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Abstract—Machine learning (ML) models have been 

widely applied to real-world systems. However, outputs of ML 

models are generally uncertain and sensitive to real input data, 

which is a big challenge in designing highly reliable ML-based 

software systems. Our study aims to improve the ML system 

reliability through a software architecture approach inspired 

by N-version programming. N-version ML architectures 

considered in our study combine multiple input data sets with 

multiple versions of ML models to determine the final system 

output by consensus. In this paper, we focus on three-version 

ML architectures and propose the reliability models for 

analyzing the system reliability by using diversity metrics for 

ML models and input data sets. The proposed model allows us 

to compare the reliability of a triple-model with triple-input 

(TMTI) architecture with other variants of three-version and 

two-version architectures. Through the numerical analysis of 

the proposed models, we find that i) the reliability of TMTI 

architecture is higher than other three-version architectures, 

but interestingly ii) it is generally lower than the reliability of 

double model with double input system (DMDI). Furthermore, 

we also find that a larger variance of model diversities 

negatively impacts the TMTI reliability, while a larger 

variance of input diversity has opposed impacts. 

Keywords—reliability, diversity, machine learning, N-

version programming 

I. INTRODUCTION 

Machine learning (ML) is becoming an important and 
common component of intelligent software systems in 
recent years. ML-based intelligent software is widely used 
in our daily lives, for instance, in speech and image 
recognition, strategy games, and robot applications. In spite 
of the widespread use of ML applications, ML system 
reliability is still a major concern in safety-critical 
applications such as automated driving. Outputs of ML 
models are inherently uncertain and sensitive to the input 
data. For safety-critical ML systems, any incorrect outputs 
from ML models may cause undesirable consequences such 
as traffic accidents by automated driving [2]. 

To improve the reliability of ML-based software 
systems, various software engineering techniques can be 
leveraged. ML testing is an approach to detect defects 
between existing ML models and required conditions [1]. 
Several recent studies exploit metamorphic relations to 
tackle the oracle problems encountered in ML application 
testing  [3][4][5]. ML testing techniques effectively reduce 
the dormant defects of ML components that potentially 
cause serious consequences in operation. However, the test 
coverage on testing data does not always guarantee the 
correctness of the predictions for wild examples [20]. To 
ensure the safe operation of ML systems at runtime, it is 
necessary to incorporate additional safety mechanisms such 
as data validation [20], safety monitors [22], and redundant 

architecture [13][16][19]. Data validation requires a white 
box model for deep neural networks, which is not generally 
applicable to other types of ML models. Safety monitors can 
be used for more general ML models but need to be trained 
together with the ML model in advance and hence may lack 
the flexibility. Redundant architecture approaches are rather 
simple yet can be applied to any combination of ML models 
that are trained independently for the same task.  

As a redundant architecture approach to improve ML 
system reliability, we leverage the traditional software fault-
tolerant technique, commonly known as N-version 
programming (NVP). NVP is defined as the independent 
generation of N (≥ 2)  functionally equivalent programs 
from the same initial specification [11]. The core idea of 
NVP is to leverage the diversity of independently generated 
program components. Experimental studies have shown 
immense benefits of using NVP for ML components [12]. 
In contrast to NVP, the N-version ML system can exploit 
the diversity of input data to further increase the diversity of 
predictions. Similar to ensemble ML models [21], the output 
decision based on multiple predictions results could 
improve accuracy. 

In this paper, we propose a system reliability 
architecture made of N-version ML modules to improve the 
reliability of ML-based software systems. We consider an 
ML-based classifier and evaluate the system reliability by 
the probability that the system does not output errors for 
ground truth. In an N-version ML system, multiple ML 
models and sensor inputs are used to determine the final 
system output. The main factors of improved reliability by 
the N-version ML system are the exploitation of input 
diversity and model diversity [13]. For input diversity, it can 
be achieved with samples from different input data sources 
(e.g., different sensors). Even when input data such as an 
image or a voice sentence causes incorrect ML output, 
different input data may produce correct ML output. On the 
other hand, for model diversity, ML models trained by 
different algorithms and/or training data sets can be used 
simultaneously. The benefit of such diversities has been 
studied for two-version architecture systems [13]. 
Nevertheless, the reliability gained by three or more version 
architectures that use majority voting for deciding the final 
outputs is still underexplored. In this paper, we focus on 
three-version architecture systems and propose the 
reliability model for a triple-model with triple-input 
machine learning system (TMTI) that combines three 
different inputs with three different ML models. To show 
the advantages and disadvantages of the three-version 
architecture, we conduct numerical experiments on the 
proposed reliability model and compare the reliabilities of 
different three-version and two-version architectures. Our 
numerical results uncover that the reliability of TMTI is 



higher than other three-version architectures in most ranges 
of model/input diversity values. Interestingly, however, 
when compared with a two-version architecture, the 
reliability of a double-model with double-input system 
(DMDI) is generally better than the reliability of TMTI 
because of the difference in the output decision logic.  Any 
three-version architectures employing a majority voting to 
determine the final output need to reach a consensus, which 
causes a disadvantage against two-version architectures. 
Furthermore, we also find that a larger variance of model 
diversities positively impacts the TMTI reliability, while a 
larger variance of input diversity negatively impacts the 
reliability. 

