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Abstract— Smart drone systems have built-in computing 
resources for processing real-world images captured by cameras 
to recognize their surroundings. Due to limited resources and 
battery constraints, resource-intensive image processing tasks 
cannot always run on drones. Thus, offloading computation tasks 
to any available node in a fog computing infrastructure can be 
considered as a promising solution. An important challenge when 
applying fog offloading is deciding when to start or stop offloading, 
taking into account performance and availability impacts under 
varying workloads and communication link states. In this paper, 
we present a performability-aware adaptive offloading scheme 
called PA-Offload that controls the offloading of image processing 
tasks from a drone to a fog node. To incorporate uncertainty 
factors, we introduce Stochastic Reward Nets (SRNs) to model the 
entire system behavior and compute a performability metric that 
is a composite measure of service throughput and system 
availability. The estimated performability value is then used to 
determine when to start or stop the offloading in order to make a 
better trade-off between performance and availability. Our 
numerical experiments show the effectiveness of PA-offload in 
terms of performability compared to non-adaptive fog offloading 
schemes. 

Keywords—drone, fog computing, image processing, offload, 
stochastic model 

I. INTRODUCTION 
Recently applications of drone systems are prevailing in 

many domains as the performance and intelligence of these 
systems are improving. A smart drone system can recognize the 
surroundings by processing images captured by cameras and 
decide appropriate actions under given conditions. A real-time 
adaptive behavior of a drone is especially required in mission 
critical tasks such as disaster rescue and urban surveillance 
[1][2]. While quick and reliable responses are necessary in 
emergencies, image processing tasks are often too expensive to 
continuously run on the drone which has limited resources and 
short battery life. Thus, alternative processing modes may help 
improving the performance of smart drone systems. 

Offloading image processing tasks to a fog computing 
infrastructure can be considered as an alternative processing 
mode that can complement the processing of drones [3]. The 
devices comprising the fog infrastructure are known as fog 
nodes, and they can be, for instance, a smart device connected 
to the drone, a small local computer, or any accessible virtual 
machines. Since drone’s workload can be reduced by offloading 
and processing on fog nodes, which offer relatively stable 
execution environments, we can expect higher system 

availability (i.e., high probability the system is ready for image 
processing). On the other hand, the performance of image 
processing may degrade due to additional communication delay 
to send images to a fog node. The availability and performance 
can also be affected by uncertainty factors such as changes in 
workload intensity and communication link quality. It is not a 
trivial issue to decide when to start offloading considering the 
performance-availability trade-offs under varying workloads 
and communication link quality. 

In this paper, we propose a novel adaptive offloading 
decision scheme called PA-Offload that determines the 
condition to start or stop the fog offloading based on the 
workload and the quality condition of the wireless 
communication links. To consider the offloading impacts on the 
system performance and availability, we introduce a 
performability measure [6] that is defined as a composite 
measure of service throughput and system availability in our 
application context. The expected performability measure is 
used to decide when to offload image processing tasks to a fog 
node considering the workload state and the communication link 
status. In order to quantitatively analyze the performability, we 
model the system behavior with Stochastic Reward Nets (SRNs) 
[5]. SRNs are variant of stochastic Petri nets that has the 
capability to assign rewards to individual states of the system, 
and hence allowing to compute the defined performability 
measure. We construct two models corresponding to the drone 
processing mode and the fog offloading mode, respectively. The 
performability measure can be computed through the solution of 
the SRNs. We conduct numerical experiments to show the 
effectiveness of PA-Offload. When compared to the drone 
processing mode and fog offloading mode, PA-Offload always 
achieves the highest performability under our experimental 
configuration. Our results also reveal that PA-Offload can 
effectively switch the mode in response to the changes in the 
workload state and the communication link status. 

To sum up, the main contributions of this work are as follows. 

1. We propose PA-Offload as a performability-aware adaptive 
fog offloading decision scheme for image processing tasks 
running on drones. PA-Offload enables to adapt to changes 
in workload intensities and quality of communication links. 

2. We present comprehensive analytical models using SRNs for 
analyzing performance-availability trade-offs in image 
processing tasks running on drones and fog nodes. The 
solution of SRNs allows us to compute service throughput 
and system availability.  



3. Through the numerical experiments, we confirm the 
effectiveness of PA-Offload that can achieve a better 
performability by adapting to the changes of workload states 
and communication link quality. Considering our parameter 
settings, PA-Offload outperforms the drone processing 
mode and fog offloading mode in terms of performability. 

