

1

 Abstract—Software aging is a phenomenon of progressive

degradation of software execution environment caused by

software faults. In this paper, we propose software life-extension

as an operational countermeasure against software aging and

present the mathematical foundations of software life-extension

by means of stochastic modeling. A semi-Markov process is used

to capture the behavior of a system with software life-extension

and to analyze the system’s availability and completion times of

jobs running on it. The semi-Markov process can correctly model

the time-based life-extension and allows us to derive the optimal

trigger for starting life-extension in terms of system availability

and mean job completion time. We also present an effective

combination of software life-extension and software rejuvenation

that can maximize the system availability compared with a system

using either rejuvenation or software life-extension.

Index Terms— Availability, job completion time, software

aging, software life-extension, software rejuvenation

ACRONYMS

SMP semi-Markov process

VM virtual machine

CTMC continuous time Markov chain

IFR increasing failure rate

PRT preemptive-repeat discipline

PRS preemptive-resume discipline

LST Laplace-Stieltjes transform

NOTATION

𝐹𝑓(𝑡), 𝐹𝑒(𝑡) failure time distribution in UP state and

life-extended state, respectively

𝐺𝑟𝑐(𝑡), 𝐺𝑟𝑗(𝑡) recovery time distribution and rejuvenation

time distribution

u(𝑡) unit step function

𝜏𝑅 , 𝜏𝐿 rejuvenation and life-extension trigger interval,

respectively

𝐴𝑅, 𝐴𝐿 , 𝐴𝐿𝑅 steady-state system availability by

rejuvenation, life-extension and hybrid

approach respectively

 F. Machida is with the NEC Laboratory for Analysis of System

Dependability (LASD), Kawasaki, Japan. E-mail: f-machida@ ab.jp.nec.com.
 J. Xiang is with the Wuhan University of Technology, Wuhan, Hubei,

430070, China. E-mail: jwxiang@whut.edu.cn.
 K. Tadano is with the NEC Laboratory for Analysis of System Dependability

(LASD), Kawasaki, Japan. E-mail: k-tadano@ bq.jp.nec.com.
 Y. Maeno is with the NEC Laboratory for Analysis of System Dependability

(LASD), Kawasaki, Japan. E-mail: y-maeno@ aj.jp.nec.com.

𝜋𝑖 steady-state probability in state i

ℎ𝑖 mean sojourn time in state i

𝐴𝑅
∗ , 𝐴𝐿

∗ , 𝐴𝐿𝑅
∗ maximum steady-state availabilities had by

taking rejuvenation, life-extension, and hybrid

approaches respectively

𝜏𝑅
∗ , 𝜏𝐿

∗ optimum rejuvenation and life-extension

trigger interval, respectively

𝑟𝑓(𝑡), 𝑟𝑒(𝑡) failure rate functions with respect to 𝐹𝑓(𝑡) and

𝐹𝑒(𝑡)

𝜏𝐿 life-extension trigger interval

𝑈𝐿𝑅 , 𝐷𝐿𝑅 fractions of up-time and downtime in 𝐴𝐿𝑅

T(𝑥) random variable for job completion time for x

units of work requirement

Φ𝑇
~(𝑠, 𝑥),

Φ𝑇𝐿
~ (𝑠, 𝑥)

LSTs of completion times of jobs running on

aging system and system using life-extension,

respectively

𝐺𝑟𝑐
~ (𝑠) LST of recovery time

𝑟 decrease in job processing rate

I. INTRODUCTION

OFTWARE faults or bugs are major sources of unreliability

affecting software-based IT systems. As software is used

extensively in mission-critical infrastructures such as

telecommunication networks, industrial plants, banking and

transportation systems, the impact of software bugs is more

significant. Even if modern testing and debugging techniques

are employed, complete removal of latent software bugs is

extremely difficult and/or prohibitively expensive. Hence,

software systems tend to suffer from residual bugs that lead to

unexpected system failures. To mitigate the adverse effects of

residual bugs on IT system reliability, maintenance operations

such as software updates and data backups are essential in

practice.

Aging-related bugs are a category of bug by which the

software aging problem is induced. Software aging is the

phenomenon of progressive degradation of the software

execution environment and it increases the failure rate of

software [1]. A typical example of software aging is a

progressive increase in memory consumption that causes

memory leaks. Detection of aging related-bugs before

execution is usually difficult because software aging only

manifests itself in specific execution environments.

Software rejuvenation is a well-known operational measure

for mitigating the aging problem [2]. It is a preventive

maintenance technique that cleans up the internal states of the

Lifetime Extension of Software Execution

subject to Aging
Fumio Machida, Member, IEEE, Jianwen Xiang, Member, IEEE,

Kumiko Tadano, Member, IEEE, and Yoshiharu Maeno, Member, IEEE

S

2

software execution environment by restarting or resetting

before the software faces serious performance degradation

and/or failure. Although software rejuvenation can prevent

system failures due to software aging, it involves downtime

overhead due to restarts. This downtime overhead may not be

acceptable for certain applications. For example, software

rejuvenation is unsuitable for applications that process long

jobs over the course of days or even months, since it erases all

the intermediate results by resetting the execution environment.

It is vital for such applications to keep running as long as

possible during their mission period.

In our previous study [3], we presented an alternative

countermeasure to software aging; called software

life-extension, it is a preventive maintenance technique that

prolongs the lifetime of software execution as long as possible

in the face of software aging. If failures caused by software

aging can be postponed for a while, users or applications may

effectively use the extended residual lifetime. As an example, if

the content of an application with a memory cache is preserved

during the extended lifetime, it might be possible to finish the

user sessions within its lifetime or save the cached content in

persistent storage before encountering a failure. This approach

is particularly useful for long-running mission-critical

applications which require continuous up-time.

In this paper, we further investigate the effectiveness of

software life-extension against software aging. In contrast to

the simple Continuous Time Markov Chain model presented in

[3], we reformulate the system’s behavior with a semi-Markov

process (SMP). The SMP allows us to use a general distribution

for the failure time distribution and to correctly represent the

behavior of a time-based software life-extension whose interval

is deterministic. By analyzing the SMP, we find the optimum

life-extension interval that can maximize the system

availability. On the basis of the theoretical foundation of SMP,

we can theoretically clarify the conditions under which the

unique optimum life-extension interval exists that have never

been addressed in the previous literature. Moreover, we

propose an effective hybrid approach in which software

life-extension is followed by rejuvenation. The extended SMP

that captures the behavior of the system with the hybrid

approach is then used to find the optimum combination of

intervals for life-extension and rejuvenation that maximizes the

system availability. We also show the impact of the software

life-extension on the completion time distribution of jobs

running on the software system. Through a numerical study, we

show that the hybrid approach is a better option than relying on

solely either rejuvenation or life-extension in terms of both

system availability and job completion time.

The rest of the paper is organized as follows. Section II

introduces the general concept of software life-extension and

reviews our feasibility study on it. Section III presents the SMP

for software systems using rejuvenation, life-extension, and

their combination. By conducting a steady-state analysis of

SMP, we find the optimum life-extension interval that

maximizes system availability. In Section IV, we analyze the

job completion time distributions based on the SMPs in which

the preemption type in each state is considered. In Section V,

we describe a numerical study showing that the hybrid

approach is the best in terms of system availability. The

optimum life-extension interval in terms of mean job

completion time is also presented. Section VI reviews related

work and Section VII provides discussion. Finally, we

conclude the paper in Section VIII.

II. SOFTWARE LIFE-EXTENSION

We consider software systems that may suffer from software

aging. As introduced in the previous section, software

rejuvenation is known to be an effective countermeasure to

software aging and to improve the system availability. Software

rejuvenation has been introduced for the sake of

high-availability [2][8][11][13], system performance [18][21]

[32] or job completion time performance [16]. Our new

approach presented in this section is a potential alternative for

software rejuvenation and it also aims to improve the

availability and the performance of systems suffering from

software aging problem. We start from the introduction to the

concept of software life-extension.

A. Concept

The term software life-extension comes from a natural

extension of the metaphor of software aging. Software aging

represents the transient state of the software execution

environment, where available resources gradually decrease due

to aging-related software faults. The lifetime of software

execution reaches its limit when the system depletes its

resources as a result of the accumulated aging effects. Software

life-extension aims at postponing such failures by impeding the

progress of software aging. It is a temporal mitigation to extend

the lifetime of the execution environment, but it does not

provide a radical solution to the fault causing the software

aging. To extend the lifetime of software execution,

supplemental resources could be assigned to the execution

environment if the application can make use of them.

