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Abstract—Real-time image processing on a drone to recognize
the real-world environment has become popular recently in many
applications. However, continuous image processing on a drone
may entail the degradation of performance and reliability over
the long-time operation, also known as software aging. Since the
degradation due to software aging progresses with the amount
of the workload to process, offloading the image processing tasks
to other computers can mitigate the progression of the software
aging. In this paper, we propose a new software life-extension
method to counteract software aging on a drone image processing
system by means of proactive task offloading. To evaluate the
effectiveness of the proposed method, we develop continuous-
time Markov chains (CTMCs) to analyze the stochastic behaviors
of the system. Through numerical experiments, we show that
proactive offloading improves the steady-state availability, the
mean time to down (MTTD), and the average throughput by
1.85%, 1.57x, 1.48x, respectively. We also show that the combi-
nation of offloading and software rejuvenating further improves
the steady-state availability and the average throughput.

Keywords—Drone, Fog computing, Software aging, Software
life-extension, Offloading

I. INTRODUCTION

As the performance and functionality of drones are evolving
recently, drone-based systems are applied in various applica-
tion domains. Modern intelligent drones can recognize their
surroundings in real-time by processing images captured by
cameras and dynamically decide the air route and actions for
conducting their missions. Real-time adaptive behavior of such
drones is especially required in mission-critical tasks such as
disaster rescue and urban surveillance [1].

While continuous execution of image processing is essential
for intelligent drone systems, a long-running high-workload
process easily confronts the risk of software aging. Software
aging is a phenomenon inducing performance degradation and
an eventual system failure after a long-running operation due
to aging-related software bugs [2]. Memory leak, memory
fragmentation, and accumulated numerical errors are typical
causes of software aging that may not be easily removed
completely in the development phase [3]. Since the available
computing resources (e.g., free memory) are extremely limited
in a drone system, it is especially important to provide a
dependable drone system with effective measures against the
software aging problem.
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The known conventional countermeasures to software ag-
ing include software rejuvenation and software life-extension.
Software rejuvenation is a method to recover the system
preventively before encountering failure due to software aging
[2]. A typical method for software rejuvenation is a reboot
that can clean up all the internal states in memory. However,
frequent software rejuvenation can cause system availability
degradation because the system is unavailable during software
rejuvenation. On the other hand, software life-extension is a
method to postpone the time to failure caused by software
aging by controlling the amount of workload or resource
affected by software aging [4][5]. Software life-extension is
implemented in a virtualized system that allows dynamic
additional resource allocation to a virtual machine suffering
from software aging [4][5].

In this paper, we propose a new software life-extension
technique to make a drone image processing system sur-
vive upon facing software aging due to the high workload
of image processing. The proposed technique attempts to
proactively offload computation tasks to other devices or
servers so that the reduced workloads mitigate the progress
of software aging on the process running on the drone. Unlike
the conventional study, our software life-extension method
does not necessitate a virtualization platform for fulfilling the
resource. Instead, our approach uses a fog computing node to
offload the computation tasks via a wireless communication
link to the base station, which has been adopted in several
recent studies of drone processing systems [6][7][8][9]. In
order to evaluate the effectiveness of the proposed method,
we construct continuous-time Markov chains (CTMCs) for
representing the behaviors of systems without offloading,
with offloading, and with offloading and rejuvenation. We
conduct numerical experiments to evaluate the quantitative
quality measures that are the steady-state availability, the mean
time to down (MTTD), and the average throughput of image
processing. The evaluation results show that our proactive
offloading approach improves the steady-state availability, the
MTTD, and the average throughput by 1.85%, 1.57x, and
1.48x, respectively, by delaying the occurrence of a failure
due to software aging. When software rejuvenation is applied
to the system in addition to proactive offloading, the steady-
state availability can be further improved. We find that the



steady-state availability is maximized at a specific combination
of the mean time to offloading (MTTO) and the mean time
to rejuvenation (MTTR]J). Furthermore, while the steady-state
availability and the MTTD decrease as the MTTRJ becomes
shorter, we also find that the average throughput can be
improved by a short MTTRJ.

To summarize, we make the following contributions in this

paper.

1) A new software life-extension method using proactive
task offloading is proposed to counteract software aging
in a drone processing system.

