life-extension 

 
The model has both a life-extended state (state 1) and a 

rejuvenation state (state 3). Software life-extension is applied at 

time 𝜏𝐿  after the system starts in state 0, while software 

rejuvenation is applied at time 𝜏𝑅  after the system enters in 

state 1. The recovery time distributions from state 2 and state 3 

are represented by 𝐺𝑟𝑐(𝑡)  and 𝐺𝑟𝑗(𝑡) , respectively, and the 

failure time distribution in state 1 is denoted as 𝐹𝑒(𝑡). In this 

system, software rejuvenation can be used after a software 

life-extension so as to minimize the potential downtime. Note 

that the SMP model asymptotically becomes the time-based 

life-extension model by taking 𝜏𝑅 to infinity, and it becomes 

the time-based rejuvenation model by taking 𝜏𝑅 to be 0. In the 

following discussion, we exclude these extreme cases and 

assume that 0 < 𝜏𝑅 < ∞. 

The steady-state availability of the system is the sum of the 

steady-state probabilities of state 0 and state 1, as computed by 

𝐴𝐿𝑅 = 𝜋0 + 𝜋1 =
𝑈𝐿𝑅

𝑈𝐿𝑅 + 𝐷𝐿𝑅

 (10) 

where 

𝑈𝐿𝑅 = ℎ0 + ℎ1 (1 − 𝐹𝑓(𝜏𝐿)) 

𝐷𝐿𝑅 = ℎ2 [𝐹𝑓(𝜏𝐿) + (1 − 𝐹𝑓(𝜏𝐿)) 𝐹𝑒(𝜏𝑅)]

+ ℎ3 (1 − 𝐹𝑓(𝜏𝐿)) (1 − 𝐹𝑒(𝜏𝑅)) 

and 

ℎ0 = ∫ (1 − 𝐹𝑓(𝑡)) 𝑑𝑡
𝜏𝐿

0

, ℎ1 = ∫ (1 − 𝐹𝑒(𝑡))𝑑𝑡
𝜏𝑅

0

,  

ℎ2 = ∫ (1 − 𝐺𝑟𝑐(𝑡))𝑑𝑡
∞

0

, ℎ3 = ∫ (1 − 𝐺𝑟𝑗(𝑡)) 𝑑𝑡
∞

0

 

(11) 

We can control both the life-extension interval 𝜏𝐿  and 

software rejuvenation interval 𝜏𝑅 , and thus, the steady-state 

availability ARL can be considered to be a bivariate function of 

𝜏𝐿  and 𝜏𝑅 . Let us define the hazard rate functions 𝑟𝑓(𝑡) and 

𝑟𝑒(𝑡) as 

𝑟𝑓(𝑡) =
1

1 − 𝐹𝑓(𝑡)

𝑑𝐹𝑓(𝑡)

𝑑𝑡
,    𝑟𝑒(𝑡) =

1

1 − 𝐹𝑒(𝑡)

𝑑𝐹𝑒(𝑡)

𝑑𝑡
 (12) 

The following theorem is derived for analyzing the optimum 

combination of life-extension interval and rejuvenation interval 

that maximizes ALR. 

 

Theorem 2. When both the failure time distribution 𝐹𝑓(𝑡) and 

the failure time distribution in life-extended state 𝐹𝑒(𝑡) are IFR, 

and the nonlinear function 𝑍 = ℎ1ℎ2 − (1 − 𝐹𝑒(𝜏𝑅))(ℎ2 −

ℎ3)ℎ0  is always smaller than 0, and ℎ2 > ℎ3 , the optimum 

combination of the life-extension interval 𝜏𝐿 and rejuvenation 

interval 𝜏𝑅 that maximizes ARL is given by the solution of the 

following system of equations. 