Alternatively, software aging can be impeded by decreasing the

workload, provided that the rate of aging depends on the

workload. These approaches do not require any changes to the

source code and are often easily applicable by means of

common maintenance operations, commands, or scripts.

Therefore, software life-extension is a non-intrusive

countermeasure to software aging.

B. Means

There are at least two conceptual ways to implement

software life-extension: dynamic resource allocation and

workload control. The first approach extends the lifetime of

aged software through dynamic resource allocation in which

the amount of resources is increased dynamically during

execution. Recent advances in virtualization technologies make

such resource allocations at runtime possible. For example,

Xen hypervisor1 provides a functionality to virtualize hardware

resources and allocate them to a Virtual Machine (VM). In this

approach, we need standby resources which can be allocated

dynamically and may be shared with other software execution

1 Xen, http://www.xen.org/

3

environments. The use of standby resources may incur costs,

such as higher resource usage costs imposed by the cloud

and/or hosting service, and unavailability of other services

sharing the standby resource.

The second approach controls the workload so as to decrease

the load on the aged software. This approach is limited to

applications that work with a workload manager or have a load

balancer in the front-end. The workload is reduced by assigning

jobs to other instances or dropping job requests at the workload

manager or load balancer. Software aging is often associated

with the workload of the software [5][6]; therefore, aging can

be impeded by reducing the workload. Although this helps to

extend the lifetime of the software, resource exhaustion is

inevitable as long as the software continues executing. This

approach can be considered to be like designing a system that

can survive even in the case of a component failure. Unlike

typical degradable systems, software life-extension using

workload control does not guarantee that the software will

continue to execute. Even after a life-extension, the software

may eventually encounter a failure due to resource exhaustion

because life-extension itself does not remove the root-cause.

Similar to the first approach, workload control may also incur

additional problems, such as workload reallocations that

overload other instances and the workload manager rejecting

requests.

Consequently, although both of these approaches are feasible

in a real system they require specific system configurations,

preparations and resources. The appropriate means should be

decided considering the application type and system

environment. In section II.D, we show the feasibility of

software life-extension by taking the dynamic resource

allocation approach.

C. Advantages and drawbacks

Regardless of the above-mentioned means, the primary

advantage of software life-extension over software

rejuvenation is continuous execution even as the software ages.

Although software rejuvenation clears the aging states in a

relatively short amount of downtime, it interrupts the software

execution and loses potentially valuable data in memory. In

contrast, software life-extension can maintain availability

without any interruptions as long as possible. When an

application requests a job requiring a long execution time and

the question is whether or not the job will complete,

life-extension is preferable to rejuvenation. Software

life-extension is also suitable for applications with

predetermined mission times. We can use it to meet the mission

time requirement when the software is likely to finish execution

before the mission time is up.

Another benefit of software life-extension is its capability of

preserving memory content, as mentioned in the Introduction.

The persistence of data accumulated in memory is essential to

some forms of software. Software rejuvenation completely

erases such data, and thus, it may cause a serious degradation in

service quality. A typical example of such important memory

content is paging data in an operating system. The deletion of

paging data during a reboot causes a performance degradation,

as reported in [7]. In contrast, software life-extension attempts

to preserve memory content as long as possible. While the

content of memory is eventually lost at the end of the system’s

life, the user may wisely use the residual lifetime to make a

backup or take a snapshot and save it in persistent storage.

As discussed earlier, software life-extension incurs

additional resource usage costs, performance degradations, and

degradations to the availability of other services. These are

potential drawbacks if they become unacceptably large or

unpredictable. The trade-off is the additional lifetime in

exchange for these costs. Although rejuvenation imposes an

additional downtime cost, it does not require a specific system

configuration (e.g., a load balancer) or any standby resources.

Unlike the hot-fix approach that corrects the source code by

removing the source of software aging [4], software

life-extension does not remove the source. Hence, relying on

software life-extension for a long time may hinder the chances

of finding and removing the root cause of the aging, which is

something that system administrators should be aware of when

they consider using life-extension.

D. Feasibility study

In our previous study [3], we implemented software

life-extension by using the dynamic memory allocation method

provided by Xen hypervisor. This subsection briefly reviews

this experimental study of VM-based software life-extension.

In the experiment we used memcached2, which is an

in-memory key-value store for caching objects usually used as

a cache server for database systems. It simply implements a

hash table whose content is read or inserted using the

corresponding keys. Memcached has a configuration parameter

that specifies the maximum size of memory for cache data. This

memory does not include the memcached footprint, and it can

be set to a value exceeding the available memory in the system.

Thus, setting inadequate limits will cause a memory leak after a

gradual increase in memory consumption (i.e., software aging).

If such a limit is embedded in software relying on memcached,

the problem cannot be easily located and removed.

In order to mitigate the software aging of memory

consumption, we used the dynamic memory allocation method

provided by Xen hypervisor. When a suspicious aging trend in

memory usage was detected, we allocated additional memory

to the VM executing the application in order to postpone the

potential memory leak. The feasibility of this approach was

studied with the experimental test bed shown in Figure 1.

Figure 1. Test bed system for software life-extension

In this test bed, a VM is created on Xen box, and 512MB of

memory is initially allocated to the VM. The VM has another

xen-4.1

client memcached 1.4.7

Xen box

Dom U
dataput

get

data

512MB CPU: 4 Cores

Intel Xeon 2.8GHz

RAM: 2GB

2 Memcached, http://memcached.org/

4

512MB of swap space. A single instance of memcached is

deployed on the VM, and it starts with a maximum limit of

900MB. Although the limit is within the sum of available

memory and swap space (512+512=1024MB), it does count the

memcached footprint. A client program generates requests to

the memcached for the load test that repeatedly inserts 1MB of

unique data and reads it in a subsequent access. During the load

generation, we do not insert any delays between consecutive

requests. According to the number of insert requests, the

memory consumption of memcached gradually increases

because the data is cached in memory. When the number of

insert events exceeds 500, memory swapping starts. If no

counteractions are performed, the VM eventually crashes when

it runs out of memory. Figure 2 shows the changes in free

memory and swap usage in the VM during this experiment. The

VM hanged up when it used up all of the free memory and

available swap space.

Figure 2. Decrease in free memory and increase in swap spaces

We can postpone a failure by allocating additional memory

to the VM, namely by using software life-extension. When the

swap usage exceeds 400MB, we allocate 88MB of additional

memory to the VM through Xen’s command line interface. The

total memory is increased to 600MB and the lifetime of the VM

is extended. Figure 3 shows the changes in the amount of free

memory and swap usage as a result of software life-extension.

The steep increase in swap usage pauses when the software

life-extension is performed, but it begins again once the free

memory is used up. The swap usage reaches 500MB around

135 seconds. The VM does not immediately run out of memory,

but the swap usage fluctuates around 500MB with a subtle

upward trend. The execution state after software life-extension

is not stable as in the beginning of the process, but the

application can benefit from the prolonged lifetime.

Figure 3. Changes in free memory and swap usage by software life-extension

The effect is partly caused by the memory management

mechanism in the operating system which attempts to survive

with limited resources. The experimental results are discussed

in detail in [3].

III. SYSTEM MODEL

In order to study the advantages and drawbacks of software

life-extension in relation to software rejuvenation, we presented

continuous time Markov chain (CTMC) models in the previous

paper [3]. The basic assumption of CTMC is that all the state

transitions times are exponentially distributed. In this paper, we

relax this assumption and devise a more general model using a

semi-Markov process (SMP). The state transitions in SMP can

follow any type of distribution. This property allows us to

represent deterministic trigger for starting preventive

operations (software rejuvenation and software life-extension).

In the following subsections, we review the general SMP

model for time-based software rejuvenation and the way to get

the optimal software rejuvenation interval in terms of system

availability. Next, we propose a SMP model for time-based

software life-extension in which software life-extension is

applied in a deterministic time interval after the latest restart.

Interestingly, under specific conditions, software life-extension

also has an optimal trigger interval in terms of system

availability. We theoretically clarify this point in Section 0.B.

Finally, Section 0.C describes an SMP model for a hybrid

approach in which software life-extension is followed by

software rejuvenation.

A. Time-based rejuvenation model

In 1995, Garg et al [8] were the first to model time-based

software rejuvenation with Markov Regenerative Stochastic

Petri Net (MRSPN). Later Suzuki et al. [9] and Chen et al. [10]

introduced a three state SMP model that is equivalent to the

original MRSPN model.

