

Reliability Models and Analysis for Triple-model

with Triple-input Machine Learning Systems

Qiang Wen and Fumio Machida
Department of Computer Science

University of Tsukuba

Tsukuba, Japan

wen.qiang@sd.cs.tsukuba.ac.jp, machida@.cs.tsukuba.ac.jp

Abstract—Machine learning (ML) models have been

widely applied to real-world systems. However, outputs of ML

models are generally uncertain and sensitive to real input data,

which is a big challenge in designing highly reliable ML-based

software systems. Our study aims to improve the ML system

reliability through a software architecture approach inspired

by N-version programming. N-version ML architectures

considered in our study combine multiple input data sets with

multiple versions of ML models to determine the final system

output by consensus. In this paper, we focus on three-version

ML architectures and propose the reliability models for

analyzing the system reliability by using diversity metrics for

ML models and input data sets. The proposed model allows us

to compare the reliability of a triple-model with triple-input

(TMTI) architecture with other variants of three-version and

two-version architectures. Through the numerical analysis of

the proposed models, we find that i) the reliability of TMTI

architecture is higher than other three-version architectures,

but interestingly ii) it is generally lower than the reliability of

double model with double input system (DMDI). Furthermore,

we also find that a larger variance of model diversities

negatively impacts the TMTI reliability, while a larger

variance of input diversity has opposed impacts.

Keywords—reliability, diversity, machine learning, N-

version programming

I. INTRODUCTION

Machine learning (ML) is becoming an important and
common component of intelligent software systems in
recent years. ML-based intelligent software is widely used
in our daily lives, for instance, in speech and image
recognition, strategy games, and robot applications. In spite
of the widespread use of ML applications, ML system
reliability is still a major concern in safety-critical
applications such as automated driving. Outputs of ML
models are inherently uncertain and sensitive to the input
data. For safety-critical ML systems, any incorrect outputs
from ML models may cause undesirable consequences such
as traffic accidents by automated driving [2].

To improve the reliability of ML-based software
systems, various software engineering techniques can be
leveraged. ML testing is an approach to detect defects
between existing ML models and required conditions [1].
Several recent studies exploit metamorphic relations to
tackle the oracle problems encountered in ML application
testing [3][4][5]. ML testing techniques effectively reduce
the dormant defects of ML components that potentially
cause serious consequences in operation. However, the test
coverage on testing data does not always guarantee the
correctness of the predictions for wild examples [20]. To
ensure the safe operation of ML systems at runtime, it is
necessary to incorporate additional safety mechanisms such
as data validation [20], safety monitors [22], and redundant

architecture [13][16][19]. Data validation requires a white
box model for deep neural networks, which is not generally
applicable to other types of ML models. Safety monitors can
be used for more general ML models but need to be trained
together with the ML model in advance and hence may lack
the flexibility. Redundant architecture approaches are rather
simple yet can be applied to any combination of ML models
that are trained independently for the same task.

As a redundant architecture approach to improve ML
system reliability, we leverage the traditional software fault-
tolerant technique, commonly known as N-version
programming (NVP). NVP is defined as the independent
generation of N (≥ 2) functionally equivalent programs
from the same initial specification [11]. The core idea of
NVP is to leverage the diversity of independently generated
program components. Experimental studies have shown
immense benefits of using NVP for ML components [12].
In contrast to NVP, the N-version ML system can exploit
the diversity of input data to further increase the diversity of
predictions. Similar to ensemble ML models [21], the output
decision based on multiple predictions results could
improve accuracy.

In this paper, we propose a system reliability
architecture made of N-version ML modules to improve the
reliability of ML-based software systems. We consider an
ML-based classifier and evaluate the system reliability by
the probability that the system does not output errors for
ground truth. In an N-version ML system, multiple ML
models and sensor inputs are used to determine the final
system output. The main factors of improved reliability by
the N-version ML system are the exploitation of input
diversity and model diversity [13]. For input diversity, it can
be achieved with samples from different input data sources
(e.g., different sensors). Even when input data such as an
image or a voice sentence causes incorrect ML output,
different input data may produce correct ML output. On the
other hand, for model diversity, ML models trained by
different algorithms and/or training data sets can be used
simultaneously. The benefit of such diversities has been
studied for two-version architecture systems [13].
Nevertheless, the reliability gained by three or more version
architectures that use majority voting for deciding the final
outputs is still underexplored. In this paper, we focus on
three-version architecture systems and propose the
reliability model for a triple-model with triple-input
machine learning system (TMTI) that combines three
different inputs with three different ML models. To show
the advantages and disadvantages of the three-version
architecture, we conduct numerical experiments on the
proposed reliability model and compare the reliabilities of
different three-version and two-version architectures. Our
numerical results uncover that the reliability of TMTI is

higher than other three-version architectures in most ranges
of model/input diversity values. Interestingly, however,
when compared with a two-version architecture, the
reliability of a double-model with double-input system
(DMDI) is generally better than the reliability of TMTI
because of the difference in the output decision logic. Any
three-version architectures employing a majority voting to
determine the final output need to reach a consensus, which
causes a disadvantage against two-version architectures.
Furthermore, we also find that a larger variance of model
diversities positively impacts the TMTI reliability, while a
larger variance of input diversity negatively impacts the
reliability.

The remainder of the paper is organized as follows.
Section II explains related work. Section III introduces
some background, including the definition of N-version ML
architectures. In Section IV, we propose the reliability
model for three-version ML systems using diversity metrics.
Section V shows the numerical analysis results. Finally,
Section VI gives the conclusions and briefly explains the
future work.