The remainder of the paper is organized as follows. 
Section II explains related work. Section III introduces 
some background, including the definition of N-version ML 
architectures. In Section IV, we propose the reliability 
model for three-version ML systems using diversity metrics. 
Section V shows the numerical analysis results. Finally, 
Section VI gives the conclusions and briefly explains the 
future work. 

II. RELATED WORK 

The reliability of ML components is considered by some 
approaches, such as ML testing techniques and adversarial 
ML. Evaluation measures (e.g., code coverage and mutation 
testing) are adopted in ML testing scenarios to quantify the 
reliability of ML components [6][7][8]. Besides, ML testing 
by category is a direction for improving the reliability of 
ML-based systems. Building robust ML models against 
adversarial examples is also important to reduce the error 
probability of ML models [9][10]. These approaches all 
mainly focus on the ML models, while we propose a multi-
version ML approach for the ML system reliability. 

Many recent studies introduce multi-version ML 
approaches to improve ML system reliability. It is revealed 
that NVP improves the reliability of ML components by a 
significant margin [12]. The approximate reliability of DNN 
is used to calculate the reliability of ML components. 
PolygraphMR composes several convolutional neural 
networks (CNNs) to improve the reliability of classification 
tasks by reducing high confidence wrong answers [16]. NV-
DNN is presented as a system containing N independently 
developed models and a decision procedure that aims to 
enhance the fault-tolerant ability of a deep learning system 
[19]. While these studies assume that a single input at a time, 
our study considers multi-input to exploit the input diversity 
besides multi-version ML components. Considering the 
performance of multi-version ML systems, queueing 
models have been proposed for multi-model multi-input ML 
systems in two-version architectures [17]. The study focuses 
on the throughput of simple two-version architectures in 
which the system can use at most two different ML models 
and two data sources. The reliability impacts of multi-input 
for N-version ML systems have been modeled and analyzed 
by introducing the measure of the input diversity [13]. 
Moreover, experiments with diverse machine learning 
models with perturbated input datasets are conducted on 
image classification tasks of MNIST data set, and Belgian 
Traffic Sign data set [18]. The study shows that the three-
version architecture can achieve higher system reliability 
than a single machine learning module. Compared to the 
existing studies, our work first formulates the reliability of 
three-version ML architectures with diversity metrics and 

analytically shows the potential reliability improvements by 
TMTI architecture. In particular, we clarify that the 
reliability of TMTI may not be better than the reliability of 
DMDI under the majority voting decision scheme. 

III. BACKGROUND 

This section introduces some backgrounds of the study. 
First, we introduce our target safety-critical ML system that 
needs high reliability of ML prediction outputs. Next, we 
introduce the N-version architecture and its property. As 
specific instances of N-version architectures, we explain the 
details of two-version and three-version architectures in the 
following sections. 

A. Safety-critical ML system 

As the accuracy of ML-based classification tasks has 
greatly improved recently, ML components are also being 
employed in safety-critical domains. In this paper, we 
consider such a safety-critical ML system that classifies the 
real-world input data such as images, sounds, and voices. 
Automated driving is a representative example of such a 
system as it needs to recognize the surroundings by 
classifying the images captured by the sensors. If the system 
controls the vehicle based on the error classification outputs, 
vehicle accidents can happen, and pedestrians’ lives will be 
threatened. However, even using extremely-accurate ML 
models, it is impractical to guarantee 100% accuracy for 
real-world samples. We have to assume that error outputs 
from ML models are inevitable, but we still need to deal 
with the issue so that system can avoid hazardous 
consequences. Redundant architecture can be employed for 
such ML systems by using multiple ML components in 
parallel. Individual ML components may install different 
ML models and use different data sources to diversify the 
prediction results as shown in Fig 1.  In automated driving, 
when recognizing the traffic sign like ‘STOP’ using 
different sensors, even though some of the ML models 
output errors like ‘GO STRAIGHT,’ a voting decision from 
diversified prediction results can correct the error and avoid 
an undesirable decision. In the N-version architecture 
introduced in the following section, we can benefit from this 
redundant scheme to improve the reliability of the system 
even with a single ML model by taking inputs from different 
data sources. 

 

Figure 1: An example of the N-version ML system design 

B. N-version ML architecture 

N-version ML architecture is based on NVP and 
contains N (≥ 2) different versions of ML components that 
work for the same task in parallel. In the N-version ML 
architecture, we can use multiple inputs and ML models in 
a system. Different algorithms and training data sets are 
used to generate multiple versions of ML models. The 
diversity of ML models can mitigate the risk of erroneous 
system output by mutually validating individual outputs. 
ML components are also sensitive to input data. An ML 



model may produce different results for slightly different 
input data (e.g., a sample image with a one-pixel change). 
By taking samples from different sources, we can leverage 
the input diversity for ML-based predictions so that the 
system can detect or correct the error outputs from ML 
models. Every ML model in N-version architecture can 
produce a prediction result, while the final result is 
determined by a specific decision rule. For a three-version 
architecture system, it is reasonable to employ a majority 
voting rule to determine the final outputs by consensus of 
individual ML components. Under the majority voting 
decision, the system can tolerate one classification error 
from one ML component if the other two components 
correctly predict the class labels. Our reliability models and 
analysis focus on binary classification tasks for ML 
components, although other types of ML tasks can also 
benefit from N-version architectures. As specific instances 
of N-version architectures, two-version and three-version 
ML architectures are explained next. 