Figure 4. SMP representing the system behavior with rejuvenation

Figure 4 shows the general three-state SMP model for

time-based software rejuvenation. In the previous decade,

many researchers used this model to analyze the optimum

software rejuvenation trigger interval for maximizing system

availability or minimizing the downtime cost (e.g., [10][12]). In

Figure 4, state 0 is the up state (the software is running). From

state 0, the system enters either state 1, i.e., the rejuvenation

state, or state 2, i.e., the failure state. The failure time

distribution is represented by 𝐹𝑓(𝑡) , while the deterministic

transition from state 0 to state 1 can be represented by a unit

step function u(𝑡 − 𝜏𝑅), where 𝜏𝑅 is the rejuvenation trigger

interval. The recovery time distributions from state 1 and state 2

are represented by 𝐺𝑟𝑐(𝑡) and 𝐺𝑟𝑗(𝑡) , respectively. The

steady-state availability of the system AR is computed as the

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140 160 180 200 220 240

S
iz

e
[M

B
]

Time [secs]

swap

free

failure

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140 160 180 200 220 240

S
iz

e
[M

B
]

Time [secs]

swap

free

life-extension

Survive until

1951 secs

1 0 2

UpRejuvenation Failure

5

steady-state probability of state 0 (𝜋0) [10]:

𝐴𝑅 = 𝜋0 =
ℎ0

ℎ0 + ℎ1 (1 − 𝐹𝑓(𝜏𝑅)) + ℎ2𝐹𝑓(𝜏𝑅)
 (1)

where h0, h1 and h2 are the mean sojourn times for the

corresponding states:

ℎ0 = ∫ (1 − 𝐹𝑓(𝑡)) 𝑑𝑡
𝜏𝑅

0

, ℎ1 = ∫ (1 − 𝐺𝑟𝑗(𝑡)) 𝑑𝑡
∞

0

,

ℎ2 = ∫ (1 − 𝐺𝑟𝑐(𝑡))𝑑𝑡
∞

0

(2)

Dohi et al. [11] showed that expression (1) is strictly convex

with respect to 𝜏𝑅 if 𝐹𝑓(𝑡) has the property of increasing failure

rate (IFR). Since it is natural to assume that the IFR is caused by

software aging, the above condition is likely to hold. If we

assume
𝑑𝐴(0)

𝑑𝜏𝑅
> 0 and

𝑑𝐴(∞)

𝑑𝜏𝑅
< 0, the steady-state availability is

maximized at 𝜏𝑅
∗ , which satisfies the following equation.

(1 − 𝐹𝑓(𝜏𝑅
∗)) [ℎ1 (1 − 𝐹𝑓(𝜏𝑅

∗)) + ℎ2𝐹𝑓(𝜏𝑅
∗)]

−
𝑑𝐹𝑓(𝜏𝑅

∗)

𝑑𝜏𝑅

ℎ0(ℎ2 − ℎ1) = 0
(3)

The maximum steady-state availability is

𝐴𝑅
∗ =

1 − 𝐹𝑓(𝜏𝑅
∗)

1 − 𝐹𝑓(𝜏𝑅
∗) +

𝑑𝐹𝑓(𝜏𝑅
∗)

𝑑𝜏𝑅
(ℎ2 − ℎ1)

(4)

The optimum rejuvenation interval 𝜏𝑅
∗ is not represented

symbolically as it is determined in non-linear equation (3).

However, it can be obtained by taking a numerical approach as

in [12].

B. Time-based life-extension model

We construct an SMP model for software life-extension in an

analogous way to software rejuvenation. The system is

assumed to be failed with failure distribution 𝐹𝑓(𝑡), which is

IFR due to software aging. If we apply software life-extension

before a system failure, the system enters a new state whose

failure rate must be smaller than the original state. To represent

this state transition, we add a new life-extended state to the

SMP. The proposed general SMP model is shown in Figure 5.

Figure 5. SMP representing the behavior of a system with life-extension

Similar to the rejuvenation model, state 0 and state 2

represent the up and failed states, respectively. State 1 is a

life-extended one that has an incoming transition from state 0

and an outgoing transition to state 2. Unlike what happens with

software rejuvenation, the system eventually fails regardless of

whether life-extension is applied or not. In other words,

software execution ends only in state 2. However, we can

extend the lifetime of the software execution at an appropriate

time. The failure time distribution changes from state 0 to state

1. We denote the failure time distribution in state 1 as 𝐹𝑒(𝑡). If

the software life-extension is applied in a deterministic time

interval 𝜏𝐿 , the distribution from state 0 to state 1 can be

represented as a unit step function u(𝑡 − 𝜏𝐿). We use the same

distribution 𝐺𝑟𝑐(𝑡) for the recovery transition from state 2. Our

previous study [3] assumed that the failure time distribution is

hypo-exponential, but the presented SMP model allows 𝐹𝑓(𝑡)

to be a general distribution. The SMP model is a generalization

of our previous model for software life-extension. Note that the

Markov property in state transition from state 0 to state 1 may

impact on the applicability of the model if the failure time

distribution 𝐹𝑒(𝑡) depends on the time spent in the state 0. We

will discuss such a special case in Section VII.

Using the two-stage method for SMP [14], the steady-state

availability of the system can be computed from the sum of

steady-state probabilities for state 0 and state 1:

𝐴𝐿 = 𝜋0 + 𝜋1 =
ℎ0 + ℎ1 (1 − 𝐹𝑓(𝜏𝐿))

ℎ0 + ℎ1 (1 − 𝐹𝑓(𝜏𝐿)) + ℎ2

 (5)

where

ℎ0 = ∫ (1 − 𝐹𝑓(𝑡)) 𝑑𝑡
𝜏𝐿

0

, ℎ1 = ∫ (1 − 𝐹𝑒(𝑡))𝑑𝑡
∞

0

,

ℎ2 = ∫ (1 − 𝐺𝑟𝑐(𝑡))𝑑𝑡
∞

0

(6)

Steady-state availability AL can be considered as a function

of 𝜏𝐿. Define the failure rate function 𝑟𝑓(𝑡)

𝑟𝑓(𝑡) =
1

1 − 𝐹𝑓(𝑡)

𝑑𝐹𝑓(𝑡)

𝑑𝑡
 (7)

Similar to the analysis of optimum rejuvenation interval

reviewed in the previous section, it is interesting to clarify the

condition where the value of AL is maximized. Since the

life-extension changes the state to prolong the time to failure,

the effectiveness of life-extension relies on the relation between

the failure time distribution 𝐹𝑓(𝑡) and 𝐹𝑒(𝑡) . The following

theorem indicates that the optimal trigger of life-extension

determines by the relation of the failure rate function 𝑟𝑓(𝑡) and

the mean sojourn time ℎ1, which are characterized by 𝐹𝑓(𝑡) and

𝐹𝑒(𝑡), respectively.

Theorem 1. When the failure time distribution 𝐹𝑓(𝑡) is IFR

and the mean sojourn time in the life-extended state ℎ1 satisfies

the inequality, 𝑟𝑓(0) < 1 ℎ1⁄ < 𝑟𝑓(∞), there is a unique value

𝜏𝐿
∗ that maximizes the value of AL.

Proof. In the following proof, we show that 𝐴𝐿(𝜏𝐿) is concave

in the range of 𝜏𝐿 > 0 under the given condition. First taking

the derivative of 𝐴𝐿(𝜏𝐿) in terms of 𝜏𝐿, we get

𝑑𝐴𝐿(𝜏𝐿)

𝑑𝜏𝐿

=
ℎ2 (1 − 𝐹𝑓(𝜏𝐿) − ℎ1

𝑑𝐹𝑓(𝜏𝐿)

𝑑𝜏𝐿
)

(ℎ0 + ℎ1 (1 − 𝐹𝑓(𝜏𝐿)) + ℎ2)
2 (8)

The sign of the derivative depends on the numerator and

especially on the following term,

1 −
1

1 − 𝐹𝑓(𝜏𝐿)
ℎ1

𝑑𝐹𝑓(𝜏𝐿)

𝑑𝜏𝐿

= 1 − ℎ1𝑟𝑓(𝜏𝐿) (9)

1 0 2

UpLife-extended Failure

6

The failure rate function 𝑟𝑓(𝑡) is a strictly monotonically

increasing function, as the corresponding distribution 𝐹𝑓(𝑡) is

IFR. The sign of (9) changes from negative to positive at a

certain value in the range of 𝜏𝐿 > 0 under the given condition

𝑟𝑓(0) < 1 ℎ1⁄ < 𝑟𝑓(∞) . As a result 𝐴𝐿(𝜏𝐿) is a concave

function in 𝜏𝐿 > 0 and the value is maximized at 𝜏𝐿
∗ that

satisfies ℎ1 = 1 𝑟𝑓(𝜏𝐿)⁄ .