II. RELATED WORK

The reliability of ML components is considered by some
approaches, such as ML testing techniques and adversarial
ML. Evaluation measures (e.g., code coverage and mutation
testing) are adopted in ML testing scenarios to quantify the
reliability of ML components [6][7][8]. Besides, ML testing
by category is a direction for improving the reliability of
ML-based systems. Building robust ML models against
adversarial examples is also important to reduce the error
probability of ML models [9][10]. These approaches all
mainly focus on the ML models, while we propose a multi-
version ML approach for the ML system reliability.

Many recent studies introduce multi-version ML
approaches to improve ML system reliability. It is revealed
that NVP improves the reliability of ML components by a
significant margin [12]. The approximate reliability of DNN
is used to calculate the reliability of ML components.
PolygraphMR composes several convolutional neural
networks (CNNs) to improve the reliability of classification
tasks by reducing high confidence wrong answers [16]. NV-
DNN is presented as a system containing N independently
developed models and a decision procedure that aims to
enhance the fault-tolerant ability of a deep learning system
[19]. While these studies assume that a single input at a time,
our study considers multi-input to exploit the input diversity
besides multi-version ML components. Considering the
performance of multi-version ML systems, queueing
models have been proposed for multi-model multi-input ML
systems in two-version architectures [17]. The study focuses
on the throughput of simple two-version architectures in
which the system can use at most two different ML models
and two data sources. The reliability impacts of multi-input
for N-version ML systems have been modeled and analyzed
by introducing the measure of the input diversity [13].
Moreover, experiments with diverse machine learning
models with perturbated input datasets are conducted on
image classification tasks of MNIST data set, and Belgian
Traffic Sign data set [18]. The study shows that the three-
version architecture can achieve higher system reliability
than a single machine learning module. Compared to the
existing studies, our work first formulates the reliability of
three-version ML architectures with diversity metrics and

analytically shows the potential reliability improvements by
TMTI architecture. In particular, we clarify that the
reliability of TMTI may not be better than the reliability of
DMDI under the majority voting decision scheme.

III. BACKGROUND

This section introduces some backgrounds of the study.
First, we introduce our target safety-critical ML system that
needs high reliability of ML prediction outputs. Next, we
introduce the N-version architecture and its property. As
specific instances of N-version architectures, we explain the
details of two-version and three-version architectures in the
following sections.

A. Safety-critical ML system

As the accuracy of ML-based classification tasks has
greatly improved recently, ML components are also being
employed in safety-critical domains. In this paper, we
consider such a safety-critical ML system that classifies the
real-world input data such as images, sounds, and voices.
Automated driving is a representative example of such a
system as it needs to recognize the surroundings by
classifying the images captured by the sensors. If the system
controls the vehicle based on the error classification outputs,
vehicle accidents can happen, and pedestrians’ lives will be
threatened. However, even using extremely-accurate ML
models, it is impractical to guarantee 100% accuracy for
real-world samples. We have to assume that error outputs
from ML models are inevitable, but we still need to deal
with the issue so that system can avoid hazardous
consequences. Redundant architecture can be employed for
such ML systems by using multiple ML components in
parallel. Individual ML components may install different
ML models and use different data sources to diversify the
prediction results as shown in Fig 1. In automated driving,
when recognizing the traffic sign like ‘STOP’ using
different sensors, even though some of the ML models
output errors like ‘GO STRAIGHT,’ a voting decision from
diversified prediction results can correct the error and avoid
an undesirable decision. In the N-version architecture
introduced in the following section, we can benefit from this
redundant scheme to improve the reliability of the system
even with a single ML model by taking inputs from different
data sources.

Figure 1: An example of the N-version ML system design

B. N-version ML architecture

N-version ML architecture is based on NVP and
contains N (≥ 2) different versions of ML components that
work for the same task in parallel. In the N-version ML
architecture, we can use multiple inputs and ML models in
a system. Different algorithms and training data sets are
used to generate multiple versions of ML models. The
diversity of ML models can mitigate the risk of erroneous
system output by mutually validating individual outputs.
ML components are also sensitive to input data. An ML

model may produce different results for slightly different
input data (e.g., a sample image with a one-pixel change).
By taking samples from different sources, we can leverage
the input diversity for ML-based predictions so that the
system can detect or correct the error outputs from ML
models. Every ML model in N-version architecture can
produce a prediction result, while the final result is
determined by a specific decision rule. For a three-version
architecture system, it is reasonable to employ a majority
voting rule to determine the final outputs by consensus of
individual ML components. Under the majority voting
decision, the system can tolerate one classification error
from one ML component if the other two components
correctly predict the class labels. Our reliability models and
analysis focus on binary classification tasks for ML
components, although other types of ML tasks can also
benefit from N-version architectures. As specific instances
of N-version architectures, two-version and three-version
ML architectures are explained next.

C. Two-version architectures

Fig. 2 shows the types of two-version architecture that
may use two inputs and/or two ML models. 𝑥1 and 𝑥2
represent the inputs to ML models from different data
sources (e.g., sensors), while 𝑚𝑎 and 𝑚𝑏 represent different
ML models dealing with the same task. In two-version
architectures, when both running models output the same
error, the system results in the error output. A double-model
with single-input system (DMSI) has two ML models with
the same input. Any errors in one model can be detected
when the other model outputs correctly. The reliability of
the DMSI system is affected by model diversity. A single-
model with double-input system (SMDI) has one ML model
with two inputs. The input diversity is exploited in the
SMDI system. Furthermore, a double-model with double-
input system (DMDI) has two ML models with two
different inputs. Since two ML models work with the
different inputs in the DMDI system, both model diversity
and input diversity affect the system reliability.