The rest of the paper is organized as follows. Section II 
describes the related work. In Section III, we clarify our problem 
scope regarding the fog offloading decision. In Section IV, we 
detail our approach called PA-Offload. Section V presents the 
SRNs for analyzing the performance and availability of drone 
image processing systems. Section VI shows the results of the 
numerical experiments to present the effectiveness of PA-
Offload. Finally, Section VII presents the conclusion and briefly 
introduces the future works. 

II. RELATED WORK 
Offloading techniques have been investigated for fog 

computing as well as mobile cloud and mobile edge computing. 
By offloading the computation tasks, mobile or edge devices can 
reduce the workloads, and hence, extend their battery lives. A 
crucial aspect of offloading is to decide whether to offload or 
not, and what should be offloaded [11]. Offloading techniques 
can be broadly classified into full offloading or partial 
offloading [12]. In our study, we focus on the offloading of 
image processing tasks that is a part of an application program. 
Therefore, we consider a partial offloading, but the process to be 
offloaded is not changed. Many existing studies for full or partial 
offloading proposed methods to minimize the execution delay 
[13][14][15], to minimize the energy consumption [16][17], or 
to find a proper trade-off between the energy consumption and 
the execution time [18][19]. However, to the best of our 
knowledge, PF-offload is the first offloading decision scheme 
that can make a better trade-off between the system availability 
and the service performance. 

Despite the growing attention to drone applications using 
cloud or fog computing resources, only a few studies addressed 
fog offloading issues. In [21], the authors presented a Fog-aided 
Internet of Drones (IoD) networks that employ fog nodes to 
provide computing resources to tasks offloaded from drones. 
The authors of [22] considered offloading decisions for real-
time video analytics on drones to meet users' Quality of 
Experience (QoE) expectations. When multiple drones are used 
for a collaborative task, swarm of drones can be regarded as a 
part of fog computing [20]. While existing studies consider the 
application performance and cost factors in the task allocation 
or offloading decision, none of them addressed the reliability 
and availability trade-offs.  

Performability modeling and analysis have been applied in 
many applications to compute performance-related metrics of 
degradable systems. Markov reward model (MRM) is 
introduced for analyzing the performability of a multi-processor 
system where both the system unavailability and the throughput 
loss are considered [23]. MRM is also used for analyzing the 
performability of a wireless network communication system 
subject to communication channel failures [24]. The 
performability of storage systems configured with Redundant 
Array of Independent Disks (RAID) is analyzed by Markov 
regenerative process in [25]. In fog computing studies, while 

several studies considered reliability and availability aspects, 
only a few studies addressed the performability attributes 
[26][27]. Our study is the first attempt to quantify the 
performability of a fog-assisted drone image processing system 
for effectively decide when to start or stop the offloading. 

III. PROBLEM SCOPE 
This section first introduces our target smart drone system. 

Next, we consider an offloading method using fog computing. 
Then, we discuss the issue of offload decision. 

A. Target system: smart drone systems 
Modern drones are equipped with cameras and high-speed 

processors to analyze real-time images. Local image processing 
in real time allows the situation awareness of drones such as 
collision avoidance and detection of objects (e.g., people or 
animals). Considering the use of a smart drone for a disaster 
rescue scenario, such as finding disaster victims in a devastated 
area, the situation awareness is essential [1]. In such a scenario, 
the operator may not directly control the drone due to 
geographical constraints, and hence the autonomous flight 
control is necessary particularly when the wireless 
communication links are not stable. Recognizing the 
surroundings of a drone through real-time image processing is 
vital to mission-critical drone application systems. In this work, 
we assume that the image processing application uses deep 
learning models to detect obstacles or objects in the captured 
images, but the proposed SRNs are agnostic to a specific type of 
image processing. 

B. Offloading drone’s image processing tasks 
Since image processing is a resource-intensive and battery-

consuming task, it is not always efficient to run the image 
processing on the drone that has limited computing resources 
and short battery life. Offloading tasks to fog nodes can be 
considered as an alternative computation mode for drone’s 
image processing [3]. Fog computing is a horizontal system-
level architecture that distributes computing resources close to 
the users [4]. No matter what type of fog node is assigned for the 
task (e.g., a local computer or a remote virtual machine), the 
drone can benefit from offloading by saving the battery and 
reducing the risk of a system failure associated with workload 
intensities. On the other hand, it may involve additional 
overheads on the performance of real-time image processing 
tasks because of the communication delay between the drone 
and the fog node. 