The optimum interval 𝜏𝐿
∗ is not represented symbolically, but

the value can be numerically obtained in a similar way as the

optimum software rejuvenation interval.

Intuitively, the failure rate in state 0 increases over time, and

whenever it reaches the mean failure rate in state 1 (1 ℎ1⁄), it is

the best timing at which to move to state 1. Instead of a

decreased failure rate in state 1, there may be a performance

penalty after life-extension; this is addressed in the job

completion time analysis presented in Section IV.

C. Hybrid approach model

Software rejuvenation and software life-extension are not

exclusive. Rather, they can be combined together in an epoch of

the execution lifecycle. We devised such a hybrid approach in

which software life-extension is followed by software

rejuvenation. The corresponding SMP is drawn in Figure 6.

Figure 6. SMP representing the system behavior with both rejuvenation and

life-extension

The model has both a life-extended state (state 1) and a

rejuvenation state (state 3). Software life-extension is applied at

time 𝜏𝐿 after the system starts in state 0, while software

rejuvenation is applied at time 𝜏𝑅 after the system enters in

state 1. The recovery time distributions from state 2 and state 3

are represented by 𝐺𝑟𝑐(𝑡) and 𝐺𝑟𝑗(𝑡) , respectively, and the

failure time distribution in state 1 is denoted as 𝐹𝑒(𝑡). In this

system, software rejuvenation can be used after a software

life-extension so as to minimize the potential downtime. Note

that the SMP model asymptotically becomes the time-based

life-extension model by taking 𝜏𝑅 to infinity, and it becomes

the time-based rejuvenation model by taking 𝜏𝑅 to be 0. In the

following discussion, we exclude these extreme cases and

assume that 0 < 𝜏𝑅 < ∞.

The steady-state availability of the system is the sum of the

steady-state probabilities of state 0 and state 1, as computed by

𝐴𝐿𝑅 = 𝜋0 + 𝜋1 =
𝑈𝐿𝑅

𝑈𝐿𝑅 + 𝐷𝐿𝑅

 (10)

where

𝑈𝐿𝑅 = ℎ0 + ℎ1 (1 − 𝐹𝑓(𝜏𝐿))

𝐷𝐿𝑅 = ℎ2 [𝐹𝑓(𝜏𝐿) + (1 − 𝐹𝑓(𝜏𝐿)) 𝐹𝑒(𝜏𝑅)]

+ ℎ3 (1 − 𝐹𝑓(𝜏𝐿)) (1 − 𝐹𝑒(𝜏𝑅))

and

ℎ0 = ∫ (1 − 𝐹𝑓(𝑡)) 𝑑𝑡
𝜏𝐿

0

, ℎ1 = ∫ (1 − 𝐹𝑒(𝑡))𝑑𝑡
𝜏𝑅

0

,

ℎ2 = ∫ (1 − 𝐺𝑟𝑐(𝑡))𝑑𝑡
∞

0

, ℎ3 = ∫ (1 − 𝐺𝑟𝑗(𝑡)) 𝑑𝑡
∞

0

(11)

We can control both the life-extension interval 𝜏𝐿 and

software rejuvenation interval 𝜏𝑅 , and thus, the steady-state

availability ARL can be considered to be a bivariate function of

𝜏𝐿 and 𝜏𝑅 . Let us define the hazard rate functions 𝑟𝑓(𝑡) and

𝑟𝑒(𝑡) as

𝑟𝑓(𝑡) =
1

1 − 𝐹𝑓(𝑡)

𝑑𝐹𝑓(𝑡)

𝑑𝑡
, 𝑟𝑒(𝑡) =

1

1 − 𝐹𝑒(𝑡)

𝑑𝐹𝑒(𝑡)

𝑑𝑡
 (12)

The following theorem is derived for analyzing the optimum

combination of life-extension interval and rejuvenation interval

that maximizes ALR.

Theorem 2. When both the failure time distribution 𝐹𝑓(𝑡) and

the failure time distribution in life-extended state 𝐹𝑒(𝑡) are IFR,

and the nonlinear function 𝑍 = ℎ1ℎ2 − (1 − 𝐹𝑒(𝜏𝑅))(ℎ2 −

ℎ3)ℎ0 is always smaller than 0, and ℎ2 > ℎ3 , the optimum

combination of the life-extension interval 𝜏𝐿 and rejuvenation

interval 𝜏𝑅 that maximizes ARL is given by the solution of the

following system of equations.

{
𝐷𝐿𝑅 − 𝑟𝑒(𝜏𝑅)(ℎ2 − ℎ3)𝑈𝐿𝑅 = 0

𝐷𝐿𝑅 + 𝑟𝑓(𝜏𝐿)𝑍 = 0
 (13)

Proof. First, we prove that ARL is a strictly concave function in

terms of 𝜏𝑅. Then we show the function is also strictly concave

on 𝜏𝐿 under the given condition. The derivative of ARL with

respect to 𝜏𝑅 is

𝜕𝐴𝐿𝑅

𝜕𝜏𝑅

=
1

(𝑈𝐿𝑅 + 𝐷𝐿𝑅)2
[
𝜕𝑈𝐿𝑅

𝜕𝜏𝑅

𝐷𝐿𝑅 −
𝜕𝐷𝐿𝑅

𝜕𝜏𝑅

𝑈𝐿𝑅] (14)

The derivatives of URL and DRL with respect to 𝜏𝑅 are

𝜕𝑈𝐿𝑅

𝜕𝜏𝑅

= (1 − 𝐹𝑓(𝜏𝐿)) (1 − 𝐹𝑒(𝜏𝑅))

𝜕𝐷𝐿𝑅

𝜕𝜏𝑅

=
𝜕𝐹𝑒(𝜏𝑅)

𝜕𝜏𝑅

(ℎ2 − ℎ3) (1 − 𝐹𝑓(𝜏𝐿))

(15)

Applying (15) to (14), the sign of (14) is determined by the

following term in the numerator.

𝑊 = 𝐷𝐿𝑅 − 𝑟𝑒(𝜏𝑅)(ℎ2 − ℎ3)𝑈𝐿𝑅 (16)

Taking the derivative of W with respect to 𝜏𝑅 and using (15),

we get

𝜕𝑊

𝜕𝜏𝑅

=
𝜕𝐷𝐿𝑅

𝜕𝜏𝑅

− (ℎ2 − ℎ3) [
𝜕𝑟𝑒(𝜏𝑅)

𝜕𝜏𝑅

𝑈𝐿𝑅 + 𝑟𝑒(𝜏𝑅)
𝜕𝑈𝐿𝑅

𝜕𝜏𝑅

]

= −
𝜕𝑟𝑒(𝜏𝑅)

𝜕𝜏𝑅

(ℎ2 − ℎ3) (ℎ0 + (1 − 𝐹𝑓(𝜏𝐿)) ℎ1) < 0

(17)

Since W is strictly decreasing, ARL is strictly concave in 𝜏𝑅. The

optimum rejuvenation interval is given by 𝜏𝑅
∗ , which satisfies

W=0. The maximum availability is written as

1 0 2
Up

Life-extended Failure

3 Rejuvenation

7

𝐴𝐿𝑅
∗ =

1

1 + 𝑟𝑒(𝜏𝑅
∗)(ℎ2 − ℎ3)

 (18)

With the optimal rejuvenation interval 𝜏𝑅
∗ , we consider ALR as a

function of 𝜏𝐿 and take the derivative with respect to 𝜏𝐿:

𝜕𝐴𝐿𝑅

𝜕𝜏𝐿

=
1

(𝑈𝐿𝑅 + 𝐷𝐿𝑅)2
[
𝜕𝑈𝐿𝑅

𝜕𝜏𝐿

𝐷𝐿𝑅 −
𝜕𝐷𝐿𝑅

𝜕𝜏𝐿

𝑈𝐿𝑅] (19)

From the numerator, the sign of the derivative is determined by

𝑉 = 𝐷𝐿𝑅 + 𝑟𝑓(𝜏𝐿)𝑍 (20)

Taking the derivative of V with respect to 𝜏𝐿, we get

𝜕𝑉

𝜕𝜏𝐿

=
𝜕𝐷𝐿𝑅

𝜕𝜏𝐿

+
𝜕𝑟𝑓(𝜏𝐿)

𝜕𝜏𝐿

𝑍 − 𝑟𝑓(𝜏𝐿)
𝜕𝑍

𝜕𝜏𝐿

=
𝜕𝑟𝑓(𝜏𝐿)

𝜕𝜏𝐿

𝑍 < 0 (21)

Under the given condition, V is strictly decreasing in 𝜏𝐿 and

ALR is strictly concave in 𝜏𝐿 as well. The availability ALR is

maximized when V=0. Consequently, the optimum

combination of 𝜏𝐿 and 𝜏𝑅 which maximizes ALR is given by the

solution of the system of equations W=0 and V=0.