Figure 2: Two-version architecture

D. Three-version architectures

Fig. 3 shows the different three-version architectures.
Systems can contain three inputs and/or three ML models.
We add input 𝑥3 and ML model 𝑚𝑐 in three-version
systems. Under the majority voting rule, the system outputs
an error when more than two of the running ML models
agree on an incorrect output. A triple-model with single-
input system (TMSI) has three ML models with the same
input. TMSI has the same structure as DMSI, but one more
ML model is added. Besides, a single-model with triple-
input system (SMTI) has one ML model with three inputs,
which is an extension of an SMDI system. Finally, TMTI
has three ML models with three inputs, which is an

extension of a DMDI system. We analyze the reliability of
TMTI through the diversity metrics introduced in the next
section.

Figure 3: Three-version architecture

IV. RELIABILITY MODELING

In this section, we present the reliability models to
analyze the effectiveness of N-version ML architectures
quantitatively. We extend the existing studies to propose the
reliability model for three-version architectures using
diversity metrics.

A. Existing reliability models for triple module systems

There are some existing triple redundancy models with
a majority voting scheme. A triple module redundancy
(TMR) system consists of three independent modules, each
of which has a single output [14]. The failures of the
modules are statistically independent, and the reliability of
TMR is determined by the reliability of one module 𝑅𝑀 by
(1). Note that application of this type of redundancy cannot
increase the reliability if 𝑅𝑀 is less than 0.5.

𝑅 = 𝑅𝑀
3 + 3𝑅𝑀

2(1 − 𝑅𝑀) = 3𝑅𝑀
2 − 2𝑅𝑀

3. (1)

A reliability model for an NVP system with a majority
voting decision is considered with a dependent failure
parameter 𝛼 that represents the similarity percentage of the
input sets on which each pair of versions fail [15]. A joint
probability can be formulated by using the definition of
conditional probability. When the failure probability of each
version is assumed to be 𝑝, the reliability of a three-version
NVP model is given as follows.

𝑅 = 1 − [3𝛼𝑝(1 − 𝛼) + 𝛼2𝑝] = 1 − 𝛼𝑝(3 − 2𝛼). (2)

In contrast to the existing studies, our focus in this paper
is the system that assembles three ML modules whose
outputs are dependent on each other. Thus, the reliability
models (1) and (2) are not directly applicable to three-
version ML architectures. To incorporate the dependency
factors, we use two diversity metrics measuring the
diversity of input data and ML models. The diversity
metrics were first introduced in modeling two-version ML
architectures [13], but the approach has never been
examined for N-version architecture with N>2. Therefore,
in this paper, we attempt to extend the approach to three-
version ML architectures.

B. Notations and diversity measures

Table 1 summarizes the notations used in our reliability
models throughout the paper. Let 𝑓𝑘 be the probability that
ML model 𝑚𝑘 outputs errors. Let 𝑆 be the total sample
space of inputs and 𝐸𝑘 ⊆ 𝑆 be the set of input data that leads
to output error by 𝑚𝑘. The error probability 𝑓𝑘 is given by

𝑓𝑘 =
|𝐸𝑘|

|𝑆|
. (3)

Let 𝐸𝑖 and 𝐸𝑗 be the input sets that make ML models 𝑚𝑖

and 𝑚𝑗 output error; Define the intersection of errors 𝛼𝑖,𝑗 ∈
[0,1] as the ratio of the intersection over the smaller size of
𝐸𝑖 and 𝐸𝑗, respectively. Here, 𝑖, 𝑗 ∈ 𝑁+. The intersection of

errors represents the degree of coincidence of the inputs that
caused the two models 𝑚𝑖, 𝑚𝑗 to be errors. The intersection

of errors is also referred to as model diversity [13]. A
smaller intersection value is better as it indicates that two
ML models are unlikely to reach a mutual error.

𝛼𝑖,𝑗 =
|𝐸𝑖 ∩ 𝐸𝑗|

𝑚𝑖𝑛{𝐸𝑖 , 𝐸𝑗}
. (4)

Let 𝑥𝑖 and 𝑥𝑗 be the inputs to ML models from different

data sources (e.g., sensors). Then, define the conjunction of
errors 𝛽𝑘,𝑖|𝑗 ∈ [0,1] as the probability that 𝑚𝑘 outputs error

by 𝑥𝑖 provided that 𝑚𝑘 outputs error by 𝑥𝑗 . Here, 𝑖, 𝑗, 𝑘 ∈
𝑁+. The conjunction of errors is related to the conditional
probability that 𝑚𝑘 outputs error by 𝑥𝑖 given the condition
that 𝑚𝑘 outputs error by 𝑥𝑗. The conjunction of errors is also

referred to as input diversity [13]. A smaller conjunction
value is better because the probability of a mutual error
becomes small.

𝛽𝑘,𝑖|𝑗 = 𝑃𝑟[𝑥𝑖 ∈ 𝐸𝑘| 𝑥𝑗 ∈ 𝐸𝑘]. (5)

TABLE I. NOTATIONS USED IN THE RELIABILITY MODEL

Symbols Descriptions

𝑚𝑘 An ML model

𝑥𝑖 An input data source for ML models

𝑓𝑘 The probability that ML model 𝑚𝑘 outputs errors

𝑆 The total sample space of inputs

𝐸𝑘 The set of input data that leads to output error by 𝑚𝑘

𝛼𝑖,𝑗 The intersection of errors between 𝑚𝑖 and 𝑚𝑗

(model diversity)

𝛽𝑘,𝑖|𝑗 The conjunction of errors on 𝑚𝑘 by 𝑥𝑗 followed by 𝑥𝑖

(input diversity)

𝑓𝑝,𝑞 The error probability of the ML architecture with 𝑝 inputs

and 𝑞 models

𝑅𝑝,𝑞 The reliability of the ML architecture with 𝑝 inputs and 𝑞

models

C. Reliability of two-version architectures

The reliability of two-version architectures has been
studied in [13]. It is assumed that any two-version
architecture systems output errors when both ML models
output errors. We briefly review the reliability models for
two-version architectures below.