C. Two-version architectures 

Fig. 2 shows the types of two-version architecture that 
may use two inputs and/or two ML models. 𝑥1  and  𝑥2 
represent the inputs to ML models from different data 
sources (e.g., sensors), while 𝑚𝑎 and 𝑚𝑏 represent different 
ML models dealing with the same task. In two-version 
architectures, when both running models output the same 
error, the system results in the error output. A double-model 
with single-input system (DMSI) has two ML models with 
the same input. Any errors in one model can be detected 
when the other model outputs correctly. The reliability of 
the DMSI system is affected by model diversity. A single-
model with double-input system (SMDI) has one ML model 
with two inputs. The input diversity is exploited in the 
SMDI system. Furthermore, a double-model with double-
input system (DMDI) has two ML models with two 
different inputs. Since two ML models work with the 
different inputs in the DMDI system, both model diversity 
and input diversity affect the system reliability. 

 
Figure 2: Two-version architecture 

D. Three-version architectures 

Fig. 3 shows the different three-version architectures. 
Systems can contain three inputs and/or three ML models. 
We add input  𝑥3  and ML model 𝑚𝑐  in three-version 
systems. Under the majority voting rule, the system outputs 
an error when more than two of the running ML models 
agree on an incorrect output. A triple-model with single-
input system (TMSI) has three ML models with the same 
input. TMSI has the same structure as DMSI, but one more 
ML model is added. Besides, a single-model with triple-
input system (SMTI) has one ML model with three inputs, 
which is an extension of an SMDI system. Finally, TMTI 
has three ML models with three inputs, which is an 

extension of a DMDI system. We analyze the reliability of 
TMTI through the diversity metrics introduced in the next 
section. 

 

 
Figure 3: Three-version architecture 

IV. RELIABILITY MODELING 

In this section, we present the reliability models to 
analyze the effectiveness of N-version ML architectures 
quantitatively. We extend the existing studies to propose the 
reliability model for three-version architectures using 
diversity metrics. 

A. Existing reliability models for triple module systems 

There are some existing triple redundancy models with 
a majority voting scheme. A triple module redundancy 
(TMR) system consists of three independent modules, each 
of which has a single output [14]. The failures of the 
modules are statistically independent, and the reliability of 
TMR is determined by the reliability of one module 𝑅𝑀 by 
(1). Note that application of this type of redundancy cannot 
increase the reliability if 𝑅𝑀 is less than 0.5. 

𝑅 = 𝑅𝑀
3 + 3𝑅𝑀

2(1 − 𝑅𝑀) = 3𝑅𝑀
2 − 2𝑅𝑀

3. (1) 

A reliability model for an NVP system with a majority 
voting decision is considered with a dependent failure 
parameter 𝛼 that represents the similarity percentage of the 
input sets on which each pair of versions fail [15]. A joint 
probability can be formulated by using the definition of 
conditional probability. When the failure probability of each 
version is assumed to be 𝑝, the reliability of a three-version 
NVP model is given as follows. 

𝑅 = 1 − [3𝛼𝑝(1 − 𝛼) + 𝛼2𝑝] = 1 − 𝛼𝑝(3 − 2𝛼). (2) 

In contrast to the existing studies, our focus in this paper 
is the system that assembles three ML modules whose 
outputs are dependent on each other. Thus, the reliability 
models (1) and (2) are not directly applicable to three-
version ML architectures. To incorporate the dependency 
factors, we use two diversity metrics measuring the 
diversity of input data and ML models. The diversity 
metrics were first introduced in modeling two-version ML 
architectures [13], but the approach has never been 
examined for N-version architecture with N>2. Therefore, 
in this paper, we attempt to extend the approach to three-
version ML architectures. 

B. Notations and diversity measures 

Table 1 summarizes the notations used in our reliability 
models throughout the paper. Let 𝑓𝑘 be the probability that 
ML model 𝑚𝑘  outputs errors. Let 𝑆  be the total sample 
space of inputs and 𝐸𝑘 ⊆ 𝑆 be the set of input data that leads 
to output error by 𝑚𝑘. The error probability 𝑓𝑘 is given by 



𝑓𝑘 =
|𝐸𝑘|

|𝑆|
. (3) 

Let 𝐸𝑖 and 𝐸𝑗 be the input sets that make ML models 𝑚𝑖 

and 𝑚𝑗 output error; Define the intersection of errors 𝛼𝑖,𝑗 ∈
[0,1] as the ratio of the intersection over the smaller size of 
𝐸𝑖 and 𝐸𝑗, respectively. Here, 𝑖, 𝑗 ∈ 𝑁+. The intersection of 

errors represents the degree of coincidence of the inputs that 
caused the two models 𝑚𝑖, 𝑚𝑗 to be errors. The intersection 

of errors is also referred to as model diversity [13]. A 
smaller intersection value is better as it indicates that two 
ML models are unlikely to reach a mutual error.  