The optimum life-extension interval and rejuvenation

interval cannot be expressed in a symbolic manner, but they can

be computed through a numerical approach like a gradient

search method used for analyzing the optimum rejuvenation

intervals in a virtualized system [13]. Numerical examples are

presented in Section V.

IV. JOB COMPLETION TIME ANALYSIS

In this section, we analyze the distribution of completion

times of jobs running on the software system based on the

SMPs presented in the previous section. As a result of the

preventive maintenance operations like software rejuvenation

and life-extension, the software execution status changes and

the executing job is preempted at the beginning of the new state.

Performing software rejuvenation causes a preemptive-repeat

(PRT) [15] discipline in which the job restarts from the

beginning. In contrast, software life-extension does not lose its

execution status; it thus follows a preemptive-resume (PRS)

[15] discipline wherein the job resumes at the point it was

preempted. The job completion time to process all the

requested work is clearly affected by the preemption type as

well as the state transitions. Here, we will perform a job

completion time analysis on aging software without any

preventive operations and one on software with a time-based

life-extension.

A. Aging software

If the software system suffering from aging is not controlled

with any preventive operations, its behavior can be captured by

a two state model composed of an up state and a down state. Let

𝐹𝑓(𝑡) and 𝐺𝑟𝑐(𝑡) denote the failure time distribution and

recovery time distribution. Since the job execution is dropped

when the system goes down, the down state is considered to be

a PRT state. Once the job is interrupted in the down state, it

needs to be restarted after recovery.

Define T(𝑥) to be the amount of time needed to complete a

job with a work requirement of x units. Suppose that the

execution environment processes a work unit in an hour, T(𝑥)

is equal to x if the job started in the up state completes before

the first failure occurrence. If the job encounters a failure at

time h (>0), the job needs to be restarted after the system

recovers. In this case, the total job execution time becomes the

sum of h, recovery time, and T(𝑥). Taking the Laplace-Stieltjes

transform (LST) with respect to t, the LST of the job

completion time Φ𝑇
~(𝑠, 𝑥) satisfies the following equation:

Φ𝑇
~(𝑠, 𝑥)|ℎ = {

𝑒−𝑠𝑥, ℎ ≥ 𝑥

𝑒−𝑠ℎ𝐺𝑟𝑐
~ (𝑠)Φ𝑇

~(𝑠, 𝑥), ℎ < 𝑥
 (22)

where 𝐺𝑟𝑐
~ (𝑠) is the LST of 𝐺𝑟𝑐(𝑡) . Unconditioning on h,

Φ𝑇
~(𝑠, 𝑥) is expressed as

Φ𝑇
~(𝑠, 𝑥) = 𝑒−𝑠𝑥 ∫ 𝑑𝐹𝑓(ℎ)

∞

𝑥

+ 𝐺𝑟𝑐
~ (𝑠)Φ𝑇

~(𝑠, 𝑥) ∫ 𝑒−𝑠ℎ𝑑𝐹𝑓(ℎ)
𝑥

0

=
𝑒−𝑠𝑥 (1 − 𝐹𝑓(𝑥))

1 − 𝐺𝑟𝑐
~ (𝑠) ∫ 𝑒−𝑠ℎ𝑑𝐹𝑓(ℎ)

𝑥

0

(23)

The expected job completion time is computed from the

moment generation property of LST [14]:

𝐸(𝑇(𝑥)) = −
𝜕Φ𝑇

~(𝑠, 𝑥)

𝜕𝑠
|

𝑠=0

 (24)

Now let us consider a system using software rejuvenation to

prevent a failure caused by software aging. The system state

transition can be captured by the SMP shown in Section III.A.

We assume that the job execution begins immediately after

restarting the execution environment (in state 0). In this system,

the rejuvenation time interval 𝜏𝑅 must be larger than the work

requirement x; otherwise, the job never completes. Under this

condition 𝜏𝑅 > 𝑥, the job completion time distribution is the

same as that without rejuvenation. Therefore, the LST of the

job completion time is represented by (23), and the expected

job completion time can be computed from (24).

B. Job completion time in the case of life-extension

Next, we analyze the job completion time on a system using

life-extension. The system behavior follows the state

transitions specified in Section III.B. Again, we assume that the

job execution begins just after restarting the execution

environment (in state 0). When the life-extension interval 𝜏𝐿 is

larger than x, the job never runs in a life-extended state (State 1),

and the job completion time is the same as in the case of the

aging system studied in Section IV.A. In the case of 𝜏𝐿 ≤ 𝑥,

there are two scenarios in which the job is dropped as a result of

a software failure: the software execution fails 1) before

life-extension and 2) after life-extension.

Conditioned by the failure time h, the LST of job completion

time is represented by

Φ𝑇𝐿
~ (𝑠, 𝑥)|ℎ = {

𝑒−𝑠𝑥 , ℎ ≥ 𝑥

𝑒−𝑠ℎ𝐺𝑟𝑐
~ (𝑠)Φ𝑇𝐿

~ (𝑠, 𝑥), ℎ < 𝑥
 (25)

Because the failure time distribution changes to 𝐹𝑒(𝑡) after

software life-extension at 𝑡 = 𝜏𝐿 , the LST of the job

completion time Φ𝑇𝐿
~ (𝑠, 𝑥) is

8

Φ𝑇𝐿
~ (𝑠, 𝑥) = 𝑒−𝑠𝑥 (1 − 𝐹𝑓(𝜏𝐿)) ∫ 𝑑𝐹𝑒(ℎ − 𝜏𝐿)

∞

𝑥

+ 𝐺𝑟𝑐
~ (𝑠)Φ𝑇𝐿

~ (𝑠, 𝑥) [∫ 𝑒−𝑠ℎ𝑑𝐹𝑓(ℎ)
𝜏𝐿

0

+ (1 − 𝐹𝑓(𝜏𝐿)) ∫ 𝑒−𝑠ℎ𝑑𝐹𝑒(ℎ − 𝜏𝐿)
𝑥

𝜏𝐿

]

=
𝑒−𝑠𝑥 (1 − 𝐹𝑓(𝜏𝐿)) (1 − 𝐹𝑒(𝑥 − 𝜏𝐿))

1 − 𝐺𝑟𝑐
~ (𝑠)Ψ𝑇𝐿

~ (𝑠, 𝑥)
, (26)

where

Ψ𝑇𝐿
~ (𝑠, 𝑥) = ∫ 𝑒−𝑠ℎ𝑑𝐹𝑓(ℎ)

𝜏𝐿

0

+ (1 − 𝐹𝑓(𝜏𝐿)) ∫ 𝑒−𝑠ℎ𝑑𝐹𝑒(ℎ − 𝜏𝐿)
𝑥

𝜏𝐿

The above analysis does not take into account the

performance degradation after the software life-extension. If

the job processing rate decreases in the life-extended state (i.e.,

State 1) by 𝑟(0 < 𝑟 ≤ 1), Φ𝑇𝐿
~ (𝑠, 𝑥) is expressed as

Φ𝑇𝐿
~ (𝑠, 𝑥)

=
𝑒−𝑠(𝜏𝐿+

𝑥−𝜏𝐿
𝑟

) (1 − 𝐹𝑓(𝜏𝐿)) (1 − 𝐹𝑒 (
𝑥 − 𝜏𝐿

𝑟
))

1 − 𝐺𝑟𝑐
~ (𝑠)Ψ𝑇𝐿

~ (𝑠, 𝑥)

(27)

where

Ψ𝑇𝐿
~ (𝑠, 𝑥) = ∫ 𝑒−𝑠ℎ𝑑𝐹𝑓(ℎ)

𝜏𝐿

0

+ (1 − 𝐹𝑓(𝜏𝐿)) ∫ 𝑒−𝑠(𝜏𝐿+
ℎ−𝜏𝐿

𝑟
)𝑑𝐹𝑒(ℎ − 𝜏𝐿)

𝜏𝐿+
𝑥−𝜏𝐿

𝑟

𝜏𝐿

The above expression is a generalization of (26) and it becomes

identical to (26) when r=1. The expected job completion time

is obtained as

𝐸(𝑇(𝑥)) = −
𝜕Φ𝑇𝐿

~ (𝑠, 𝑥)

𝜕𝑠
|

𝑠=0

 (28)

The job completion time distribution in the hybrid system

model in Section III.C is also characterized by (28), provided

that the sum of 𝜏𝐿 and 𝜏𝑅 𝑟⁄ is larger than or equal to the work

requirement x. If 𝜏𝐿 +
𝜏𝑅

𝑟
< 𝑥, the rejuvenation always takes

place before job completion and hence the job can never

complete.