1) Reliability of DMSI

Let 𝑓2,1(𝑚1, 𝑚2; 𝑥1) be the error probability of a DMSI

system using two ML models 𝑚1 and 𝑚2. Without loss of
generality, we can assume |𝐸1| ≤ |𝐸2| and hence we have

𝑓2,1(𝑚1, 𝑚2; 𝑥1) =
|𝐸1 ∩ 𝐸2|

|𝑆|
= 𝛼1,2

min{|𝐸1|, |𝐸2|}

|𝑆|
= 𝛼1,2 ∙ 𝑓1.

(6)

The reliability of a DMSI system is calculated by

𝑅2,1(𝑚1, 𝑚2; 𝑥1) = 1 − 𝑓2,1(𝑚1, 𝑚2; 𝑥1). (7)

The model indicates that the reliability of DMSI relies
only on the intersection of errors between two ML models.

2) Reliability of SMDI

Let 𝑓1,2(𝑚1; 𝑥1, 𝑥2) be the error probability of an SMDI

system using two inputs 𝑥1 and 𝑥2 . Using the input
diversity, we have

𝑓1,2(𝑚1; 𝑥1, 𝑥2) = 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1]

= 𝑃𝑟[𝑥2 ∈ 𝐸1| 𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸1]
= 𝛽1,2|1 ∙ 𝑓1.

(8)

The reliability of SMDI system is calculated by

𝑅1,2(𝑚1; 𝑥1, 𝑥2) = 1 − 𝑓1,2(𝑚1; 𝑥1, 𝑥2). (9)

The model indicates that the reliability of SMDI relies
only on the conjunction of errors on two inputs.

3) Reliability of DMDI

Let 𝑓2,2(𝑚1, 𝑚2; 𝑥1, 𝑥2) be the failure probability of a

DMDI system using two ML models 𝑚1 and 𝑚2 and two
inputs 𝑥1 and 𝑥2 . By assuming conditional independence,
we have

𝑓2,2(𝑚1, 𝑚2; 𝑥1, 𝑥2) = 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸2]

= 𝑃𝑟[𝑥2 ∈ 𝐸2| 𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸1]

= [𝛽1,2|1 ∙ 𝛼1,2 + (1 − 𝛽1,2|1) ∙
𝑓2 − 𝛼1,2 ∙ 𝑓1

1 − 𝑓1

] ∙ 𝑓1

(10)

The reliability of DMDI system is calculated by

𝑅2,2(𝑚1, 𝑚2; 𝑥1, 𝑥2) = 1 − 𝑓2,2(𝑚1, 𝑚2; 𝑥1, 𝑥2). (11)

As the model represents, the reliability of DMDI
depends on both the intersection and the conjunction of
errors.

D. Reliability of three-version architectures

The modeling methodology for the two-version ML
architecture can be generalized for more versions of
architectures, but existing studies have never examined the
reliability models of N-version architectures with N>2. To
extend reliability models for three-version architectures, we
need to consider i) a majority voting rule that determines the
final system output from three dependent module outputs,
and ii) multiple diversity parameters among three ML
models and three input sources that characterize the
dependencies of the outputs. First, we show the reliability
models for TMSI and SMTI systems using the intersection
of errors and the conjunction of errors, respectively. Then,
we exploit both diversity parameters to formulate the
reliability of a TMTI system.

1) Reliability of TMSI

Let 𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1) be the error probability of a

TMSI system output using three ML models 𝑚1, 𝑚2 and
𝑚3 . Since the system outputs errors when at least two
modules output errors,

𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1) = 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3] +

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3] +

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3] +

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3]
= 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2] + 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸3] +

𝑃𝑟[𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3] − 2𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3].
For the last term, when we assume conditional

independence,

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥1 ∈ 𝐸2, 𝑥1 ∈ 𝐸3]
= 𝑃𝑟[𝑥1 ∈ 𝐸3, 𝑥1 ∈ 𝐸2|𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸1]
= 𝑃𝑟[𝑥1 ∈ 𝐸3| 𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸2| 𝑥1 ∈ 𝐸1]

∙ 𝑃𝑟[𝑥1 ∈ 𝐸1].
Without loss of generality, we can assume |𝐸1| ≤

|𝐸2| ≤ |𝐸3|, and hence we have

𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1) =

𝛼1,2 ∙ 𝑓1 + 𝛼1,3 ∙ 𝑓1 + 𝛼2,3 ∙ 𝑓2 − 2𝛼1,2 ∙ 𝛼1,3 ∙ 𝑓1 .
(12)

Since the error probability of DMSI is given by (6),
𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1) can be expressed as follows:

𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1) =

𝑓2,1(𝑚1, 𝑚2; 𝑥1) + 𝑓2,1(𝑚1, 𝑚3; 𝑥1)

+𝑓2,1(𝑚2, 𝑚3; 𝑥1) − 2𝛼1,2 ∙ 𝛼1,3 ∙ 𝑓1.