C. Challenges in offloading decision 
There are performance-availability trade-offs in choosing a 

drone processing mode or a fog offloading mode. In general, the 
drone processing mode is preferable in terms of real-time 
performance, while the fog computing mode is better in terms of 
system availability because the processing on the fog node can 
be more stable. However, the performance and availability of a 
system are significantly affected by decision-independent 
(exogenous) uncertainties from a real-world environment. One 
important environmental factor is the workload intensity of the 
image processing application. The frequency with which images 
are processed must depend on the mission of the drone system. 
For example, a drone system used for a disaster rescue requires 
higher rate of image processing than usual when the drone finds 



or approaches a victim. Considering the system availability, 
high workload of image processing requests may be better to be 
shipped to the fog node if any fog node is available and 
accessible. 

 Another critical environmental factor is the quality of the 
wireless communication link. The drone can communicate with 
other terminals or a fog node via mobile or Wi-Fi networks. The 
quality of the communication link can change during the mission, 
or even worse the drone may lose the connection temporarily. 
When the communication quality significantly degrades, 
offloading the image processing is not a good decision in terms 
of both performance and availability perspectives. 

It is not a trivial issue to decide when to start or stop the fog 
offloading in order to make a better trade-off between 
performance and availability under such environmental 
uncertainties. The system needs to continuously monitor the 
environmental status and estimate the performance and 
availability of the system, so that it can decide when to start or 
stop the fog offloading. In this paper, we address this problem 
and propose an approach based on stochastic models to 
dynamically change the processing mode according to the 
environmental states. 

IV. PERFORMABILITY-AWARE ADAPTIVE FOG OFFLOADING 
In this section, we present the PA-offload as an offloading 

decision scheme for drone image processing systems with 
higher performance and availability. To achieve a better balance 
between the performance and availability, we introduce a 
performability measure as a decision criterion for the fog 
offloading that is explained in Section IV-B. 

A. System architecture 

 
Figure 1. Architecture overview of PA-offload 

Figure 1 shows the conceptual flow of the PA-offload. In 
response to input information on environmental uncertainties, 
PA-offload conducts performability analysis to decide the 
computation mode; either drone processing or fog node 
processing. From the system configuration (including a drone, a 
client or a fog node and the network link), we first construct the 
analytic model to represent the system behavior of the drone 
processing mode and fog offloading mode. The constructed 
models are deployed on PA-offload, so that the framework can 
dynamically compute the estimated performance measure with 
the input parameter values. Note that for the input parameter 
values, PA-offload takes into account two types of uncertainties: 
the workload intensity and the link reliability. The workload 
intensity is given by the arrival rate of image processing requests, 

while the link reliability is given by the communication 
disconnection rate. With this information, performability 
analysis module computes the expected performance and 
availability measures for individual processing modes. 
Subsequently, the performability comparison module computes 
the estimated performability measure for deciding whether to 
start or stop the offloading. 

B. Performability computation 
The key to decide whether to change the mode or not in PA-

Offload is the estimation of performability. Performability is a 
composite performance-availability measure to evaluate the 
effectiveness of degradable systems [6]. Many practical 
application systems require not only high-performance but also 
need high-availability during their operation. A high-
performance but unavailable system may not meet users’ 
expectations, while a highly available system with low 
performance is not acceptable either. Performability can 
effectively incorporate these two factors in a unified measure, so 
that it is used for designing efficient system configurations or 
control policies. 

For a drone image processing system, we are interested in 
the request processing capability during its operation period. 
The average request processing rate over the available period 
can be considered as the concerned performability measure. Let 
𝑠𝑠  be a state of a drone system and denote 𝑝𝑝(𝑠𝑠)  as the 
performance measure when the system is in state 𝑠𝑠 . The 
performability measure can be defined as 

𝑃𝑃𝑎𝑎 = � 𝑝𝑝(𝑠𝑠)𝑑𝑑𝑑𝑑(𝑠𝑠)
 

𝑠𝑠∈𝐴𝐴
, 

where 𝐴𝐴 represents the set of states where the system is available 
and 𝑑𝑑(𝑠𝑠) is the probability distribution of the random variable 
for the state 𝑠𝑠 . To compute the value of 𝑃𝑃𝑎𝑎 , the expected 
performance for each state 𝑠𝑠, as well as the probability of the 
state 𝑠𝑠 need to be estimated. These values are not easily given 
from the system specification, since state changes are induced 
by environmental uncertainties. Therefore, we introduce 
stochastic models to capture state transitions of the system under 
environmental uncertainties. Details of the model are presented 
in Section V. 