𝛼𝑖,𝑗 =
|𝐸𝑖 ∩ 𝐸𝑗|

𝑚𝑖𝑛{𝐸𝑖 , 𝐸𝑗}
. (4) 

Let 𝑥𝑖 and 𝑥𝑗  be the inputs to ML models from different 

data sources (e.g., sensors). Then, define the conjunction of 
errors 𝛽𝑘,𝑖|𝑗 ∈ [0,1] as the probability that 𝑚𝑘 outputs error 

by 𝑥𝑖  provided that 𝑚𝑘  outputs error by 𝑥𝑗 . Here, 𝑖, 𝑗, 𝑘 ∈
𝑁+. The conjunction of errors is related to the conditional 
probability that 𝑚𝑘 outputs error by 𝑥𝑖 given the condition 
that 𝑚𝑘 outputs error by 𝑥𝑗. The conjunction of errors is also 

referred to as input diversity [13]. A smaller conjunction 
value is better because the probability of a mutual error 
becomes small. 

𝛽𝑘,𝑖|𝑗 = 𝑃𝑟[𝑥𝑖 ∈ 𝐸𝑘| 𝑥𝑗 ∈ 𝐸𝑘]. (5) 

TABLE I.  NOTATIONS USED IN THE RELIABILITY MODEL 

Symbols Descriptions 

𝑚𝑘 An ML model 

𝑥𝑖 An input data source for ML models 

𝑓𝑘 The probability that ML model 𝑚𝑘 outputs errors 

𝑆 The total sample space of inputs 

𝐸𝑘 The set of input data that leads to output error by 𝑚𝑘 

𝛼𝑖,𝑗 The intersection of errors between 𝑚𝑖 and 𝑚𝑗  

(model diversity) 

𝛽𝑘,𝑖|𝑗 The conjunction of errors on 𝑚𝑘 by 𝑥𝑗 followed by 𝑥𝑖 

(input diversity) 

𝑓𝑝,𝑞 The error probability of the ML architecture with 𝑝 inputs 

and 𝑞 models 

𝑅𝑝,𝑞 The reliability of the ML architecture with 𝑝 inputs and 𝑞 

models 

C. Reliability of two-version architectures 

The reliability of two-version architectures has been 
studied in [13]. It is assumed that any two-version 
architecture systems output errors when both ML models 
output errors. We briefly review the reliability models for 
two-version architectures below. 

1) Reliability of DMSI 

Let 𝑓2,1(𝑚1, 𝑚2; 𝑥1) be the error probability of a DMSI 

system using two ML models 𝑚1 and 𝑚2. Without loss of 
generality, we can assume |𝐸1| ≤ |𝐸2| and hence we have 

𝑓2,1(𝑚1, 𝑚2; 𝑥1) =
|𝐸1 ∩ 𝐸2|

|𝑆|
= 𝛼1,2

min{|𝐸1|, |𝐸2|}

|𝑆|
= 𝛼1,2 ∙ 𝑓1. 

(6) 

The reliability of a DMSI system is calculated by  

𝑅2,1(𝑚1, 𝑚2; 𝑥1) = 1 − 𝑓2,1(𝑚1, 𝑚2; 𝑥1).  (7) 

The model indicates that the reliability of DMSI relies 
only on the intersection of errors between two ML models. 

2) Reliability of SMDI 

Let 𝑓1,2(𝑚1; 𝑥1, 𝑥2) be the error probability of an SMDI 

system using two inputs 𝑥1  and  𝑥2 . Using the input 
diversity, we have  

𝑓1,2(𝑚1; 𝑥1, 𝑥2) = 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1] 

= 𝑃𝑟[𝑥2 ∈ 𝐸1| 𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸1] 
= 𝛽1,2|1 ∙ 𝑓1.  

(8) 

The reliability of SMDI system is calculated by  

𝑅1,2(𝑚1; 𝑥1, 𝑥2) = 1 − 𝑓1,2(𝑚1; 𝑥1, 𝑥2).  (9) 

The model indicates that the reliability of SMDI relies 
only on the conjunction of errors on two inputs. 

3) Reliability of DMDI 

Let 𝑓2,2(𝑚1, 𝑚2; 𝑥1, 𝑥2) be the failure probability of a 

DMDI system using two ML models 𝑚1 and 𝑚2 and two 
inputs 𝑥1  and 𝑥2 . By assuming conditional independence, 
we have  

𝑓2,2(𝑚1, 𝑚2; 𝑥1, 𝑥2) = 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸2] 

= 𝑃𝑟[𝑥2 ∈ 𝐸2| 𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸1] 

= [𝛽1,2|1 ∙ 𝛼1,2 + (1 − 𝛽1,2|1) ∙
𝑓2 − 𝛼1,2 ∙ 𝑓1

1 − 𝑓1

] ∙ 𝑓1 

(10) 

The reliability of DMDI system is calculated by 

𝑅2,2(𝑚1, 𝑚2; 𝑥1, 𝑥2) = 1 − 𝑓2,2(𝑚1, 𝑚2; 𝑥1, 𝑥2). (11) 

As the model represents, the reliability of DMDI 
depends on both the intersection and the conjunction of 
errors. 