(13)

The reliability of a TMSI system is computed by

𝑅3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1) = 1 − 𝑓3,1(𝑚1, 𝑚2, 𝑚3; 𝑥1). (14)

Similar to DMSI, the reliability of TMSI only depends
on the intersections of errors among three ML models.

2) Reliability of SMTI

Let 𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3) be the error probability of an

SMTI system using three inputs 𝑥1, 𝑥2 and 𝑥3 . Since the
system outputs errors when at least two modules output
errors,

𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3) = 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1] +

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1] +

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1] +

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1]
= 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1] + 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥3 ∈ 𝐸1] +

𝑃𝑟[𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1] − 2𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1].
For the last term, when we assume conditional

independence,

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1]
= 𝑃𝑟[𝑥2 ∈ 𝐸1, 𝑥3 ∈ 𝐸1|𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸1]
= 𝑃𝑟[𝑥2 ∈ 𝐸1| 𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥3 ∈ 𝐸1| 𝑥1 ∈ 𝐸1]

∙ 𝑃𝑟[𝑥1 ∈ 𝐸1].
Then, we have

𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3) =

𝛽1,2|1 ∙ 𝑓1 + 𝛽1,3|1 ∙ 𝑓1 + 𝛽1,3|2 ∙ 𝑓2

−2𝛽1,2|1 ∙ 𝛽1,3|1 ∙ 𝑓1.

(15)

Since the error probability of an SMDI system is given
by (8) 𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3) can be expressed as follows:

𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3) =

𝑓1,2(𝑚1; 𝑥1, 𝑥2) + 𝑓1,2(𝑚1; 𝑥1, 𝑥3)

+𝑓1,2(𝑚1; 𝑥2, 𝑥3) − 2𝛽1,2|1 ∙ 𝛽1,3|1 ∙ 𝑓1.

(16)

Then, the reliability of SMTI system is computed by

𝑅1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3) = 1 − 𝑓1,3(𝑚1; 𝑥1, 𝑥2, 𝑥3). (17)

Similar to SMDI, the reliability of SMTI only depends
on the conjunctions of errors among three input data.

3) Reliability of TMTI

Let 𝑓3,3(𝑚1, 𝑚2, 𝑚3; 𝑥1, 𝑥2, 𝑥3) be the error probability

of a TMTI system output using three ML models 𝑚1, 𝑚2
and 𝑚3 and three inputs 𝑥1, 𝑥2 and 𝑥3 . Since the system
outputs errors when at least two modules output errors,

𝑓3,3(𝑚1, 𝑚2, 𝑚3; 𝑥1, 𝑥2, 𝑥3) =

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸2] + 𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥3 ∈ 𝐸3] +

𝑃𝑟[𝑥2 ∈ 𝐸2, 𝑥3 ∈ 𝐸3] − 2𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸2, 𝑥3 ∈ 𝐸3].
For the last term, when we assume conditional

independence,

𝑃𝑟[𝑥1 ∈ 𝐸1, 𝑥2 ∈ 𝐸2, 𝑥3 ∈ 𝐸3]
= 𝑃𝑟[𝑥2 ∈ 𝐸2, 𝑥3 ∈ 𝐸2|𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥1 ∈ 𝐸1]

= 𝑃𝑟[𝑥2 ∈ 𝐸2| 𝑥1 ∈ 𝐸1] ∙ 𝑃𝑟[𝑥3 ∈ 𝐸3| 𝑥1 ∈ 𝐸1]
∙ 𝑃𝑟[𝑥1 ∈ 𝐸1].

Without loss of generality, we can assume |𝐸1| ≤
|𝐸2| ≤ |𝐸3|. Since the error probability of DMDI is given

by (10), 𝑓3,3(𝑚1, 𝑚2, 𝑚3; 𝑥1, 𝑥2, 𝑥3) can be expressed as

follows:

𝑓3,3(𝑚1, 𝑚2, 𝑚3) = 𝑓2,2(𝑚1, 𝑚2) + 𝑓2,2(𝑚1, 𝑚3) +

𝑓2,2(𝑚2, 𝑚3) − 2𝑓2,2(𝑚1, 𝑚2) ∙ 𝑓2,2(𝑚1, 𝑚3)/𝑓1

= 𝛽1,2|1 ∙ 𝛼1,2 ∙ 𝑓1 +

(1 − 𝛽1,2|1) ∙ (𝑓2 − 𝛼1,2 ∙ 𝑓1)/(1 − 𝑓1) ∙ 𝑓1 +

𝛽1,3|1 ∙ 𝛼1,3 ∙ 𝑓1 +

(1 − 𝛽1,3|1) ∙ (𝑓3 − 𝛼1,3 ∙ 𝑓1)/(1 − 𝑓1) ∙ 𝑓1 +

𝛽2,3|2 ∙ 𝛼2,3 ∙ 𝑓2 +

(1 − 𝛽2,3|2) ∙ (𝑓3 − 𝛼2,3 ∙ 𝑓2)/(1 − 𝑓2) ∙ 𝑓2 −

2[𝛽1,2|1 ∙ 𝛼1,2 ∙ 𝑓1 +

(1 − 𝛽1,2|1) ∙ (𝑓2 − 𝛼1,2 ∙ 𝑓1)/(1 − 𝑓1) ∙ 𝑓1] ∙

[𝛽1,3|1 ∙ 𝛼1,3 +

(1 − 𝛽1,3|1) ∙ (𝑓3 − 𝛼1,3 ∙ 𝑓1)/(1 − 𝑓1)].