C. Mode decision 
The output of PA-offload is the recommendation of the 

computation mode, which is expected to achieve a better 
performability. When PA-offload receives a set of parameter 
values 𝜽𝜽  representing the states of the workload and 
communication link, the performability analysis module 
computes the expected performance and availability measures 
for drone processing mode and fog offloading mode 
simultaneously. Then, the performability comparison module 
evaluates the expected performability 𝐸𝐸[𝑃𝑃𝑎𝑎,𝐷𝐷|𝜽𝜽] and 𝐸𝐸[𝑃𝑃𝑎𝑎,𝐹𝐹|𝜽𝜽] 
for drone and fog offloading modes, respectively. The preferable 
mode ℳ𝜃𝜃 is determined by 

ℳ𝜃𝜃 = argmax
𝑖𝑖∈{𝐷𝐷,𝐹𝐹}

𝐸𝐸[𝑃𝑃𝑎𝑎,𝑖𝑖|𝜽𝜽]. 

If the current computation mode is the drone processing and the 
recommendation is 𝑑𝑑  (fog node processing), then it is 
encouraged to start the fog offloading. On the other hand, if the 



current mode is the fog processing mode and the 
recommendation is 𝐷𝐷  (drone processing), then the system is 
requested to stop the offloading. In order to make a further 
improved control, we should also consider the delay and the cost 
incurred by mode changes, which is not considered in this paper 
and is regarded as a future work.  

V. PERFORMABILITY MODEL 
This section details the SRNs for evaluating the 

performability of a drone image processing system. Frist, we 
briefly introduce the formalism of SRNs. 

A. Introduction to SRN 
SRN is a variant of Stochastic Petri Nets (SPN) that has been 

extensively used in studies of availability and performance 
analysis, so that it provides a higher-level graphical 
representation of stochastic behavior of systems [5]. A Petri net 
is essentially represented by a bipartite directed graph with two 
types of nodes: places and transitions. A marking consists of 
tokens in the places of a Petri net that represents a particular 
system state. State transitions are represented by the change of 
marking in accordance with the transition firing rule. A 
transition can fire when all input places have a required number 
of tokens. When a transition fires, the tokens in all input places 
are removed and new tokens are placed in output places (see an 
example shown in Figure 2). 

 

SRN supports two types of transition, i.e., timed transition 
and immediate transition and two types of functions, i.e., guard 
and reward functions. A timed transition has a firing delay when 
it is enabled, while an immediate transition has zero firing time. 
They are represented by a rectangle and a thin black bar, 
respectively. Guard functions can specify the condition to enable 
a transition. To compute various performance measures, it is 
essential to specify reward functions. A reward function assigns 
rewards to each tangible marking of the Petri net. 

Software packages such as SPNP [7] and SHARPE [8] 
support the solution of SRNs. When transition times are 
exponentially distributed, the SRNs are transformed into the 
equivalent continuous-time Markov chain (CTMC) with 
rewards. The expected reward rates defined by reward functions 
are computed through the steady-state solution of the CTMC. 
For efficient analysis in PA-Offload, in this paper, we assume 
that all timed transitions have exponentially distributed firing 
times. More details about SRN formalism, solution techniques 
and modeling examples can be found in the literature [5][10]. 

B. Drone processing model 
We compose the SRN for the drone image processing system 

without using fog offloading. Figure 3 shows the SRN that 

consists of three inter-dependent subnets corresponding to a 
drone, a client node, and the wireless link between them. 

 

The drone model represents the states of the job processing 
on the drone. When a token is deposited in Pd-idle, representing 
that the drone has no image for processing, the transitions Td_job 
and Td-fail are enabled. If Td-job fires first, a token is removed from 
Pd-idle and a new token is deposited in Pd-run. The state transition 
corresponds to the arrival of an image processing request. We 
assume that the arrival of job processing requests follows 
Poisson process with rate 𝛾𝛾. The firing of Td-srv represents the 
completion of a job processing. We assign service rate 𝜈𝜈𝑑𝑑  for 
Td-srv. On the other hand, if Td-fail fires first, which represents a 
drone process failure event from the idle state, a new token is 
deposited in Pd-fail. We assign the process failure rate 𝜆𝜆𝑑𝑑  for 
Td-fail1. The drone process can fail also during image processing 
through the firing of the transition Td-fail2. The process failure rate 
𝜆𝜆𝑑𝑑2 is assigned for Td-fail2, which is assumed to be larger than 𝜆𝜆𝑑𝑑 
because the probability of a process failure increases during the 
execution. When a token is deposited in Pd-fail, the transition 
Td-recv is enabled, which represents the recovery of the process. 
We assign the process recovery rate 𝜇𝜇𝑑𝑑 for Td-recv. 

The client node model captures the failure-recovery 
behavior of a client device that communicates with the drone to 
receive the results of the image processing (e.g., alert message). 
Although the availability of a client node does not affect the 
image processing process on a drone, the user may not access 
the results of the process when the node is down. Thus, we need 
to consider the state of the client node to compute the system 
availability. A token deposited in Pn-up is removed when Tn-fail 
fires, representing a node failure event. Meanwhile, a token 
deposited in Pn-fail is removed when Tn-recv fires, representing a 
node recovery event. We assign the client failure rate 𝜆𝜆𝑛𝑛 and the 
client recovery rate 𝜇𝜇𝑛𝑛 to Tn-fail and Tn-recv, respectively. 