{
𝐷𝐿𝑅 − 𝑟𝑒(𝜏𝑅)(ℎ2 − ℎ3)𝑈𝐿𝑅 = 0 

𝐷𝐿𝑅 + 𝑟𝑓(𝜏𝐿)𝑍 = 0                        
 (13) 

 

Proof. First, we prove that ARL is a strictly concave function in 

terms of 𝜏𝑅. Then we show the function is also strictly concave 

on 𝜏𝐿  under the given condition. The derivative of ARL with 

respect to 𝜏𝑅 is  

𝜕𝐴𝐿𝑅

𝜕𝜏𝑅

=
1

(𝑈𝐿𝑅 + 𝐷𝐿𝑅)2
[
𝜕𝑈𝐿𝑅

𝜕𝜏𝑅

𝐷𝐿𝑅 −
𝜕𝐷𝐿𝑅

𝜕𝜏𝑅

𝑈𝐿𝑅] (14)  

The derivatives of URL and DRL with respect to 𝜏𝑅 are  

𝜕𝑈𝐿𝑅

𝜕𝜏𝑅

= (1 − 𝐹𝑓(𝜏𝐿)) (1 − 𝐹𝑒(𝜏𝑅)) 

𝜕𝐷𝐿𝑅

𝜕𝜏𝑅

=
𝜕𝐹𝑒(𝜏𝑅)

𝜕𝜏𝑅

(ℎ2 − ℎ3) (1 − 𝐹𝑓(𝜏𝐿)) 

(15)  

Applying (15) to (14), the sign of (14) is determined by the 

following term in the numerator. 

𝑊 = 𝐷𝐿𝑅 − 𝑟𝑒(𝜏𝑅)(ℎ2 − ℎ3)𝑈𝐿𝑅 (16) 

Taking the derivative of W with respect to 𝜏𝑅 and using (15), 

we get 

𝜕𝑊

𝜕𝜏𝑅

=
𝜕𝐷𝐿𝑅

𝜕𝜏𝑅

− (ℎ2 − ℎ3) [
𝜕𝑟𝑒(𝜏𝑅)

𝜕𝜏𝑅

𝑈𝐿𝑅 + 𝑟𝑒(𝜏𝑅)
𝜕𝑈𝐿𝑅

𝜕𝜏𝑅

] 

= −
𝜕𝑟𝑒(𝜏𝑅)

𝜕𝜏𝑅

(ℎ2 − ℎ3) (ℎ0 + (1 − 𝐹𝑓(𝜏𝐿)) ℎ1) < 0 

(17) 

Since W is strictly decreasing, ARL is strictly concave in 𝜏𝑅. The 

optimum rejuvenation interval is given by 𝜏𝑅
∗ , which satisfies 

W=0. The maximum availability is written as 

1 0 2
Up
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𝐴𝐿𝑅
∗ =

1

1 + 𝑟𝑒(𝜏𝑅
∗ )(ℎ2 − ℎ3)

 (18) 

With the optimal rejuvenation interval 𝜏𝑅
∗ , we consider ALR as a 

function of 𝜏𝐿 and take the derivative with respect to 𝜏𝐿: 

𝜕𝐴𝐿𝑅

𝜕𝜏𝐿

=
1

(𝑈𝐿𝑅 + 𝐷𝐿𝑅)2
[
𝜕𝑈𝐿𝑅

𝜕𝜏𝐿

𝐷𝐿𝑅 −
𝜕𝐷𝐿𝑅

𝜕𝜏𝐿

𝑈𝐿𝑅] (19) 

From the numerator, the sign of the derivative is determined by  

𝑉 = 𝐷𝐿𝑅 + 𝑟𝑓(𝜏𝐿)𝑍 (20) 

Taking the derivative of V with respect to 𝜏𝐿, we get 

𝜕𝑉

𝜕𝜏𝐿

=
𝜕𝐷𝐿𝑅

𝜕𝜏𝐿

+
𝜕𝑟𝑓(𝜏𝐿)

𝜕𝜏𝐿

𝑍 − 𝑟𝑓(𝜏𝐿)
𝜕𝑍

𝜕𝜏𝐿

=
𝜕𝑟𝑓(𝜏𝐿)

𝜕𝜏𝐿

𝑍 < 0 (21) 

Under the given condition, V is strictly decreasing in 𝜏𝐿 and 

ALR is strictly concave in 𝜏𝐿  as well. The availability ALR is 

maximized when V=0. Consequently, the optimum 

combination of 𝜏𝐿 and 𝜏𝑅 which maximizes ALR is given by the 

solution of the system of equations W=0 and V=0. 