(18)

As a result, the reliability of the TMTI system is

𝑅3,3(𝑚1, 𝑚2, 𝑚3; 𝑥1, 𝑥2, 𝑥3) = 1 −

𝑓3,3(𝑚1, 𝑚2, 𝑚3; 𝑥1, 𝑥2, 𝑥3).
(19)

As the model shows, the reliability of TMTI depends
both on the intersections of errors among three ML models
and the conjunctions of errors among three input data.

V. NUMERICAL ANALYSIS

Based on the developed reliability models, we conduct
numerical experiments to analyze the advantage and
disadvantage of three-version architectures. Our numerical
study aims to answer the following research questions.

• How does the model diversity affect the reliabilities of
three-version architecture systems? (Q1)

• How does the input diversity affect the reliabilities of
three-version architecture systems? (Q2)

• Do three-version architectures achieve higher
reliabilities than two-version architectures? (Q3)

• How does the variance of diversity metrics impact the
reliability of TMTI? (Q4)

To answer Q1 and Q2, we conduct sensitivity analyses
of diversity parameter values on the reliability of different
three-version architectures. The results are summarized in
Section V.A and V.B, respectively. To answer Q3, we
compare the reliabilities of two-version and three-version
architectures under different parameter settings (symmetric
and asymmetric cases). The results are discussed in Section
V.C. Finally, for Q4, we focus on the reliability of TMTI
and analyze the impact of variance of diversity metrics in
Section V.D.

As we are interested in the impact of diversity in N-
version architectures, we assume that the error probability
of a single ML model is equal and is set to 0.1 (i. e. , 𝑓1 =
𝑓2 = 𝑓3 = 0.1) in the following experiments.

A. Reliability impacts of model diversity

To analyze the impact of the model diversity on the
system reliability, we fix 𝛼1,3 = 𝛼2,3 = 0.3 , 𝛽1,2|1 =
𝛽1,3|1 = 𝛽1,3|2 = 𝛽2,3|2 = 0.4, and vary the value of 𝛼1,2 in

[0,1]. The reliabilities computed by our reliability models
are shown in Fig. 4. As can be seen, the reliabilities of TMTI
and TMSI decrease with the value of 𝛼1,2 , but the

reliabilities of SMTI and SMSI are not affected by this
change. SMSI is the architecture with a single ML model

Figure 4: Reliability impacts of 𝛼1,2

Figure 5: Reliability impacts of 𝛼2,3

with a single input, and the reliability of SMSI is a baseline
to other systems. This figure clearly shows the reliability of
TMTI is higher than the other three systems. The reliability
of TMSI is higher than SMTI when 𝛼1,2 is smaller than 0.7.

The results confirm that a smaller intersection of errors
increases the model diversity leading to improved
reliabilities of TMSI and TMTI systems.

Next, we fix 𝛼1,2 = 𝛼1,3 = 0.3 and 𝛽1,2|1 = 𝛽1,3|1 =

𝛽1,3|2 = 𝛽2,3|2 = 0.4, and vary the value of 𝛼2,3 in [0,1].

The reliabilities of different configurations are computed as
shown in Fig. 5. We can observe a similar trend as observed
in Fig. 4. Both reliabilities of TMTI and TMSI decrease as
the value of 𝛼2,3 increases. However, Fig. 5 illustrates that

the reliability of TMSI can be worse than a single model
when 𝛼2,3 is larger than around 0.6. The results imply that

TMSI is not a good option when the overlapping part of 𝐸2
and 𝐸3 increases to a certain amount.

Observation 1. The higher model diversity (i.e., the smaller
value of intersection of errors) leads to the higher reliability
of TMTI and TMSI.

Observation 2. The reliability of TMSI can be worse than
even a single model when the intersection of errors is high.

B. Reliability impacts of input diversity

Next, we fix 𝛼1,2 = 𝛼1,3 = 𝛼2,3 = 0.3 , 𝛽1,3|1 =

𝛽1,3|2 = 𝛽2,3|2 = 0.4 and vary the value of 𝛽1,2|1 the

reliability of different configurations by varying 𝛽1,2|1 in

[0,1]. The reliabilities of different configurations are
computed as shown in Fig. 6. We can see that the
reliabilities of TMTI and SMTI decrease as the value of
𝛽1,2|1 increases. The smaller conjunction of errors increases

the input diversity, and hence the reliabilities of TMTI and
SMTI become higher.

Figure 6: Reliability impacts of 𝛽1,2|1

Figure 7: Reliability impacts of 𝛽2,3|2

When we fix 𝛼1,2 = 𝛼1,3 = 𝛼2,3 = 0.3, 𝛽1,2|1 =

𝛽1,3|2 = 𝛽1,3|1 = 0.4 , and vary the value of 𝛽2,3|2 , the

reliability of different configurations is changed as shown in
Fig. 7. It also shows that the reliability of TMTI is better
than other systems. As presented in Section IV.D.2, the
reliability model for SMTI does not have the term 𝛽2,3|2,

only TMTI is affected by the change in the value of 𝛽2,3|2.

However, the reliability of TMTI is always better than other
three-version architectures in this case as well.

Observation 3. The higher input diversity (i.e., the smaller
value of conjunction of errors) results in the higher
reliability of TMTI, when other parameters are fixed.

C. Three-version vs. two-version architectures

To answer Q3, we compare the reliabilities of DMDI
and TMTI under different parameter settings.

1) Symmetric scenario

When we fix 𝛼1,2 = 𝛼1,3 = 𝛼2,3 = 0.3 , 𝛽1,3|1 =
𝛽1,3|2 = 𝛽2,3|2 = 0.4 , the reliability of different version

systems by varying 𝛽1,2|1 is computed as shown in Fig. 8.