The wireless link model captures the states of the 
communication link between the drone and the client node. Even 
when both the drone and client node run properly, disconnection 
of the wireless communication link leads to the unavailability of 
the system. When a token is deposited in Pl-up, it represents the 
link is available and, at the same time, the transition Tl-down is 
enabled. The firing of Tl-down corresponds to a disconnection of 
the communication link. While a token is deposited in Pl-down, 
the transition Tl-up is enabled. The firing of Tl-up represents the 
reconnection of the link. The rates of link failure and 
reconnection are assumed to be 𝜆𝜆𝑙𝑙 and 𝜇𝜇𝑙𝑙, respectively. 

We define three reward functions for computing system 
availability and performance measures. 

1 1 1

Pd-idle Pd-run Pn-up Pl-up

Pd-fail Pl-downPn-fail

Td-job

Td-srv

Td-fail2Td-fail1Td-recv

Tn-recv Tn-fail Tl-up
Tl-down

(a) Drone model (b) Client node model (c) Wireless link model



TABLE I.  REWARD FUNCTIONS FOR DRONE PROCESSING MODE 

Name Measure Function 
svavail Service 

availability 
if ((#Pd-idle==1 or #Pd-run==1) and (#Pn-up==1) 
and (#Pl-up==1)) then 1 else 0 

sysavail System 
availability 

if ((#Pd-idle==1 or #Pd-run==1) and (#Pn-up==1)) 
then 1 else 0 

svthru Service 
throughput prob(#Pd-run==1) *  𝜈𝜈𝑑𝑑 

 

TABLE I shows the definition of the reward functions. For 
computing service availability, svavail assigns one reward for 
the marking (#Pd-idle==1 or #Pd-run==1) and (#Pn-up==1) and (#Pl-

up==1), where #Px represents the number of tokens in Px. The 
specified condition represents that the service is available only 
when the drone, the client node and the wireless link are 
available simultaneously. We also define sysavail that exclude 
the condition on the communication link state to compute the 
system availability (the availability of the drone and the client). 
On the other hand, for job processing performance, svthru is 
defined as the effective throughput of Td-srv that can be computed 
by multiplying the probability of marking #Pd-run==1 and 𝜈𝜈𝑑𝑑. 

C. Fog offloading model 
Next, we compose the SRN for the drone image processing 

system using the fog offloading mode. Figure 4 shows the SRN 
that consists of three inter-dependent subnets corresponding to a 
drone, a fog node and the wireless link between them. While the 
wireless link model is unchanged, the drone model and fog node 
model are changed from the drone processing models shown in 
Figure 3. TABLE II shows the guard functions assigned to the 
transitions of the subnets. 

 
Figure 4. SRN for the fog offloading mode 

TABLE II.  GUARD FUNCTIONS FOR THE FOG NODE PROCESSING MODE 

Name Transition Function 
goffload Td-job if ((#Pn-idle==1) and (#Pl-up==1)) then 1 else 0 
gfogjob Tn-job if (#Pd-off==1) then 1 else 0 
gjobstart td-off if (#Pn-idle==0) then 1 else 0 

 

In the fog offloading mode, the captured images are not 
processed on the drone, but sent to the fog node through the 
network. Therefore, the drone model has the place Pd-off, 
representing fog offloading, instead of Pd-run. When a token is 
deposited in Pd-off after firing Td-job, the transition Tn-job in the fog 
node model is enabled. The enabling condition is specified in 
the guard function gfogjob as shown in TABLE II.  When Tn-job 
fires, a token in Pn-idle is removed and a new token is deposited 
in Pn-run. Simultaneously, the immediate transition td-off fires by 
the guard function gjobstart.  We assume that the average time 
to start a job processing in the fog node (communication delay) 

is 1/𝜔𝜔. During the fog node processing, the process may finish 
the job or fail, which are represented by the transitions Tn-srv or 
Tn-fail, respectively. When Tn-srv fires first, where the service rate 
is given by 𝜈𝜈𝑛𝑛, a new token is deposited in Pn-idle. On the other 
hand, if Tn-fail fires first, where the failure rate is given by 𝜆𝜆𝑛𝑛2, a 
new token is deposited in Pn-fail. The recovery process is the 
same as in the previous model. Since offloading only works 
when the fog node is idle and the wireless communication link 
is available, such condition is specified by the guard function 
goffload assigned to Td-job. 