 

The optimum life-extension interval and rejuvenation 

interval cannot be expressed in a symbolic manner, but they can 

be computed through a numerical approach like a gradient 

search method used for analyzing the optimum rejuvenation 

intervals in a virtualized system [13]. Numerical examples are 

presented in Section V. 

IV. JOB COMPLETION TIME ANALYSIS 

In this section, we analyze the distribution of completion 

times of jobs running on the software system based on the 

SMPs presented in the previous section. As a result of the 

preventive maintenance operations like software rejuvenation 

and life-extension, the software execution status changes and 

the executing job is preempted at the beginning of the new state. 

Performing software rejuvenation causes a preemptive-repeat 

(PRT) [15] discipline in which the job restarts from the 

beginning. In contrast, software life-extension does not lose its 

execution status; it thus follows a preemptive-resume (PRS) 

[15] discipline wherein the job resumes at the point it was 

preempted. The job completion time to process all the 

requested work is clearly affected by the preemption type as 

well as the state transitions. Here, we will perform a job 

completion time analysis on aging software without any 

preventive operations and one on software with a time-based 

life-extension. 

A. Aging software 

If the software system suffering from aging is not controlled 

with any preventive operations, its behavior can be captured by 

a two state model composed of an up state and a down state. Let 

𝐹𝑓(𝑡)  and 𝐺𝑟𝑐(𝑡)  denote the failure time distribution and 

recovery time distribution. Since the job execution is dropped 

when the system goes down, the down state is considered to be 

a PRT state. Once the job is interrupted in the down state, it 

needs to be restarted after recovery. 

Define T(𝑥) to be the amount of time needed to complete a 

job with a work requirement of x units. Suppose that the 

execution environment processes a work unit in an hour,  T(𝑥) 

is equal to x if the job started in the up state completes before 

the first failure occurrence. If the job encounters a failure at 

time h (>0), the job needs to be restarted after the system 

recovers. In this case, the total job execution time becomes the 

sum of h, recovery time, and T(𝑥). Taking the Laplace-Stieltjes 

transform (LST) with respect to t, the LST of the job 

completion time Φ𝑇
~(𝑠, 𝑥) satisfies the following equation: 

Φ𝑇
~(𝑠, 𝑥)|ℎ = {

𝑒−𝑠𝑥, ℎ ≥ 𝑥

𝑒−𝑠ℎ𝐺𝑟𝑐
~ (𝑠)Φ𝑇

~(𝑠, 𝑥), ℎ < 𝑥
 (22)  

where 𝐺𝑟𝑐
~ (𝑠)  is the LST of 𝐺𝑟𝑐(𝑡) . Unconditioning on h, 

Φ𝑇
~(𝑠, 𝑥) is expressed as 

Φ𝑇
~(𝑠, 𝑥) = 𝑒−𝑠𝑥 ∫ 𝑑𝐹𝑓(ℎ)

∞

𝑥

+ 𝐺𝑟𝑐
~ (𝑠)Φ𝑇

~(𝑠, 𝑥) ∫ 𝑒−𝑠ℎ𝑑𝐹𝑓(ℎ)
𝑥

0

 

=
𝑒−𝑠𝑥 (1 − 𝐹𝑓(𝑥))

1 − 𝐺𝑟𝑐
~ (𝑠) ∫ 𝑒−𝑠ℎ𝑑𝐹𝑓(ℎ)

𝑥

0

 

(23)  

The expected job completion time is computed from the 

moment generation property of LST [14]: 

𝐸(𝑇(𝑥)) = −
𝜕Φ𝑇

~(𝑠, 𝑥)

𝜕𝑠
|

𝑠=0

 (24) 

Now let us consider a system using software rejuvenation to 

prevent a failure caused by software aging. The system state 

transition can be captured by the SMP shown in Section III.A. 