D. Reliability of three-version architectures 

The modeling methodology for the two-version ML 
architecture can be generalized for more versions of 
architectures, but existing studies have never examined the 
reliability models of N-version architectures with N>2. To 
extend reliability models for three-version architectures, we 
need to consider i) a majority voting rule that determines the 
final system output from three dependent module outputs, 
and ii) multiple diversity parameters among three ML 
models and three input sources that characterize the 
dependencies of the outputs. First, we show the reliability 
models for TMSI and SMTI systems using the intersection 
of errors and the conjunction of errors, respectively. Then, 
we exploit both diversity parameters to formulate the 
reliability of a TMTI system. 

1) Reliability of TMSI 

Let 𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1)  be the error probability of a 

TMSI system output using three ML models 𝑚1, 𝑚2  and 
𝑚3 . Since the system outputs errors when at least two 
modules output errors, 

𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1) = 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3] + 

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3] + 

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3] + 

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3] 
= 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2] + 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸3] + 

𝑃𝑟[𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3] − 2𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3]. 
For the last term, when we assume conditional 

independence, 

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3]  
= 𝑃𝑟[ 𝑥1 ∈ 𝐸3, 𝑥1 ∈ 𝐸2|𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸1] 
= 𝑃𝑟[𝑥1 ∈ 𝐸3| 𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸2| 𝑥1 ∈ 𝐸1]

∙ 𝑃𝑟[𝑥1 ∈ 𝐸1]. 
Without loss of generality, we can assume  |𝐸1| ≤

|𝐸2| ≤ |𝐸3|, and hence we have 



𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1) = 

𝛼1,2 ∙ 𝑓1 + 𝛼1,3 ∙ 𝑓1 + 𝛼2,3 ∙ 𝑓2 − 2𝛼1,2 ∙ 𝛼1,3 ∙ 𝑓1 . 
(12) 

Since the error probability of DMSI is given by (6), 
𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1) can be expressed as follows: 

𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1) = 

𝑓2,1(𝑚1, 𝑚2; 𝑥1) + 𝑓2,1(𝑚1, 𝑚3; 𝑥1) 

+𝑓2,1(𝑚2, 𝑚3; 𝑥1) − 2𝛼1,2 ∙ 𝛼1,3 ∙ 𝑓1. 

(13) 

The reliability of a TMSI system is computed by 

𝑅3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1) = 1 − 𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1). (14) 

Similar to DMSI, the reliability of TMSI only depends 
on the intersections of errors among three ML models. 

2) Reliability of SMTI 

Let 𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3)  be the error probability of an 

SMTI system using three inputs 𝑥1, 𝑥2  and  𝑥3 . Since the 
system outputs errors when at least two modules output 
errors, 

𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3) = 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1] + 

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1] + 

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1] + 

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1]  
= 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1] + 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥3 ∈ 𝐸1] + 

𝑃𝑟[𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1] − 2𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1].  
For the last term, when we assume conditional 

independence, 

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1]  
= 𝑃𝑟[ 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1|𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸1] 
= 𝑃𝑟[𝑥2 ∈ 𝐸1| 𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥3 ∈ 𝐸1| 𝑥1 ∈ 𝐸1]

∙ 𝑃𝑟[𝑥1 ∈ 𝐸1]. 
Then, we have 

𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3) = 

𝛽1,2|1 ∙ 𝑓1 + 𝛽1,3|1 ∙ 𝑓1 + 𝛽1,3|2 ∙ 𝑓2 

−2𝛽1,2|1 ∙ 𝛽1,3|1 ∙ 𝑓1. 

(15) 

Since the error probability of an SMDI system is given 
by (8)  𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3) can be expressed as follows: 

𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3) = 

𝑓1,2(𝑚1; 𝑥1, 𝑥2) + 𝑓1,2(𝑚1; 𝑥1, 𝑥3) 

+𝑓1,2(𝑚1; 𝑥2, 𝑥3) − 2𝛽1,2|1 ∙ 𝛽1,3|1 ∙ 𝑓1.  

(16) 

Then, the reliability of SMTI system is computed by 

𝑅1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3) = 1 − 𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3). (17) 

Similar to SMDI, the reliability of SMTI only depends 
on the conjunctions of errors among three input data. 

3) Reliability of TMTI 

Let 𝑓3,3(𝑚1, 𝑚2, 𝑚3; 𝑥1, 𝑥2, 𝑥3) be the error probability 

of a TMTI system output using three ML models 𝑚1, 𝑚2 
and 𝑚3  and three inputs 𝑥1, 𝑥2  and  𝑥3 . Since the system 
outputs errors when at least two modules output errors, 

𝑓3,3(𝑚1, 𝑚2, 𝑚3; 𝑥1, 𝑥2, 𝑥3) = 

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸2] + 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥3 ∈ 𝐸3] + 

𝑃𝑟[𝑥2 ∈ 𝐸2, 𝑥3 ∈ 𝐸3] − 2𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸2, 𝑥3 ∈ 𝐸3]. 
For the last term, when we assume conditional 

independence, 

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸2, 𝑥3 ∈ 𝐸3]  
= 𝑃𝑟[ 𝑥2 ∈ 𝐸2, 𝑥3 ∈ 𝐸2|𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸1] 

= 𝑃𝑟[𝑥2 ∈ 𝐸2| 𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥3 ∈ 𝐸3| 𝑥1 ∈ 𝐸1]
∙ 𝑃𝑟[𝑥1 ∈ 𝐸1]. 