As the value of 𝛽1,2|1 increases, both reliabilities of DMDI

and TMTI decrease. It is counterintuitive that the reliability
of DMDI is better than TMTI regardless of the value of
𝛽1,2|1 . Then, we fix 𝛼1,3 = 𝛼2,3 = 0.3 , 𝛽1,2|1 = 𝛽1,3|1 =

𝛽1,3|2 = 𝛽2,3|2 = 0.4 and vary the value of 𝛼1,2 in [0,1]. The

reliabilities of TMTI and DMDI are computed as shown in
Fig. 9. As the value of 𝛼1,2 increases, both reliabilities of

DMDI and TMTI decrease. In this scenario as well, the
reliability of DMDI is always better than TMTI.

For the reason why the reliability of DMDI is better than

TMTI, we can see from the error output probabilities of

DMDI and TMTI, it is related to the diversity parameters

(e.g., 𝛼1,2).

Figure 8: Reliability impacts of 𝛽1,2|1

Figure 9: Reliability analysis by varying α1,2

2) Asymmetric scenario

Next, we consider an asymmetric case in terms of the

intersection of errors by changing the values 𝛼1,2 = 𝛼1,3 =

0.8 and 𝛼2,3 = 0.1 , while keeping the values 𝛽1,3|1 =

𝛽1,3|2 = 𝛽2,3|2 = 0.4. The reliabilities of DMDI and TMTI

by varying 𝛽1,2|1 is computed as shown in Fig. 10. As the

value of 𝛽1,2|1 increases, the reliability of DMDI decreases

compared to TMTI. When the value of 𝛽1,2|1 is larger than

0.8, the reliability of TMTI is better than that of DMDI.

For an asymmetric case in terms of the conjunction of

errors, we assign the values 𝛽1,3|1 = 𝛽1,3|2 = 𝛽2,3|2 = 0.4,

𝛽1,2|1 = 0.8, while setting 𝛼1,3 = 0.8 and 𝛼2,3 = 0.1. The

reliabilities of DMDI and TMTI by varying 𝛼1,2 are

computed as shown in Fig. 11. As the value of 𝛼1,2 increases,

the reliability of DMDI decreases faster than the reliability

decrease trend of TMTI. When the value of 𝛼1,2 is larger

than 0.8, the reliability of TMTI is better than DMDI. The

result of the asymmetric scenario indicates that there are

cases where the reliability of TMTI can be better than

DMDI, depending on the balance of the diversity metrics.

3) Results

Through the above analysis, we find that the reliability

of DMDI tends to be better than the reliability of TMTI.

When the values of 𝛽1,2|1, 𝛼1,2, 𝛼1,3 become larger, but the

value of 𝛼2,3 becomes smaller, which means more stringent

restrictions, the advantage of TMTI emerges. Note that the

result can also be attributed to the difference in decision

rules for the final system output. In DMDI, we do not count

the cases with single error output as a system error as we can

detect the occurrence of the error at least. On the other hand,

a TMTI system must reach a consensus on correct or error

output by a majority voting rule.

Figure 10: Reliability analysis by varying 𝛽1,2|1

Figure 11: Reliability analysis by varying α1,2

Observation 4. The reliability of DMDI tends to be better
than the reliability of TMTI because of the difference in
decision logic. However, with more stringent restrictions,
the advantage of TMTI can emerge.

D. Reliability impacts of TMTI

Among the different three-version architectures, we
observe that TMTI tends to achieve the highest reliability.
Thus, we further investigate how two kinds of diversity can
affect the reliability of TMTI by changing the variance of
diversity metrics. To investigate the impacts of variances of
model diversity (i.e., the intersection of errors), we fix 𝑓1 =
𝑓2 = 𝑓3 = 0.1 , 𝛽1,2|1 = 𝛽1,3|1 = 𝛽2,3|2 = 0.4 , and assign

the values of 𝛼1,2 , 𝛼1,3 , 𝛼2,3 from {𝜇𝛼 , 𝜇𝛼 ± 𝜎𝛼} , where

𝜇𝛼 = 0.3 is the mean and 𝜎𝛼 is the absolute deviation of
𝛼1,2, 𝛼1,3, 𝛼2,3. We can see from Fig. 12, the trend of the

reliability of TMTI is decreasing by varying 𝜎𝛼. The greater
the difference between the absolute deviation becomes, the
lower the reliability is. On the same curve, when 𝜎𝛼 is equal
to zero (i.e., the intersection between every two error sets is
the same), the reliability of TMTI is maximized. Moreover,
as the value of 𝜇𝛼 increases, the reliability of TMTI
decreases, which is consistent with the results observed in
Section V.A.

Next, to investigate the impact of the variance of input
diversity (i.e., the conjunction of errors), we fix 𝑓1 = 𝑓2 =
𝑓3 = 0.1, 𝛼1,2 = 𝛼1,3 = 𝛼2,3 = 0.3, and assign the values

of 𝛽1,2|1, 𝛽1,3|1, 𝛽2,3|2 from {𝜇𝛽 , 𝜇𝛽 ± 𝜎𝛽}, where 𝜇𝛽 = 0.3

is the mean and 𝜎𝛽 is the absolute deviation of

𝛽1,2|1, 𝛽1,3|1, 𝛽2,3|2. The reliability of TMTI by varying 𝜎𝛽 is

computed as shown in Fig. 13. Different from the result in
Fig. 12, the trend of the reliability of TMTI is increasing by
varying 𝜎𝛽. On the same curve, when 𝜎𝛽 is equal to zero

(i.e., the conjunctions of errors are the same), the reliability
of TMTI is minimized.