We assume that the job execution begins immediately after 

restarting the execution environment (in state 0). In this system, 

the rejuvenation time interval 𝜏𝑅 must be larger than the work 

requirement x; otherwise, the job never completes. Under this 

condition 𝜏𝑅 > 𝑥, the job completion time distribution is the 

same as that without rejuvenation. Therefore, the LST of the 

job completion time is represented by (23), and the expected 

job completion time can be computed from (24). 

B. Job completion time in the case of life-extension 

Next, we analyze the job completion time on a system using 

life-extension. The system behavior follows the state 

transitions specified in Section III.B. Again, we assume that the 

job execution begins just after restarting the execution 

environment (in state 0). When the life-extension interval 𝜏𝐿 is 

larger than x, the job never runs in a life-extended state (State 1), 

and the job completion time is the same as in the case of the 

aging system studied in Section IV.A. In the case of 𝜏𝐿 ≤ 𝑥, 

there are two scenarios in which the job is dropped as a result of 

a software failure: the software execution fails 1) before 

life-extension and 2) after life-extension. 

Conditioned by the failure time h, the LST of job completion 

time is represented by 

Φ𝑇𝐿
~ (𝑠, 𝑥)|ℎ = {

𝑒−𝑠𝑥 , ℎ ≥ 𝑥

𝑒−𝑠ℎ𝐺𝑟𝑐
~ (𝑠)Φ𝑇𝐿

~ (𝑠, 𝑥), ℎ < 𝑥
 (25) 

Because the failure time distribution changes to 𝐹𝑒(𝑡)  after 

software life-extension at 𝑡 = 𝜏𝐿 , the LST of the job 

completion time Φ𝑇𝐿
~ (𝑠, 𝑥) is 
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Φ𝑇𝐿
~ (𝑠, 𝑥) = 𝑒−𝑠𝑥 (1 − 𝐹𝑓(𝜏𝐿)) ∫ 𝑑𝐹𝑒(ℎ − 𝜏𝐿)

∞

𝑥

+ 𝐺𝑟𝑐
~ (𝑠)Φ𝑇𝐿

~ (𝑠, 𝑥) [∫ 𝑒−𝑠ℎ𝑑𝐹𝑓(ℎ)
𝜏𝐿

0

+ (1 − 𝐹𝑓(𝜏𝐿)) ∫ 𝑒−𝑠ℎ𝑑𝐹𝑒(ℎ − 𝜏𝐿)
𝑥

𝜏𝐿

] 

 

=
𝑒−𝑠𝑥 (1 − 𝐹𝑓(𝜏𝐿)) (1 − 𝐹𝑒(𝑥 − 𝜏𝐿))

1 − 𝐺𝑟𝑐
~ (𝑠)Ψ𝑇𝐿

~ (𝑠, 𝑥)
, (26) 

where 

Ψ𝑇𝐿
~ (𝑠, 𝑥) = ∫ 𝑒−𝑠ℎ𝑑𝐹𝑓(ℎ)

𝜏𝐿

0

+ (1 − 𝐹𝑓(𝜏𝐿)) ∫ 𝑒−𝑠ℎ𝑑𝐹𝑒(ℎ − 𝜏𝐿)
𝑥

𝜏𝐿

 

The above analysis does not take into account the 

performance degradation after the software life-extension. If 

the job processing rate decreases in the life-extended state (i.e., 

State 1) by 𝑟(0 < 𝑟 ≤ 1), Φ𝑇𝐿
~ (𝑠, 𝑥) is expressed as 

Φ𝑇𝐿
~ (𝑠, 𝑥) 

=
𝑒−𝑠(𝜏𝐿+

𝑥−𝜏𝐿
𝑟

) (1 − 𝐹𝑓(𝜏𝐿)) (1 − 𝐹𝑒 (
𝑥 − 𝜏𝐿

𝑟
))

1 − 𝐺𝑟𝑐
~ (𝑠)Ψ𝑇𝐿

~ (𝑠, 𝑥)
 

(27)  

where 

Ψ𝑇𝐿
~ (𝑠, 𝑥) = ∫ 𝑒−𝑠ℎ𝑑𝐹𝑓(ℎ)