V. NUMERICAL EXAMPLES

Our numerical experiments aim to compare the software

rejuvenation, life-extension, and hybrid approaches. For the

software system suffering from software aging, we first analyze

the optimum intervals for software rejuvenation and

life-extension that maximize the steady-state system

availability. Next, we study the impact on the job completion

time on the basis of the model presented in Section IV.

Since the failure rate affected by software aging increases

over time, we assume that the failure time distribution is IFR.

The hypo-exponential distribution is known to be an IFR

distribution regardless of its parameter values, and it has been

widely used for modeling software aging (e.g., [2][8][11]). We

thus define the failure time distributions as two-stage

hypo-exponential distributions, 𝐹𝑓(𝑡) = 𝐻𝑌𝑃𝑂(𝜆1, 𝜆2) and

𝐹𝑒(𝑡) = 𝐻𝑌𝑃𝑂(𝜆1, 𝜆3) where 𝜆1, 𝜆2 and 𝜆3 are parameters

that satisfy 𝜆2 > 𝜆3 . The recovery time distribution and

rejuvenation time distribution are assumed to be exponential

with rates μ and α, respectively. The parameter values used in

the examples are summarized in TABLE I; most of them are

taken from [16].

TABLE I. DEFAULT PARAMETER VALUES

Parameters Values Descriptions

𝜆1 0.002976190 [1/h]
Parameters for failure time

distributions
𝜆2 0.005952381 [1/h]

𝜆3 0.001984127 [1/h]

𝜇 1 [1/h] Reactive recovery rate

𝛼 12 [1/h] Rejuvenation rate

𝑥 360 [units] Amount of work requirements

A. Steady-state availability

Figure 7 plots the steady-state availability achieved by

time-based software rejuvenation and time-based software

life-extension for default parameter values and varying the

maintenance intervals. There exists an optimum rejuvenation

interval, since 𝐹𝑓(𝑡) is IFR, 𝜇 < 𝛼,
𝑑𝐴(0)

𝑑𝜏𝑅
> 0 , and

𝑑𝐴(∞)

𝑑𝜏𝑅
< 0

[11]. From Theorem 1, an optimum life-extension interval also

exists. TABLE II lists the optimum rejuvenation and

life-extension intervals and the corresponding steady-state

availabilities.

Figure 7. Steady-state availabilities achieved by software rejuvenation or

life-extension

TABLE II. OPTIMUM TIME INTERVAL AND MAXIMUM AVAILABILITY

Operation Optimum interval [hours] Maximum availability

Rejuvenation 144.936 0.99858628

Life-extension 99.612 0.99886750

As can be seen, rejuvenation and life-extension have

different optimum intervals that maximize system availability.

With the default parameter values, software life-extension

achieves higher availability than rejuvenation. However,

software rejuvenation potentially achieves higher availability

than life-extension, for example when the rejuvenation rate 𝛼 is

high. The impacts of 𝛼 and 𝜆3 on the maximum system

availability are analyzed by a sensitivity analysis below.

500 1000 1500 2000

0.9975

0.9980

0.9985

Availability

Trigger intervals for rejuvenation τR and life-extension τL [hours]

System with rejuvenation

System with life-extension

9

For a system using only software rejuvenation, the optimum

rejuvenation interval depends on the rejuvenation rate 𝛼. Figure

8 plots the maximum availability versus 𝛼, where each plot is

labeled with the optimum interval 𝜏𝑅
∗ .

Figure 8. Sensitivity to rejuvenation rate on maximum availability

As 𝛼 increases, the downtime overhead due to rejuvenation

decreases; thus, the optimum rejuvenation interval becomes

shorter and the maximum steady-state availability increases.

Similarly, the optimum life-extension interval depends on 𝜆3,

which determines the failure time distribution in the

life-extended state. Since the mean time to failure given

𝐻𝑌𝑃𝑂(𝜆1, 𝜆3) is
1

𝜆1
+

1

𝜆3
, a larger 𝜆3 shortens the lifetime.

Figure 9. Sensitivity of maximum availability to parameter 𝝀𝟑

Figure 9 plots the maximum availability values achieved by

the optimum life-extension intervals 𝜏𝐿
∗ versus 𝜆3 . As 𝜆3

increases, the optimum life-extension interval gradually

increases and the maximum availability consequently

decreases.

Figure 10. Steady-state system availability with hybrid approach

Next, we consider the hybrid model that contains two control

parameters: a life-extension interval 𝜏𝐿 and rejuvenation

interval 𝜏𝑅. Figure 10 plots the steady-state availability values

computed by varying 𝜏𝐿 and 𝜏𝑅 from one hour to 2000 hours.

From Theorem 2, there exists a unique optimum combination

of 𝜏𝑅 and 𝜏𝐿 at which steady-state availability is maximized. In

this example, the maximum steady-state availability is 0.99926

which is achieved at (𝜏𝐿 , 𝜏𝑅) = (52.7, 207.9). Thus, the hybrid

approach potentially has higher system availability compared

with the individual approaches.

B. Job completion time

Suppose the software system starts processing a job with

work requirements x at the beginning of the up state. The job

completion time distribution can be characterized by either (23)

or (26) depending on the preemption type. Since Φ𝑇
~(𝑠, 𝑥) and

Φ𝑇𝐿
~ (𝑠, 𝑥) are in LST form, we take numerical inversion using a

Mathematica library [17]. We set the performance degradation

rate r in the life-extended state to 1.0, 0.8, or 0.5 and compare

the results.

Figure 11 shows the resulting job completion time

distributions for the aging system without life-extension and

the one using software life-extension with different degradation

rates. The life-extension interval is set to 99.612, which is the

optimum interval obtained in Section 5.1.

Figure 11. Job completion time distributions for aging system and the system

with life-extension

If there is no performance degradation after the

life-extension (i.e., r=1.0), the system with life-extension can

clearly complete the job faster than the system without

life-extension. Note that it takes at least 360 hours to complete

the job, since the work processing rate is 1 unit/hour in both the

cases. When the performance degradation occurs after

life-extension, the minimum job completion time is prolonged

accordingly. The more significant the degradation in

processing rate, the longer the minimum job completion time

becomes. Although life-extension has still an advantage when

r=0.8, it is no more beneficial than the system without

life-extension when r=0.5. This means re-execution after a

failure without life-extension is more effective than extending

the software execution by reducing the processing rate.

0.998

0.9985

0.999

0.9995

4 8 12 16 20

M
ax

im
u
m

 a
v
ai

la
b

il
it

y

Rejuvenation rate α

τR=490.31

τR=204.61

τR=144.93
τR=116.82

τR=99.92

0.998

0.9985

0.999

0.9995

0.001 0.002 0.003 0.004 0.005

M
ax

im
u
m

 a
v
ai

la
b

il
it

y

λ3

τL=52.18

τL=97.33

τL=137.13
τL=172.71

τL=204.88

Availability

Life-extension

interval τL [hours]

Rejuvenation

interval τR [hours]

200 400 600 800 1000 1200 1400

0.2

0.4

0.6

0.8

1.0

Job execution time [hours]

w/o life-extension

Job completion time probability

w/ life-extension with r=1.0

w/ life-extension with r=0.8

w/ life-extension with r=0.5

10

Therefore, the performance degradation rate r is critical to

designing an efficient software life-extension as far as the job

completion time is concerned.

Since the completion time performance is influenced by the

life-extension interval 𝜏𝐿 , the impact of the interval can be

evaluated in terms of the mean job completion time (28). Figure

12 plots the mean job completion times versus 𝜏𝐿.

Figure 12. Mean job completion time versus life-extension interval

When 𝜏𝐿 is larger than 𝑥 = 360 , life-extension is never

applied during the job execution, and hence, the mean job

completion time is the same as the mean of the aging system

without life-extension (517.808 hours). Interestingly, if 𝜏𝐿 ≤ 𝑥,

there is an optimum life-extension interval that minimizes the

mean job completion time. If there is no performance

degradation (r=1.0), the mean job completion time is

minimized at 𝜏𝐿 = 130.25, at which point the job completion

time is 404.2 hours. This is the optimum life-extension interval

in terms of the mean job completion time. In the case of the

performance degradations with r=0.8 and 0.5, the optimum

intervals are 𝜏𝐿 = 236.49 and 347.53, and the corresponding

minimum mean job completion times are 464.19 and 516.42

hours.