TABLE III.  REWARD FUNCTIONS FOR THE FOG NODE PROCESSING MODE 

Name Measure Function 
svavail Service 

availability 
if ((#Pd-idle==1 or #Pd-off==1) and (#Pn-idle==1 or 
#Pn-run==1) and (#Pl-up==1)) then 1 else 0 

sysavail System 
availability 

if ((#Pd-idle==1 or #Pd-off==1) and (#Pn-idle==1 or 
#Pn-run==1)) then 1 else 0 

svthru Service 
throughput prob(#Pn-run==1) *  𝜈𝜈𝑛𝑛 

 

D. Environmental model 
In the above two models, the job arrival rate 𝛾𝛾 and the link 

failure rate 𝜆𝜆𝑙𝑙 are dependent on environmental uncertainties.  

 
Figure 5. SRN for environmental uncertainties 

 In order to incorporate the environmental uncertainty factors, 
we define two environmental models that represent the states of 
the workload and communication link quality, as shown in 
Figure 5. The workload intensity model captures the variation of 
workloads depending on the mission status of the drone 
application (see Figure 5(a)). Each marking in this subnet 
corresponds to a state of workload that is associated with the job 
arrival rate 𝛾𝛾. For example, if a token is deposited in Pw0, the 
corresponding job arrival rate 𝛾𝛾0 is assigned to Td-job in the drone 
models. We assume that the making #Pw0==1 represents the 

1 1

Pd-idle Pd-off Pl-up

Pd-fail Pl-down

Td-job

td-off

Td-fail1Td-recv

Tl-up Tl-down

(a) Drone model (b) Fog node model (c) Wireless link model
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(a) Workload intensity model 

(b) Communication quality degradation model 



lowest workload state, while the making #Pwn==1 represents the 
highest workload state. The workload state transitions occur 
between the lowest and the highest cases. We assume that the 
average transition times for Twij are given by 1/𝛽𝛽𝑖𝑖𝑖𝑖. 

The communication quality degradation model represents 
the changes of the communication link quality, which depends 
on the location of the drone. Like the workload intensity model, 
each marking in the subnet of Figure 5(b) corresponds to a state 
of communication link that is associated with the link failure rate 
𝜆𝜆𝑙𝑙 . We assume that the making #Pl0==1 represents the most 
robust state, while the making #Pwn==1 represents the most 
unreliable state. The communication quality state transitions 
occur between these states. We assume that the average 
transition times for Tlij are given by 𝛼𝛼𝑖𝑖𝑖𝑖. 

VI. NUMERICAL EXPERIMENTS 
In order to show the effectiveness of PA-offload, we conduct 

numerical experiments using the performability model 
constructed in Section V. 

A. Experimental configuration 
TABLE IV shows the parameter values used in numerical 

experiments. The values are chosen arbitrary from realistic 
ranges of values under reasonable constraints described below.  

TABLE IV.  PARAMETERS FOR NUMERICAL EXPERIMENTS 

Variable Description Value [1/hour] 
𝛾𝛾 Job arrival rate 720 
𝜈𝜈𝑑𝑑 Service rate on drone 1200 
𝜈𝜈𝑛𝑛 Service rate on fog node 1440 
𝜆𝜆𝑑𝑑 Process failure rate on drone in idle state 0.002976190 
𝜆𝜆𝑑𝑑2 Process failure rate on drone in processing 

state 0.013888889 

𝜇𝜇𝑑𝑑 Process recovery rate on drone 3 
𝜆𝜆𝑛𝑛 Process failure rate on fog node in idle 

state 0.000462963 

𝜆𝜆𝑛𝑛2 Process failure rate on fog node in 
processing state 0.001388889 

𝜇𝜇𝑛𝑛 Process recovery rate on drone 2 
𝜔𝜔 Communication rate between drone and 

fog node 7200 

𝜆𝜆𝑙𝑙 Communication link failure rate 0.5 
𝜇𝜇𝑙𝑙 Communication link recovery rate 360 

 

While the mean time between failures (MTBF) of the drone is 
expected to be over a few ten thousands of hours [9], software 
execution errors considered in this paper may occur more 
frequently. Since the process failure rate is also affected by the 

state of the process, we set parameter values under the 
condition 𝜆𝜆𝑑𝑑 < 𝜆𝜆𝑑𝑑2  and 𝜆𝜆𝑛𝑛 < 𝜆𝜆𝑛𝑛2 . We also assume that 𝜆𝜆𝑛𝑛 <
𝜆𝜆𝑑𝑑  and 𝜆𝜆𝑛𝑛2 < 𝜆𝜆𝑑𝑑2  as the fog node provide more robust 
execution environment than the drone. For the service rate, we 
assume 𝜈𝜈𝑛𝑛 > 𝜈𝜈𝑑𝑑 , since the fog node provides more resources, 
while the fog offloading incurs the additional communication 
delay 1/𝜔𝜔. 