𝜏𝐿

0

 

+ (1 − 𝐹𝑓(𝜏𝐿)) ∫ 𝑒−𝑠(𝜏𝐿+
ℎ−𝜏𝐿

𝑟
)𝑑𝐹𝑒(ℎ − 𝜏𝐿)

𝜏𝐿+
𝑥−𝜏𝐿

𝑟

𝜏𝐿

 

The above expression is a generalization of  (26) and it becomes 

identical to (26)  when r=1. The expected job completion time 

is obtained as 

𝐸(𝑇(𝑥)) = −
𝜕Φ𝑇𝐿

~ (𝑠, 𝑥)

𝜕𝑠
|

𝑠=0

 (28)  

The job completion time distribution in the hybrid system 

model in Section III.C is also characterized by (28), provided 

that the sum of 𝜏𝐿 and 𝜏𝑅 𝑟⁄  is larger than or equal to the work 

requirement x. If 𝜏𝐿 +
𝜏𝑅

𝑟
< 𝑥, the rejuvenation always takes 

place before job completion and hence the job can never 

complete. 

V. NUMERICAL EXAMPLES 

Our numerical experiments aim to compare the software 

rejuvenation, life-extension, and hybrid approaches. For the 

software system suffering from software aging, we first analyze 

the optimum intervals for software rejuvenation and 

life-extension that maximize the steady-state system 

availability. Next, we study the impact on the job completion 

time on the basis of the model presented in Section IV. 

Since the failure rate affected by software aging increases 

over time, we assume that the failure time distribution is IFR. 

The hypo-exponential distribution is known to be an IFR 

distribution regardless of its parameter values, and it has been 

widely used for modeling software aging (e.g., [2][8][11]). We 

thus define the failure time distributions as two-stage 

hypo-exponential distributions, 𝐹𝑓(𝑡) = 𝐻𝑌𝑃𝑂(𝜆1, 𝜆2)  and 

𝐹𝑒(𝑡) = 𝐻𝑌𝑃𝑂(𝜆1, 𝜆3)  where 𝜆1,  𝜆2  and 𝜆3  are parameters 

that satisfy 𝜆2 > 𝜆3 . The recovery time distribution and 

rejuvenation time distribution are assumed to be exponential 

with rates μ and α, respectively. The parameter values used in 

the examples are summarized in TABLE I; most of them are 

taken from [16]. 

 
TABLE I. DEFAULT PARAMETER VALUES 

Parameters Values Descriptions 

𝜆1 0.002976190 [1/h] 
Parameters for failure time  

distributions 
𝜆2 0.005952381 [1/h] 

𝜆3 0.001984127 [1/h] 

𝜇 1 [1/h] Reactive recovery rate 

𝛼 12 [1/h] Rejuvenation rate 

𝑥 360 [units] Amount of work requirements 

 

A. Steady-state availability 

Figure 7 plots the steady-state availability achieved by 

time-based software rejuvenation and time-based software 

life-extension for default parameter values and varying the 

maintenance intervals. There exists an optimum rejuvenation 

interval, since 𝐹𝑓(𝑡)  is IFR, 𝜇 < 𝛼,
𝑑𝐴(0)

𝑑𝜏𝑅
> 0 , and 

𝑑𝐴(∞)

𝑑𝜏𝑅
< 0 

[11]. From Theorem 1, an optimum life-extension interval also 

exists. TABLE II lists the optimum rejuvenation and 

life-extension intervals and the corresponding steady-state 

availabilities. 

 
Figure 7. Steady-state availabilities achieved by software rejuvenation or 

life-extension 

 
TABLE II. OPTIMUM TIME INTERVAL AND MAXIMUM AVAILABILITY 

Operation Optimum interval [hours] Maximum availability 

Rejuvenation 144.936 0.99858628 

Life-extension 99.612 0.99886750 

 

As can be seen, rejuvenation and life-extension have 

different optimum intervals that maximize system availability. 