The results of our numerical experiments show that the

optimum intervals for preventive maintenance (rejuvenation,

life-extension or both) differ depending on the measure of

interest (system availability or mean job completion time) as

well as the parameter values. The proposed analytical

approaches are useful for designing systems with those

maintenance operations.

VI. RELATED WORK

Software aging affects a wide variety of software-based

infrastructure systems that tend to operate for long periods of

time. The early studies characterized the phenomena in

software products such as Apache web server [18], Linux

operating system [19], and Java Virtual Machine [20], as well

as telecommunication systems [21]. Recently, software aging

has been studied in advanced software systems like Xen-based

server virtualized systems [7][22], cloud computing systems

using Eucalyptus [23], and database systems using MySQL

server [24]. It is typically caused by aging-related software

faults [1], and researchers have compiled statistics on such

faults by making thorough investigations of problem reports. In

particular, an investigation of problem reports on NASA’s

space missions revealed that 4.4% of bugs can be classified as

aging-related software faults [25]. Aging-related bugs in

open-source software of cloud computing systems have also

been investigated [26]. Investigation of bug reports was also

used to identify the software complexity metrics that can be

used for predicting the location of aging-related faults [27].

The mitigations against software aging can be categorized

according to the phases of software development, namely the

development phase and the operational phase. Removing the

root cause of software aging in the development phase is

challenging, because it takes a long time to observe software

aging, and one also faces problematic false alarms. Accelerated

life-time test [28] and degradation test [29] are capable of

reducing the time needed to observe software aging phenomena.

However, false alarms of aging detection due to benign trends

in resource usage are still an unsolved issue [30]. The impact of

software testing on the operational behavior of software

systems suffering from aging was studied in [31]. Even with

state-of-art testing and debugging techniques, complete

removal of aging-related software faults is practically

infeasible or unacceptably expensive. Instead of removing the

bugs in the development phase, it may be more cost-effective to

remove them in the operational phase, as in the case of software

rejuvenation. Software rejuvenation was first presented in [2],

and subsequently, a number of researchers have come up with

analytical models to quantify its effectiveness in terms of

system availability [8], performance [31], and job completion

time [16]. Software rejuvenation involves additional downtime

costs, and variations of it have been presented for cluster

systems [33], virtual machine-based systems [7][13][34] and

Linux operating systems [35]. Software life-extension [3] is a

new countermeasure that is completely different from

rejuvenation. In this paper, we proposed a judicious

combination of software life-extension and rejuvenation to

maximize system availability.

Since software life-extension allows software to continue

execution even as it ages, the concept bears some similarity to

failure-oblivious computing [36], which neglects errors in

favor of continuing the execution. Google admits the

effectiveness of failure-oblivious computing and use this

concept in their parallel data analysis by Sawzal [37]. Rx is

another safe survival technique that uses checkpoints and

re-execution in a modified environment [38]. In contrast to

these failure survival techniques, we focus on software

life-extension as preventive maintenance to postpone the time

to failure.

VII. DISCUSSION

VM-based software life-extension, as explained in Section

II.D, is a general approach as it can apply any kind of

application running on a VM. However, it should be noted that

the application also needs to recognize the added resources and

use them for the runtime. If an application does not recognize

0 100 200 300 400 500

200

400

600

800

1000

Mean job completion time

Life-extension interval τL [hours]

w/o life-extension

w/ life-extension with r=1.0

w/ life-extension with r=0.8

w/ life-extension with r=0.5

τL=360

11

the dynamically added resource for its process, the

life-extension does not help prolong the lifetime. For example,

applications running on Java Virtual Machine (JVM) cannot

take advantage of dynamically added memory because JVM’s

maximum heap size is set during initialization and it cannot be

modified during execution. This could restrict the application

domain of VM-based software life-extension.

As discussed in Section II.B, software life-extension can be

achieved through dynamic workload control as well. In this

approach, it is important to analyze the relationship between

workload and aging rate so that we can determine the level of

workload assignment. This can be done by characterizing the

workload-aging relationship [6] in the software operational

process. The relationship between the workload intensity and

the affected lifetime can be estimated by performing

accelerated degradation tests [29] and accelerated life tests [28].

Those techniques can complement our technique to determine

the optimum life-extension interval.

Our life-extension model introduces a life-extended state that

is distinct from the original state and assumes that the failure

time distribution changes in the new state. SMP allows us to use

any kind of distribution for failure time distribution. However,

as mentioned previously, the Markov property assumed on

every state transition in SMP may restrict the applications of

the proposed model. The amount of accumulated errors in the

robust state is not conserved in the life-extended state. If the

failure time distribution depends on the time spent in the robust

state, one approach we may take is to expand the model by

reliability-conservation principle [39]. According to this

principle, the reliability at the time of life-extension, 1 −
𝐹𝑓(𝜏𝐿), is preserved in the extended state. Let 𝐹𝑓2(𝑡) be the

failure time distribution in the life-extended state. There exists

a time 𝜏𝐿̂ that satisfies 1 − 𝐹𝑓(𝜏𝐿) = 1 − 𝐹𝑓2(𝜏𝐿̂). The failure

time distribution when software life-extension is applied at 𝜏𝐿

is represented as 𝐹𝑓2(𝑡 + 𝜏𝐿̂) that depends on the time spent in

the robust state 𝜏𝐿. Note that the resulting state model is no

longer SMP, since the process does not regenerate in the

life-extension state (i.e., the transition probabilities in the

life-extension state depend on the time spent in the previous

states). Alternatively, we may also rely on approximation

model instead of explicitly modeling the time-dependent failure

distribution. The approximated SMP model can be constructed

from empirical data for lifetime in the life-extended state. Once

we obtain the approximated SMP model, we can apply the same

optimization scheme.

Another important future direction is to extend our model by

incorporating the cost of software life-extension. In the current

model, the cost factor is indirectly included as performance

degradation of the life-extended application. The cost of

life-extension depends on the implementation (e.g., additional

resource usage costs, performance degradations, and

degradations to the availability of other services). Incorporating

such factors explicitly in the model can yield more

comprehensive optimization problem. For instance, if the

server memory is shared by another application on the same

server, the life-extension may reduce the memory allocation to

other application which results in performance degradation. To

incorporate such cost for determining the optimum

life-extension interval, we need to model the state transition

and performance of the other application in addition to the

life-extended application.

VIII. CONCLUSION

We have analytically shown the effectiveness of

counteracting software aging by extending the lifetime of

software execution. On the basis of the semi-Markov process

capturing the behavior of the system, we show of the condition

where there is an optimum software life-extension interval in

which the system availability is maximized. Our numerical

experiments reveal that life-extension is comparable to

rejuvenation in terms of system availability, while it can

significantly shorten the job completion time. Considering both

of system-availability and job completion time performance,

the hybrid approach in which software life-extension followed

by rejuvenation turns out to be the best strategy.

ACKNOWLEDGMENT

The authors would like to thank Kishor Trivedi of Duke

University for his technical advice on modeling and analysis for

software aging and rejuvenation.

REFERENCES

[1] M. Grottke and K. S. Trivedi, Fighting bugs: Remove, retry, replicate and
rejuvenate, IEEE Computer, vol. 40, no. 2, pp. 107-109, 2007.

[2] Y. Huang, C. Kintala, N. Kolettis, N.D. Fulton, Software rejuvenation:

analysis, module and applications, In Proc. of 25th Symp. on Fault
Tolerant Computing (FTCS-25), pp.381–390, 1995.

[3] F. Machida, J. Xiang, K. Tadano and Y. Maeno, Software life-extension:

a new countermeasure to software aging, In Proc. of IEEE 23rd Int'l Symp.
on Software Reliability Engineering (ISSRE), pp.131-140, 2012.

[4] K. S. Trivedi, R. K. Mansharamani, D. Kim, M. Grottke, M. Nambinar,

Recovery from Failures Due to Mandelbugs in IT Systems, In Proc. of
Pacific Rim Int'l Symp. on Dependable Computing (PRDC), pp.224-233,

2011.

[5] K. Vaidyanathan and K. S. Trivedi, A measurement-based model for

estimation of resource exhaustion in operational software systems, In

Proc. of Int'l Symp. on Software Reliability Engineering (ISSRE), pp.

84-93, 1999.
[6] A. Bovenzi, D. Cotroneo, R. Pietrantuono, S. Russo, Workload

characterization for software aging analysis, In Proc. of Int'l Symp. on

Software Reliability Engineering (ISSRE), pp. 240-249, 2011.
[7] K. Kourai, Fast and correct performance recovery of operating systems

using a virtual machine monitor, In Proc. of Int'l Conf. on Virtual

execution environments (VEE11), pp.99-110, 2011.
[8] S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi, Analysis of software

rejuvenation using Markov regenerative stochastic Petri nets, In Proc. of

Int'l Symp. on Software Reliability Engineering (ISSRE), pp. 180-187,
1995.