Both the drone processing model and the fog offloading 
model are implemented using SPNP [7]. We used the numerical 
solution with Gauss-Seidel method to compute the expected 
reward rates in steady-state. 

B. Sensitivity analysis on workload variation 
First, we evaluate the impacts of the workload on the service 

availability and performance of the drone processing mode (DP) 
and the fog offloading mode (FO). In this experiment, we do not 
use the environmental model shown in Section V-D. Instead, we 
fix the communication link failure rate 𝜆𝜆𝑙𝑙 to 1 and vary the job 
arrival rate 𝛾𝛾  in a range of [60, 900] (1/hour). The expected 
system availabilities and service throughputs are plotted in 
Figure 6 (a) and (b), respectively. 

As the job arrival rate increases, service availability 
decreases monotonically, while the service throughput increases. 
Regardless of the job arrival rate, fog offloading is always 
preferable in terms of service availability since the fog node 
provides more reliable computing resource. Although the 
difference is not significant in a low workload condition, the 
degradation of the service availability due to an increased 
workload in DP may become a matter. For the service 
throughput, there is no significant difference between modes. In 
our job service model, we do not consider request buffer or 
parallel execution, and hence a new job is simply dropped if 
another job exists in the system. SRN models can be extended 
to incorporate buffering and parallel execution modes. However, 
in this work, we focus on a simple service model to compare the 
performance of DP and FO. 

C. Sensitivity analysis on link reliability 
Next, we evaluate the impacts of the communication link 

reliability on the service availability and the performance. In this 
experiment, we fix the job arrival rate 𝛾𝛾 to 720 (1/hour), and 
vary the communication link failure rate 𝜆𝜆𝑙𝑙 in a range of [0.04, 
4] (1/hour). The expected system availabilities and service 
throughputs are plotted in Figure 6 (c) and (d), respectively. 

As can be seen, the service availability decreases 
monotonically by increasing the link failure rate in both modes. 
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Figure 6. Sensitivity analysis results on service availability and service throughput by varying workload and link reliability 



The results are reasonable, since the communication link 
availability is a composite part of the service availability. FO 
always achieves higher availability in this domain as well. For 
the service throughput, however, DP has an advantage as it is 
not affected by the change of communication link quality. In 
terms of service throughput, FO is effective only when the 
communication link is stably reliable. 

D. Evaluation of PA-offload 
As presented previously, both DP and FO have their own 

benefits under different environments and criteria (availability 
and performance). PA-offload can adapt to the change of 
environments and choose the best processing mode in terms of 
performability. 

To evaluate the effectiveness of PA-offload, we incorporate 
the environmental model discussed in Section V-D. We assume 
a variation of the workload in three-stages: 0 (low), 1 (medium) 
and 2 (high), and assign to these states a corresponding job 
arrival rate of  𝛾𝛾0 , 𝛾𝛾1  and 𝛾𝛾2 , respectively. Similarly, the 
communication link quality is assumed to degrade in three-
stages: 0 (robust), 1 (degrade), and 2 (unstable), which has 
associated link failure rate of 𝜆𝜆𝑙𝑙0, 𝜆𝜆𝑙𝑙1, and 𝜆𝜆𝑙𝑙2, respectively. The 
parameter values and transition rates are presented in TABLE V. 

TABLE V.  PARAMETERS FOR ENVIRONMENTAL MODEL 

Variable Description Value [1/hour] 
𝛾𝛾0 Job arrival rate in low workload 120 
𝛾𝛾1 Job arrival rate in medium workload 360 
𝛾𝛾2 Job arrival rate in high workload 720 
𝜆𝜆𝑙𝑙0 Link failure rate in robust state 0.25 
𝜆𝜆𝑙𝑙1 Link failure rate in degraded state 1 
𝜆𝜆𝑙𝑙2 Link failure rate in unstable state 6 

𝛽𝛽01,𝛽𝛽12 Transition rate to higher workload state 12 
𝛽𝛽10,𝛽𝛽21 Transition rate to lower workload state 12 
𝛼𝛼01,𝛼𝛼12 Transition rate to lower link reliability 2 
𝛼𝛼10,𝛼𝛼21 Transition rate to higher link reliability 12 
 

Each marking of the environmental model represents a 
specific environmental state that results in different system 
performance. In accordance with the definition of performability 
in Section IV-B, we compute the average service throughput as 
the concerned performability measure by 

𝑃𝑃𝑎𝑎 = � 𝜏𝜏(𝑚𝑚)𝜋𝜋(𝑚𝑚)
𝑚𝑚∈𝐴𝐴

, 

where 𝜏𝜏(𝑚𝑚) represents the service throughput for a making m, 
𝜋𝜋(𝑚𝑚) is the steady-state probability for m, and A is the set of 
markings which satisfy the condition specified by the reward 
function svavail. Note that the performability is computed by a 
summation, since we deal with a discrete state-space here. 