Without loss of generality, we can assume  |𝐸1| ≤
|𝐸2| ≤ |𝐸3|. Since the error probability of DMDI is given 

by (10), 𝑓3,3(𝑚1, 𝑚2, 𝑚3; 𝑥1, 𝑥2, 𝑥3)  can be expressed as 

follows: 

𝑓3,3(𝑚1, 𝑚2, 𝑚3) = 𝑓2,2(𝑚1, 𝑚2) + 𝑓2,2(𝑚1, 𝑚3) + 

𝑓2,2(𝑚2, 𝑚3) − 2𝑓2,2(𝑚1, 𝑚2) ∙ 𝑓2,2(𝑚1, 𝑚3)/𝑓1  

= 𝛽1,2|1 ∙ 𝛼1,2 ∙ 𝑓1 + 

(1 − 𝛽1,2|1) ∙ (𝑓2 − 𝛼1,2 ∙ 𝑓1 )/(1 − 𝑓1 ) ∙ 𝑓1 + 

𝛽1,3|1 ∙ 𝛼1,3 ∙ 𝑓1 + 

(1 − 𝛽1,3|1) ∙  (𝑓3 − 𝛼1,3 ∙ 𝑓1 )/(1 − 𝑓1 ) ∙ 𝑓1 + 

𝛽2,3|2 ∙ 𝛼2,3 ∙ 𝑓2 + 

(1 − 𝛽2,3|2) ∙  (𝑓3 − 𝛼2,3 ∙ 𝑓2 )/(1 − 𝑓2) ∙ 𝑓2 − 

2[𝛽1,2|1 ∙ 𝛼1,2 ∙ 𝑓1 + 

(1 − 𝛽1,2|1) ∙ (𝑓2 − 𝛼1,2 ∙ 𝑓1 )/(1 − 𝑓1 ) ∙ 𝑓1] ∙ 

[𝛽1,3|1 ∙ 𝛼1,3 + 

(1 − 𝛽1,3|1) ∙  (𝑓3 − 𝛼1,3 ∙ 𝑓1 )/(1 − 𝑓1 )].  

(18) 

As a result, the reliability of the TMTI system is 

𝑅3,3(𝑚1, 𝑚2, 𝑚3; 𝑥1, 𝑥2, 𝑥3) = 1 −

𝑓3,3(𝑚1, 𝑚2, 𝑚3; 𝑥1, 𝑥2, 𝑥3).  
(19) 

As the model shows, the reliability of TMTI depends 
both on the intersections of errors among three ML models 
and the conjunctions of errors among three input data. 

V. NUMERICAL ANALYSIS 

Based on the developed reliability models, we conduct 
numerical experiments to analyze the advantage and 
disadvantage of three-version architectures. Our numerical 
study aims to answer the following research questions. 

• How does the model diversity affect the reliabilities of 
three-version architecture systems? (Q1) 

• How does the input diversity affect the reliabilities of 
three-version architecture systems? (Q2) 

• Do three-version architectures achieve higher 
reliabilities than two-version architectures? (Q3) 

• How does the variance of diversity metrics impact the 
reliability of TMTI? (Q4) 

To answer Q1 and Q2, we conduct sensitivity analyses 
of diversity parameter values on the reliability of different 
three-version architectures. The results are summarized in 
Section V.A and V.B, respectively. To answer Q3, we 
compare the reliabilities of two-version and three-version 
architectures under different parameter settings (symmetric 
and asymmetric cases). The results are discussed in Section 
V.C. Finally, for Q4, we focus on the reliability of TMTI 
and analyze the impact of variance of diversity metrics in 
Section V.D. 

As we are interested in the impact of diversity in N-
version architectures, we assume that the error probability 
of a single ML model is equal and is set to 0.1 (i. e. , 𝑓1 =
𝑓2 = 𝑓3 = 0.1) in the following experiments. 

A. Reliability impacts of model diversity 

To analyze the impact of the model diversity on the 
system reliability, we fix 𝛼1,3 = 𝛼2,3 = 0.3 , 𝛽1,2|1 =
𝛽1,3|1 = 𝛽1,3|2 = 𝛽2,3|2 = 0.4, and vary the value of 𝛼1,2 in 

[0,1]. The reliabilities computed by our reliability models 
are shown in Fig. 4. As can be seen, the reliabilities of TMTI 
and TMSI decrease with the value of 𝛼1,2 , but the 

reliabilities of SMTI and SMSI are not affected by this 
change. SMSI is the architecture with a single ML model  



 
Figure 4: Reliability impacts of 𝛼1,2 

 

Figure 5: Reliability impacts of 𝛼2,3 

with a single input, and the reliability of SMSI is a baseline 
to other systems. This figure clearly shows the reliability of 
TMTI is higher than the other three systems. The reliability 
of TMSI is higher than SMTI when 𝛼1,2 is smaller than 0.7. 