[9] H. Suzuki, T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi, Analysis

of multi-step failure models with periodic software rejuvenation,
Advances in Stochastic Modelling (J. R. Artalejo and A. Krishnamoorthy,

eds.), Notable Publications, Inc., pp. 85-108, 2002.

[10] D. Chen and K. S. Trivedi, Analysis of periodic preventive maintenance
with general system failure distribution, in Proc. of Pacific Rim

Dependable Computing (PRDC), pp. 103-107, 2001.

[11] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi, Estimating software
rejuvenation schedules in high assurance systems, Computer Journal, vol.

44, no. 6, pp. 473-482, 2001.

[12] J. Zhao, Y. Wang, G. Ning, K. S. Trivedi, R. Matias Jr., and K. Y. Cai, A
comprehensive approach to optimal software rejuvenation, Performance

Evaluation, vol. 70, no. 11, pp. 917-933, 2013.

12

[13] F. Machida, D. Kim, and K. S. Trivedi, Modeling and analysis of software

rejuvenation in a server virtualized system with live VM migration,

Performance Evaluation, vol. 70, no. 3, pp. 212-230, 2012.

[14] K. S. Trivedi, Probability and Statistics with Reliability, Queuing, and

Computer Science Applications, John Wiley & Sons, 2nd edition, 2001.
[15] V. G. Kulkarni, V. V. Nicola and K.S. Trivedi, The completion time of a

job on multimode systems, Advances in Applied Probability, vol. 19, pp.

932-954, 1987.
[16] F. Machida, V. F. Nicola, and K. S. Trivedi, Job completion time on a

virtualized server with software rejuvenation, ACM J. on Emerging

Technologies in Computing Systems, vol. 10, no. 1, 10, 2014.
[17] A. Mallet, Numerical Inversion of Laplace Transform, in Wolfram

Library Archive,

http://library.wolfram.com/infocenter/MathSource/2691/, 2000.
[18] M. Grottke, L. Lie, K. Vaidyanathan, and K. S. trivedi, Analysis of

software aging in a web server, IEEE Trans. Reliability, vol. 55, no. 3,

pp.411-420, 2006.

[19] D. Cotroneo, R. Natella, R. Pietrantuono, and S. Russo, Software aging

analysis of the Linux operating system, In Proc. of Int'l Symp. Software

Reliability Engineering (ISSRE), pp. 71-80, 2010.
[20] D. Cotroneo, S. Orlando, R. Pietrantuono, and S. Russo, A

measurement-based ageing analysis of the JVM, Software Testing,

Verification and Reliability, vol. 23, no. 3, pp. 199-239, 2013.
[21] A. Avritzer and E. J. Weyuker, Monitoring smoothly degrading systems

for increased dependability, Empirical Software Engineering, vol. 2, no. 1,

pp. 59-77, 1997.
[22] F. Machida, J. Xiang, K.Tadano and Y. Maeno, Combined Server

Rejuvenation in a Virtualized Data Center, In Proc. of 9th Int'l Conf. on
Autonomic and Trusted Computing (ATC), pp.486-493, 2012.

[23] J. Araujo, R. S. Matos, V. Alves, P. R. M. Maciel, F. V. Souza, R. Matias

Jr., and K. S. Trivedi, Software aging in the eucalyptus cloud computing
infrastructure: Characterization and rejuvenation, ACM J. Emerging

Technologies in Computing Systems, vol. 10, no. 1, 11, 2014.

[24] A. Bovenzi, D. Cotroneo, R. Pietrantuono, S. Russo, On the aging effects
due to concurrency bugs: a case study on MySQL, In Proc. of IEEE 23rd

Int'l Symp. on Software Reliability Engineering (ISSRE), pp.211-220,

2012.
[25] M. Grottke, A. P. Nikora, K. S. Trivedi, An empirical investigation of

fault types in space mission system software, In Proc. of 40th IEEE/IFIP

Int'l Conf. on Dependable Systems and Networks (DSN), pp. 447-456,
2010.

[26] F. Machida, J. Xiang, K. Tadano and Y. Maeno, Aging-related bugs in

cloud computing software, In Proc. of 4th Int'l Workshop on Software
Aging and Rejuvenation (WoSAR), 2012.

[27] D. Cotroneo, R. Natella, R. Pietrantuono, Predicting aging-related bugs

using software complexity metrics, Performance Evaluation, vol. 70, no.
3, pp. 163-178, 2013.

[28] R. Matias Jr., K. S. Trivedi, and P. R. M. Maciel, Using accelerated life

tests to estimate time to software aging failure, In Proc. of Int'l Symp.
Software Reliability Engineering (ISSRE), pp. 211-219, 2010.

[29] R. Matias Jr., Pedro A. Barbetta, K. S. Trivedi, and P. J. Freitas Filho,

Accerelated degradation tests applied to software aging experiments,
IEEE Trans. on Reliability, vol. 59, no. 1, pp. 102-114, 2010.

[30] F. Machida, R. Matias Jr. and A. Andrzejak, On the effectiveness of

Mann-Kendall test for detection of software aging, In Proc. of 5th Int'l
Workshop on Software Aging and Rejuvenation (WoSAR), 2013.

[31] M. Grottke and B. Schleich, How does testing affect the availability of

aging software systems?, Performance Evaluation vol. 70, no.3, pp.
179-196, 2013.

[32] D. Wang, W. Xie, and K. S. Trivedi, Performability analysis of clustered

systems with rejuvenation under varying workload, Performance
Evaluation, vol. 64, no. 3, pp. 247-265, 2007.

[33] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi, K.

Vaidyanathan, W. P. Zeggert, Proactive management of software aging,

IBM Journal of Research and Development vol. 45, no. 2, pp. 311-332,

2001.

[34] L. Silva, H. Madeira and J. G. Silva, Software aging and rejuvenation in a
soap-based server, In Proc. of the Fifth IEEE Int’l Symp. on Network

Computing and Applications (NCA 2006), pp. 56-65, 2006.

[35] K. Yamakita, H. Yamada, and K. Kono, Phase-based reboot: Reusing
operating system execution phases for cheap reboot-based recovery, In

Proc. of 41st Int'l Conf. on Dependable Systems Networks (DSN), pp.

169-180, 2011.

[36] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T, Leu, and W. S. Beebee

Jr., Enhancing server availability and security through failure-oblivious

computing, In. Proc. of USENIX Symp. on Operating Systems Design

and Implementation (OSDI), 2004.

[37] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, Interpreting the data:
Parallel analysis with Sawzall, Scientific Programming, Vol. 13, No. 4,

pp.277-298, 2005.

[38] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou, Rx: Treating bugs as
allergies: A safe method to survive software failures, In Proc. of Symp. on

Operating Systems Principles (SOSP), pp. 235-248, 2005.

[39] D. Kececioglu, Reliability Engineering Handbook (Vol. 1 and 2).
Prentice-Hall, Inc., 1991.

Fumio Machida received the B.S. and

M.S. degrees from Tokyo Institute of

Technology in 2001 and 2003,

respectively. He is a researcher at NEC

Corporation. He was a visiting scholar in

the Department of Electrical and

Computer Engineering at Duke

University in 2010. He was a recipient of

the young scientists' prize of Japan in

2014. His research interests include modeling and analysis for

system dependability, software aging and rejuvenation, and

virtualization of systems and networks. He is a member of the

IEEE and the IEEE Computer Society.

Jianwen Xiang received PhD degrees

from Wuhan University, and Japan

Advanced Institute of Science and

Technology (JAIST) in 2004, and 2005,

respectively. He is a currently a

Professor of the School of Computer

Science and Technology of Wuhan

University of Technology and he was a

researcher at NEC Corporation. His

research interests include dependable computing, formal

methods, and software engineering.

Kumiko Tadano received the B.S., and

M.S. degrees in physics and systems and

information engineering from University

of Tsukuba in 2005, and 2007,

respectively. She is currently a

researcher at NEC Corporation. Her

research interests include modeling and

analysis for disaster resilience of critical

infrastructures.

Yoshiharu Maeno received the B.S.,

and M.S. degrees in physics from Tokyo

University, Japan, and the Ph.D. degree

in business science from Tsukuba

University. He is a principal researcher at

NEC Corporation. He is interested in

stochastic processes, network theory,

statistical analysis, complexity sciences,

and their application to socio-economic

design problems. He is a member of the

IEEE, APS, and INSNA. He received the Young Researchers'

Award from the IEICE..