Figure 12: Reliability of TMTI by varying 𝜎𝛼

Figure 13: Reliability of TMTI by varying 𝜎𝛽

Observation 5. A larger variance of model diversities
negatively impacts the TMTI reliability, while a larger
variance of input diversity has opposed impacts.

VI. CONCLUSION

In this paper, we apply a software fault-tolerant
approach to improve the reliability of ML-based software
systems. To investigate the effectiveness of N-version ML
architectures, we propose reliability models for three-
version architectures by introducing diversity metrics for
measuring the diversity of ML models and the diversity of
input data. We conduct numerical analysis on the proposed
model and find that i) the reliability of TMTI systems is the
highest among other three-version systems (i.e., TMSI and
SMTI systems), ii) the reliability of a DMDI system is
generally more reliable than the reliability of a TMTI system,
and iii) the variance of model diversity negatively impacts
on TMTI reliability, while the variance of input diversity
has positive impacts. Our reliability models and the
preliminary findings must value designs of safety-critical
ML systems. In future work, we can extend our model to
higher versions and compare the reliability of different
architectures. Since TMTI architecture has the potential to
achieve the highest reliability even compared with DMDI,
we can analytically identify the conditions where TMTI
achieves higher reliability than others. Estimating the
parameter values of diversity parameters from empirical
studies is also an important future work.

ACKNOWLEDGMENT

This work is partly supported by JSPS KAKENHI Grant
Numbers 19K24337 and 22K17871.

REFERENCES

[1] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, Machine learning
testing: Survey, landscapes and horizons, IEEE Transactions on
Software Engineering, 2020.

[2] K. Pei, Y. Cao, J. Yang, and S. Jana, DeepXplore: Automated
whitebox testing of deep learning systems, In Proc. of the 26th
Symposium on Operating Systems Principles, pp. 1–18. ACM, 2017.

[3] T. Chen, S. Cheung, and S. Yiu, Metamorphic testing: a new
approach for generating next test cases. Technical report, Technical
Report HKUST-CS98-01, Department of Computer Science, Hong
Kong University of Science and Technology, Hong Kong, 1998.

[4] X. Xie, J. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Chen,
Application of metamorphic testing to supervised classifiers. In Proc.
of International Conference on Quality Software, pp. 135–144, 2009.

[5] S. Al-Azani and J. Hassine, Validation of machine learning
classifiers using metamorphic testing and feature selection
techniques. In International Workshop on Multidisciplinary Trends
in Artificial Intelligence, pp. 77–91. Springer, 2017.

[6] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T.
Su, L. Li, Y. Liu, J. Zhao, and Y. Wang, Deepgauge: Multi-
granularity testing criteria for deep learning systems. In Proc. of the
33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, pp. 120–131, 2018.

[7] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang. Deep Mutation: Mutation Testing of
Deep Learning Systems, 2018.

[8] W. Shen, J. Wan, and Z. Chen, MuNN: Mutation Analysis of Neural
Networks. In Proc. of International Conference on Software Quality,
Reliability and Security Companion (QRSC), pp. 108–115, 2018.

[9] I. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing
adversarial examples, https://arxiv.org/abs/1412.6572, 2014.

[10] Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex, Sutskever,
Ilya, and Salakhutdinov, Ruslan. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[11] L. Chen and A. Avizienis, N-version programming: A fault-
tolerance approach to reliability of software operation, In Proc. of
8th IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-8), pp. 3-
9, 1978.

[12] A. Gujarati, S. Gopalakrishnan and K. Pattabiraman, New wine in
an old bottle: N-version programming for machine learning
components, In Proc. of IEEE International Symposium on Software
Reliability Engineering Workshops, pp. 283-286, 2020.

[13] F. Machida, N-version machine learning models for safety critical
systems, In Proc. of the DSN Workshop on Dependable and Secure
Machine Learning, pp. 48-51, 2019.

[14] L. Robert E and W. Vanderkulk, The use of triple-modular
redundancy to improve computer reliability, IBM journal of research
and development, Vol. 6, No. 2, pp. 200-209, 1962.

[15] M. Ege, A. Eyler M and MU. Karakas, Reliability analysis in N-
version programming with dependent failures, In Proc. of IEEE
EUROMICRO Conference, pp. 174-181, 2001.

[16] S. Latifi, B. Zamirai and S. Mahlke. PolygraphMR, Enhancing the
reliability and dependability of CNNs, In Proc. of 50th IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN), pp. 99-112, 2020

[17] Y. Makino, T. Phung-Duc and F. Machida, A Queueing Analysis of
Multi-model Multi-input Machine Learning Systems, In Proc. of the
DSN Workshop on Dependable and Secure Machine Learning, pp.
141-149, 2021.

[18] F. Machida, On the diversity of machine learning models for system
reliability, In Proc. of IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC), pp. 276-285, 2019.

[19] H. Xu, Z. Chen, W. Wu, Z. Jin, S. Kuo, M. R. Lyu, NV-DNN:
towards fault-tolerant DNN systems with N-version programming,
In Proc. of the DSN Workshop on Dependable and Secure Machine
Learning, pp. 44-47, 2019.

[20] W. Wu, H. Xu, S. Zhong, M. Lyu and I. King, Deep validation:
Toward detecting real-world corner cases for deep neural networks,
In Proc. of 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pp. 125-137, 2019.

[21] Z H., Zhou, Ensemble methods: foundations and algorithms.
Chapman and Hall/CRC, 2019.

[22] R. S. Ferreira, J. Arlat, J. Guiochet, and H. Waselynck,
Benchmarking safety monitors for image classifiers with machine
learning, In Proc. of IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC), pp. 7-16, 2021.