The results confirm that a smaller intersection of errors 
increases the model diversity leading to improved 
reliabilities of TMSI and TMTI systems. 

Next, we fix 𝛼1,2 = 𝛼1,3 = 0.3  and 𝛽1,2|1 = 𝛽1,3|1 =

𝛽1,3|2 = 𝛽2,3|2 = 0.4, and vary the value of 𝛼2,3  in [0,1]. 

The reliabilities of different configurations are computed as 
shown in Fig. 5. We can observe a similar trend as observed 
in Fig. 4. Both reliabilities of TMTI and TMSI decrease as 
the value of 𝛼2,3 increases. However, Fig. 5 illustrates that 

the reliability of TMSI can be worse than a single model 
when 𝛼2,3 is larger than around 0.6. The results imply that 

TMSI is not a good option when the overlapping part of 𝐸2 
and 𝐸3 increases to a certain amount. 

Observation 1. The higher model diversity (i.e., the smaller 
value of intersection of errors) leads to the higher reliability 
of TMTI and TMSI. 

Observation 2. The reliability of TMSI can be worse than 
even a single model when the intersection of errors is high. 

B. Reliability impacts of input diversity 

Next, we fix 𝛼1,2 = 𝛼1,3 = 𝛼2,3 = 0.3 , 𝛽1,3|1 =

𝛽1,3|2 = 𝛽2,3|2 = 0.4  and vary the value of 𝛽1,2|1 the 

reliability of different configurations by varying  𝛽1,2|1 in 

[0,1]. The reliabilities of different configurations are 
computed as shown in Fig. 6. We can see that the 
reliabilities of TMTI and SMTI decrease as the value of 
𝛽1,2|1 increases. The smaller conjunction of errors increases 

the input diversity, and hence the reliabilities of TMTI and 
SMTI become higher. 

 
Figure 6: Reliability impacts of 𝛽1,2|1 

 

Figure 7: Reliability impacts of 𝛽2,3|2 

When we fix 𝛼1,2 = 𝛼1,3 = 𝛼2,3 = 0.3, 𝛽1,2|1 =

𝛽1,3|2 = 𝛽1,3|1 = 0.4 , and vary the value of  𝛽2,3|2 , the 

reliability of different configurations is changed as shown in 
Fig. 7. It also shows that the reliability of TMTI is better 
than other systems. As presented in Section IV.D.2, the 
reliability model for SMTI does not have the term 𝛽2,3|2, 

only TMTI is affected by the change in the value of  𝛽2,3|2. 

However, the reliability of TMTI is always better than other 
three-version architectures in this case as well. 

Observation 3. The higher input diversity (i.e., the smaller 
value of conjunction of errors) results in the higher 
reliability of TMTI, when other parameters are fixed. 

C. Three-version vs. two-version architectures 

To answer Q3, we compare the reliabilities of DMDI 
and TMTI under different parameter settings. 

1) Symmetric scenario 

When we fix 𝛼1,2 = 𝛼1,3 = 𝛼2,3 = 0.3 , 𝛽1,3|1 =
𝛽1,3|2 = 𝛽2,3|2 = 0.4 , the reliability of different version 

systems by varying 𝛽1,2|1 is computed as shown in Fig. 8. 

As the value of  𝛽1,2|1 increases, both reliabilities of DMDI 

and TMTI decrease. It is counterintuitive that the reliability 
of DMDI is better than TMTI regardless of the value of  
𝛽1,2|1 . Then, we fix 𝛼1,3 = 𝛼2,3 = 0.3 , 𝛽1,2|1 = 𝛽1,3|1 =

𝛽1,3|2 = 𝛽2,3|2 = 0.4 and vary the value of 𝛼1,2 in [0,1]. The 

reliabilities of TMTI and DMDI are computed as shown in 
Fig. 9. As the value of 𝛼1,2 increases, both reliabilities of 

DMDI and TMTI decrease. In this scenario as well, the 
reliability of DMDI is always better than TMTI. 

For the reason why the reliability of DMDI is better than 

TMTI, we can see from the error output probabilities of 

DMDI and TMTI, it is related to the diversity parameters 

(e.g.,  𝛼1,2).  



 
Figure 8: Reliability impacts of 𝛽1,2|1 

 
Figure 9: Reliability analysis by varying α1,2  

2) Asymmetric scenario 

Next, we consider an asymmetric case in terms of the 

intersection of errors by changing the values 𝛼1,2 = 𝛼1,3 =

0.8  and 𝛼2,3 = 0.1 , while keeping the values  𝛽1,3|1 =

𝛽1,3|2 = 𝛽2,3|2 = 0.4. The reliabilities of DMDI and TMTI 

by varying 𝛽1,2|1 is computed as shown in Fig. 10. As the 

value of 𝛽1,2|1 increases, the reliability of DMDI decreases 

compared to TMTI. When the value of 𝛽1,2|1 is larger than 

0.8, the reliability of TMTI is better than that of DMDI. 