Given marking m, the job arrival rate and the link failure rate 
are determined. Table VI summarizes the expected service 

throughputs and system availabilities of DP and FO for the given 
environmental state. DP generally performs better in the service 
throughput except when the system is under high workload and 
the link condition is stable. In terms of system availability, 
however, FO is always better than DP. Under this circumstance, 
the decision of offloading is not straightforward. 

PA-offload can determine the effective offloading condition 
by computing performability and comparing DP and FO. For the 
given environmental model, we vary the values of the workload 
amplification rates (𝛽𝛽01 = 𝛽𝛽12) and compute the performability 
gains against the case of DP mode.  For example, the 
performability gain of FO against DP is computed by 
𝐸𝐸�𝑃𝑃𝑎𝑎,𝐹𝐹�𝜽𝜽� − 𝐸𝐸[𝑃𝑃𝑎𝑎,𝐷𝐷|𝜽𝜽]. The results are shown in Figure 7 (a).  

 
Figure 7. Performability gains by PA-offload and FO against DP by varying 

(a) workload intensities, and (b) link reliabilities 

As can be seen, FO is preferable in terms of performability only 
when the mean time to higher workload is relatively short (<15 
minutes). PA-Offload always achieves a higher performability 
when compared to DP and FO regardless of the values of 
workload amplification rates. We also compute the 
performability gains by varying the link reliability degradation 
rates (𝛼𝛼01 = 𝛼𝛼12 ) and show the results in Figure 7 (b). PA-
Offload, in this case as well, always achieves the best 
performability results. FO can achieve higher performability 
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TABLE VI.   EXPECTED SERVICE THROUGHPUT AND SYSTEM AVAILABILITY UNDER VARYING ENVIRONMENTAL STATES 

Workload state Low   Medium   High   
Link state Robust Degrade Unstable Robust Degrade Unstable Robust Degrade Unstable 
Service throughputs DP 108.946 108.946 108.946 276.414 276.414 276.414 448.939 448.939 448.939 

 FO 108.8811 108.6592 107.2026 276.3876 275.8408 272.252 449.125 448.2643 442.6149 
System availability DP 0.998448 0.998448 0.998448 0.997941 0.997941 0.997941 0.997419 0.997419 0.997419 

 FO 0.99876 0.99876 0.99876 0.99873 0.99873 0.99873 0.9987 0.9987 0.9987 
 



than DP only when the mean time to link degradation is larger 
than 15 minutes. With regarding the computation overhead, all 
availability computations are completed in less than a second 
using SPNP, thus we consider that the PA-Offload overhead is 
insignificant in terms of the decision mechanism.  

From the experimental observation, we can summarize the 
advantage of PA-Offload in twofold. First, PA-offload achieves 
a desirable trade-off between service availability and 
performance. As Table VI shows, the decision of offload is not 
trivial under the competing availability and performance 
measures. The defined performability measure helps to decide 
the reasonable balance between them. Second, PA-offload 
always outperforms DP and FO in terms of the performability, 
since it can dynamically adapt the processing mode to changes 
in environmental states. Figure 7 shows that the benefit of PA-
offload is consistent regardless of the environmental changes. 

VII. CONCLUSION 
This paper proposed PA-offload as an offloading decision 

scheme for drone image processing tasks in order to improve the 
performability of the system. The performability is defined as a 
composite measure of service throughput with system 
availability, so that it is used to make better performance-
availability trade-offs by switching the computation mode. To 
compute the performability under uncertain environmental 
factors, we modeled the system behavior using SRNs. PA-
offload can determine relevant states to start or stop the fog 
offloading by analyzing the expected performabilities under 
different modes for given environmental conditions. The 
numerical experimental results show that PA-Offload always 
achieves a better performability under varying workloads and 
link qualities during the drone operation. 

Our study can be extended in the following directions. In our 
SRN model, we only consider a single drone system that consists 
of a drone, a client, a fog node, and a communication link. We 
can extend our model to larger systems that may consist of 
multiple drones and fog nodes by introducing additional SRN 
models. We can also consider the energy, the autonomy, and the 
safety (e.g., avoiding trashing) of drones as other important 
performance measures. Finally, the validation of the models is 
an important challenge in future works. 
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