With the default parameter values, software life-extension 

achieves higher availability than rejuvenation. However, 

software rejuvenation potentially achieves higher availability 

than life-extension, for example when the rejuvenation rate 𝛼 is 

high. The impacts of 𝛼  and 𝜆3  on the maximum system 

availability are analyzed by a sensitivity analysis below. 

500 1000 1500 2000

0.9975

0.9980

0.9985

Availability

Trigger intervals for rejuvenation τR and life-extension τL [hours]

System with rejuvenation

System with life-extension



 

 

9 

For a system using only software rejuvenation, the optimum 

rejuvenation interval depends on the rejuvenation rate 𝛼. Figure 

8 plots the maximum availability versus 𝛼, where each plot is 

labeled with the optimum interval 𝜏𝑅
∗ . 

 
Figure 8. Sensitivity to rejuvenation rate on maximum availability 

 

As 𝛼 increases, the downtime overhead due to rejuvenation 

decreases; thus, the optimum rejuvenation interval becomes 

shorter and the maximum steady-state availability increases. 

Similarly, the optimum life-extension interval depends on 𝜆3, 

which determines the failure time distribution in the 

life-extended state. Since the mean time to failure given 

𝐻𝑌𝑃𝑂(𝜆1, 𝜆3) is 
1

𝜆1
+

1

𝜆3
, a larger 𝜆3 shortens the lifetime. 

 
Figure 9. Sensitivity of maximum availability to parameter 𝝀𝟑 

 

Figure 9 plots the maximum availability values achieved by 

the optimum life-extension intervals 𝜏𝐿
∗  versus 𝜆3 . As 𝜆3 

increases, the optimum life-extension interval gradually 

increases and the maximum availability consequently 

decreases. 

 
Figure 10. Steady-state system availability with hybrid approach 

 

Next, we consider the hybrid model that contains two control 

parameters: a life-extension interval 𝜏𝐿  and rejuvenation 

interval 𝜏𝑅. Figure 10 plots the steady-state availability values 

computed by varying 𝜏𝐿 and 𝜏𝑅 from one hour to 2000 hours. 

From Theorem 2, there exists a unique optimum combination 

of 𝜏𝑅 and 𝜏𝐿 at which steady-state availability is maximized. In 

this example, the maximum steady-state availability is 0.99926 

which is achieved at (𝜏𝐿 , 𝜏𝑅) = (52.7, 207.9). Thus, the hybrid 

approach potentially has higher system availability compared 

with the individual approaches. 

B. Job completion time 

Suppose the software system starts processing a job with 

work requirements x at the beginning of the up state. The job 

completion time distribution can be characterized by either (23) 

or (26) depending on the preemption type. Since Φ𝑇
~(𝑠, 𝑥) and 

Φ𝑇𝐿
~ (𝑠, 𝑥) are in LST form, we take numerical inversion using a 

Mathematica library [17]. We set the performance degradation 

rate r in the life-extended state to 1.0, 0.8, or 0.5 and compare 

the results. 

Figure 11 shows the resulting job completion time 

distributions for the aging system without life-extension and 

the one using software life-extension with different degradation 

rates. The life-extension interval is set to 99.612, which is the 

optimum interval obtained in Section 5.1. 

 

 
Figure 11. Job completion time distributions for aging system and the system 

with life-extension 

 

If there is no performance degradation after the 

life-extension (i.e., r=1.0), the system with life-extension can 

clearly complete the job faster than the system without 

life-extension. Note that it takes at least 360 hours to complete 

the job, since the work processing rate is 1 unit/hour in both the 

cases. When the performance degradation occurs after 

life-extension, the minimum job completion time is prolonged 

accordingly. The more significant the degradation in 

processing rate, the longer the minimum job completion time 

becomes. Although life-extension has still an advantage when 

r=0.8, it is no more beneficial than the system without 

life-extension when r=0.5. This means re-execution after a 

failure without life-extension is more effective than extending 

the software execution by reducing the processing rate. 
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Therefore, the performance degradation rate r is critical to 

designing an efficient software life-extension as far as the job 

completion time is concerned. 