For an asymmetric case in terms of the conjunction of 

errors, we assign the values 𝛽1,3|1 = 𝛽1,3|2 = 𝛽2,3|2 = 0.4, 

𝛽1,2|1 = 0.8, while setting 𝛼1,3 = 0.8 and 𝛼2,3 = 0.1. The 

reliabilities of DMDI and TMTI by varying 𝛼1,2  are 

computed as shown in Fig. 11. As the value of 𝛼1,2 increases, 

the reliability of DMDI decreases faster than the reliability 

decrease trend of TMTI. When the value of 𝛼1,2 is larger 

than 0.8, the reliability of TMTI is better than DMDI. The 

result of the asymmetric scenario indicates that there are 

cases where the reliability of TMTI can be better than 

DMDI, depending on the balance of the diversity metrics.  

3) Results 

Through the above analysis, we find that the reliability 

of DMDI tends to be better than the reliability of TMTI. 

When the values of 𝛽1,2|1, 𝛼1,2, 𝛼1,3 become larger, but the 

value of 𝛼2,3 becomes smaller, which means more stringent 

restrictions, the advantage of TMTI emerges. Note that the 

result can also be attributed to the difference in decision 

rules for the final system output. In DMDI, we do not count 

the cases with single error output as a system error as we can 

detect the occurrence of the error at least. On the other hand, 

a TMTI system must reach a consensus on correct or error 

output by a majority voting rule. 

 
Figure 10: Reliability analysis by varying 𝛽1,2|1  

 
Figure 11: Reliability analysis by varying α1,2 

Observation 4. The reliability of DMDI tends to be better 
than the reliability of TMTI because of the difference in 
decision logic. However, with more stringent restrictions, 
the advantage of TMTI can emerge. 

D. Reliability impacts of TMTI 

Among the different three-version architectures, we 
observe that TMTI tends to achieve the highest reliability. 
Thus, we further investigate how two kinds of diversity can 
affect the reliability of TMTI by changing the variance of 
diversity metrics. To investigate the impacts of variances of 
model diversity (i.e., the intersection of errors), we fix 𝑓1 =
𝑓2 = 𝑓3 = 0.1 , 𝛽1,2|1 = 𝛽1,3|1 = 𝛽2,3|2 = 0.4 , and assign 

the values of 𝛼1,2 , 𝛼1,3 , 𝛼2,3  from {𝜇𝛼 , 𝜇𝛼 ± 𝜎𝛼} , where 

𝜇𝛼 = 0.3 is the mean and 𝜎𝛼  is the absolute deviation of 
𝛼1,2, 𝛼1,3, 𝛼2,3. We can see from Fig. 12, the trend of the 

reliability of TMTI is decreasing by varying  𝜎𝛼. The greater 
the difference between the absolute deviation becomes, the 
lower the reliability is. On the same curve, when 𝜎𝛼 is equal 
to zero (i.e., the intersection between every two error sets is 
the same), the reliability of TMTI is maximized. Moreover, 
as the value of 𝜇𝛼  increases, the reliability of TMTI 
decreases, which is consistent with the results observed in 
Section V.A. 

Next, to investigate the impact of the variance of input 
diversity (i.e., the conjunction of errors), we fix 𝑓1 = 𝑓2 =
𝑓3 = 0.1, 𝛼1,2 = 𝛼1,3 = 𝛼2,3 = 0.3, and assign the values 

of 𝛽1,2|1, 𝛽1,3|1, 𝛽2,3|2  from {𝜇𝛽 , 𝜇𝛽 ± 𝜎𝛽}, where 𝜇𝛽 = 0.3 

is the mean and 𝜎𝛽  is the absolute deviation of 

𝛽1,2|1, 𝛽1,3|1, 𝛽2,3|2. The reliability of TMTI by varying 𝜎𝛽 is 

computed as shown in Fig. 13. Different from the result in 
Fig. 12, the trend of the reliability of TMTI is increasing by 
varying  𝜎𝛽. On the same curve, when 𝜎𝛽 is equal to zero 

(i.e., the conjunctions of errors are the same), the reliability 
of TMTI is minimized. 



 
Figure 12: Reliability of TMTI by varying 𝜎𝛼 

 
Figure 13: Reliability of TMTI by varying 𝜎𝛽 

Observation 5. A larger variance of model diversities 
negatively impacts the TMTI reliability, while a larger 
variance of input diversity has opposed impacts. 

VI. CONCLUSION 

In this paper, we apply a software fault-tolerant 
approach to improve the reliability of ML-based software 
systems. To investigate the effectiveness of N-version ML 
architectures, we propose reliability models for three-
version architectures by introducing diversity metrics for 
measuring the diversity of ML models and the diversity of 
input data. We conduct numerical analysis on the proposed 
model and find that i) the reliability of TMTI systems is the 
highest among other three-version systems (i.e., TMSI and 
SMTI systems), ii) the reliability of a DMDI system is 
generally more reliable than the reliability of a TMTI system, 
and iii) the variance of model diversity negatively impacts 
on TMTI reliability, while the variance of input diversity 
has positive impacts. Our reliability models and the 
preliminary findings must value designs of safety-critical 
ML systems. In future work, we can extend our model to 
higher versions and compare the reliability of different 
architectures. Since TMTI architecture has the potential to 
achieve the highest reliability even compared with DMDI, 
we can analytically identify the conditions where TMTI 
achieves higher reliability than others. Estimating the 
parameter values of diversity parameters from empirical 
studies is also an important future work. 
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