Since the completion time performance is influenced by the 

life-extension interval 𝜏𝐿 , the impact of the interval can be 

evaluated in terms of the mean job completion time (28). Figure 

12 plots the mean job completion times versus 𝜏𝐿. 

 

 
Figure 12. Mean job completion time versus life-extension interval 

 

When 𝜏𝐿  is larger than 𝑥 = 360 , life-extension is never 

applied during the job execution, and hence, the mean job 

completion time is the same as the mean of the aging system 

without life-extension (517.808 hours). Interestingly, if 𝜏𝐿 ≤ 𝑥, 

there is an optimum life-extension interval that minimizes the 

mean job completion time. If there is no performance 

degradation (r=1.0), the mean job completion time is 

minimized at 𝜏𝐿 = 130.25, at which point the job completion 

time is 404.2 hours. This is the optimum life-extension interval 

in terms of the mean job completion time. In the case of the 

performance degradations with r=0.8 and 0.5, the optimum 

intervals are 𝜏𝐿 = 236.49 and 347.53, and the corresponding 

minimum mean job completion times are 464.19 and 516.42 

hours.  

The results of our numerical experiments show that the 

optimum intervals for preventive maintenance (rejuvenation, 

life-extension or both) differ depending on the measure of 

interest (system availability or mean job completion time) as 

well as the parameter values. The proposed analytical 

approaches are useful for designing systems with those 

maintenance operations. 

VI. RELATED WORK 

Software aging affects a wide variety of software-based 

infrastructure systems that tend to operate for long periods of 

time. The early studies characterized the phenomena in 

software products such as Apache web server [18], Linux 

operating system [19], and Java Virtual Machine [20], as well 

as telecommunication systems [21]. Recently, software aging 

has been studied in advanced software systems like Xen-based 

server virtualized systems [7][22], cloud computing systems 

using Eucalyptus [23], and database systems using MySQL 

server [24]. It is typically caused by aging-related software 

faults [1], and researchers have compiled statistics on such 

faults by making thorough investigations of problem reports. In 

particular, an investigation of problem reports on NASA’s 

space missions revealed that 4.4% of bugs can be classified as 

aging-related software faults [25]. Aging-related bugs in 

open-source software of cloud computing systems have also 

been investigated [26]. Investigation of bug reports was also 

used to identify the software complexity metrics that can be 

used for predicting the location of aging-related faults [27]. 

The mitigations against software aging can be categorized 

according to the phases of software development, namely the 

development phase and the operational phase. Removing the 

root cause of software aging in the development phase is 

challenging, because it takes a long time to observe software 

aging, and one also faces problematic false alarms. Accelerated 

life-time test [28] and degradation test [29] are capable of 

reducing the time needed to observe software aging phenomena. 

However, false alarms of aging detection due to benign trends 

in resource usage are still an unsolved issue [30]. The impact of 

software testing on the operational behavior of software 

systems suffering from aging was studied in [31]. Even with 

state-of-art testing and debugging techniques, complete 

removal of aging-related software faults is practically 

infeasible or unacceptably expensive. Instead of removing the 

bugs in the development phase, it may be more cost-effective to 

remove them in the operational phase, as in the case of software 

rejuvenation. Software rejuvenation was first presented in [2], 

and subsequently, a number of researchers have come up with 

analytical models to quantify its effectiveness in terms of 

system availability [8], performance [31], and job completion 

time [16].  Software rejuvenation involves additional downtime 

costs, and variations of it have been presented for cluster 

systems [33], virtual machine-based systems [7][13][34] and 

Linux operating systems [35]. Software life-extension [3] is a 

new countermeasure that is completely different from 

rejuvenation. In this paper, we proposed a judicious 

combination of software life-extension and rejuvenation to 

maximize system availability. 

Since software life-extension allows software to continue 

execution even as it ages, the concept bears some similarity to 

failure-oblivious computing [36], which neglects errors in 

favor of continuing the execution. Google admits the 

effectiveness of failure-oblivious computing and use this 

concept in their parallel data analysis by Sawzal [37]. Rx is 

another safe survival technique that uses checkpoints and 

re-execution in a modified environment [38]. In contrast to 

these failure survival techniques, we focus on software 

life-extension as preventive maintenance to postpone the time 

to failure. 

VII. DISCUSSION 

VM-based software life-extension, as explained in Section 

II.D, is a general approach as it can apply any kind of 

application running on a VM. However, it should be noted that 

the application also needs to recognize the added resources and 

use them for the runtime. If an application does not recognize 
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the dynamically added resource for its process, the 

life-extension does not help prolong the lifetime. For example, 

applications running on Java Virtual Machine (JVM) cannot 

take advantage of dynamically added memory because JVM’s 

maximum heap size is set during initialization and it cannot be 

modified during execution. This could restrict the application 

domain of VM-based software life-extension. 

As discussed in Section II.B, software life-extension can be 

achieved through dynamic workload control as well. In this 

approach, it is important to analyze the relationship between 

workload and aging rate so that we can determine the level of 

workload assignment. This can be done by characterizing the 

workload-aging relationship [6] in the software operational 

process. The relationship between the workload intensity and 

the affected lifetime can be estimated by performing 

accelerated degradation tests [29] and accelerated life tests [28]. 

Those techniques can complement our technique to determine 

the optimum life-extension interval.  

Our life-extension model introduces a life-extended state that 

is distinct from the original state and assumes that the failure 

time distribution changes in the new state. SMP allows us to use 

any kind of distribution for failure time distribution. However, 

as mentioned previously, the Markov property assumed on 

every state transition in SMP may restrict the applications of 

the proposed model. The amount of accumulated errors in the 

robust state is not conserved in the life-extended state. If the 

failure time distribution depends on the time spent in the robust 

state, one approach we may take is to expand the model by 

reliability-conservation principle [39]. According to this 

principle, the reliability at the time of life-extension, 1 −
𝐹𝑓(𝜏𝐿), is preserved in the extended state. Let 𝐹𝑓2(𝑡) be the 

failure time distribution in the life-extended state. There exists 

a time 𝜏𝐿̂  that satisfies 1 − 𝐹𝑓(𝜏𝐿) = 1 − 𝐹𝑓2(𝜏𝐿̂). The failure 

time distribution when software life-extension is applied at 𝜏𝐿 

is represented as 𝐹𝑓2(𝑡 + 𝜏𝐿̂) that depends on the time spent in 

the robust state 𝜏𝐿. Note that the resulting state model is no 

longer SMP, since the process does not regenerate in the 

life-extension state (i.e., the transition probabilities in the 

life-extension state depend on the time spent in the previous 

states). Alternatively, we may also rely on approximation 

model instead of explicitly modeling the time-dependent failure 

distribution. The approximated SMP model can be constructed 

from empirical data for lifetime in the life-extended state. Once 

we obtain the approximated SMP model, we can apply the same 

optimization scheme.   

Another important future direction is to extend our model by 

incorporating the cost of software life-extension. In the current 

model, the cost factor is indirectly included as performance 

degradation of the life-extended application. The cost of 

life-extension depends on the implementation (e.g., additional 

resource usage costs, performance degradations, and 

degradations to the availability of other services). Incorporating 

such factors explicitly in the model can yield more 

comprehensive optimization problem. For instance, if the 

server memory is shared by another application on the same 

server, the life-extension may reduce the memory allocation to 

other application which results in performance degradation. To 

incorporate such cost for determining the optimum 

life-extension interval, we need to model the state transition 

and performance of the other application in addition to the 

life-extended application. 

VIII. CONCLUSION 

We have analytically shown the effectiveness of 

counteracting software aging by extending the lifetime of 

software execution. On the basis of the semi-Markov process 

capturing the behavior of the system, we show of the condition 

where there is an optimum software life-extension interval in 

which the system availability is maximized. Our numerical 

experiments reveal that life-extension is comparable to 

rejuvenation in terms of system availability, while it can 

significantly shorten the job completion time. Considering both 

of system-availability and job completion time performance, 

the hybrid approach in which software life-extension followed 

by rejuvenation turns out to be the best strategy. 
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