2) CTMC models are constructed for capturing the stochas-
tic behaviors of the drone systems adopting proactive
offloading and software rejuvenation.

3) Numerical experiments are conducted to show the effec-
tiveness of the new software life-extension method with
respect to the steady-state availability, the MTTD, and
the throughput of image processing.

The rest of the paper is organized as follows. Section II
describes the related work. Section III explains the configu-
ration of the target system. Section IV presents the CTMCs
for analyzing the steady-state availability, the MTTD, and the
average throughput of drone systems. Section V introduces the
quality measures for evaluation. Section VI shows the results
of the numerical experiments to present the effectiveness
of proactive offloading for software life-extension. Finally,
Section VII presents the conclusion and briefly introduces the
future works.

II. RELATED WORK

Computation offloading has been extensively studied re-
cently in the edge computing context [10]. End devices often
have limitations in terms of computation resources, and hence
offloading computation tasks to an edge server is recognized
as a viable solution. To determine where and how to offload
computation tasks considering different aspects and design
trade-offs, a variety of techniques such as machine learning,
artificial intelligence, and control theory are applied [11].
Computation offloading in drone systems has been studied
recently as well [6][7][8][9]. Although various offloading
methods have been proposed, existing approaches are mostly
reactive or adaptive to environmental conditions. In this paper,
we focus on proactive offloading, in particular for mitigating
the software aging experienced in end devices.

Software aging is a commonly-observed phenomenon in
long-running software systems such as operating systems [12],
web servers [13], and cloud computing infrastructure [14].
A recent experimental study reveals that image processing in
an edge computing environment is also affected by software
aging [15]. To the best of our knowledge, however, there is
no existing study proposing a method to counteract software
aging in a drone processing system.

While the techniques and models for software rejuvenation
have been studied extensively in the literature [16], only a
few works have been presented for software life-extension.
Software life-extension was initially presented in [4], in which
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server virtualization is used to dynamically allocate additional
resources to an aging server instance. This approach requires
virtualization and may not be feasible in resource-constrained
end devices. Therefore, this paper proposes a new method to
extend the software life by offloading image processing tasks
for a drone processing system.

III. SYSTEM CONFIGRATION

The configuration of the system considered in this paper is
shown in Figure 1. The system consists of a drone that per-
forms image processing during the flight and a fog computing
environment that serves as an offload destination for image
processing. The fog computing environment assigns a fog node
to perform image processing when a drone requests offloading.
For example, an edge computer or a virtual machine that
can communicate via a wireless network such as Wi-Fi or
4G is assigned as a fog node. We assume software aging
progresses by continuous operation of image processing as
observed in [15]. When software aging is detected, the drone
starts offloading the image processing tasks to a fog node.
Offloading reduces the amount of computational processing on
the drone and thereby lowers the failure rate of the process.
If the process on the fog node fails during the offloading,
the fog node process is aborted, and the process continues on
the drone. If the process on the drone fails due to software
aging, the recovery process is performed. In this study, we
only consider process failures caused by software aging and
do not consider other types of hardware or software failures.

IV. STATE TRANSITION MODEL

This section details the CTMCs that represent the behaviors
of a drone image processing system with software aging, life-
extension and rejuvenation.

A. Aging model

The aging model shown in Figure 2 has 3 states. State 0
is the normal operating state in which the image processing
on the drone is not affected by software aging. State 1 is the
aging state in which the performance of image processing is
deteriorated due to software aging. State 2 is the failure state
in which the drone system cannot process any images due to
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Fig. 3. Proactive offloading model

process failure. When software aging progresses on the drone,
the system state is changed from the normal operating state
to the aging state. We assume that the time to software aging
follows the Exponential distribution with rate A; as commonly
assumed in the literature of software aging studies [17]. If
the image processing process fails due to software aging, the
state is changed to the failure state. We assume that the time
to failure follows the Exponential distribution with rate Ay as
assumed in the literature [17]. When the system encounters
process failure, the process is recovered and returns back to
the normal operation state. The recovery time is assumed to be
exponentially distributed with rate p; as commonly assumed
in the literature of availability studies [18]. In this model, only
state 2 is the down state which is represented by a shaded circle
in Figure 2.

B. Proactive Offloading model

The proactive offloading model shown in Figure 3 extends
the aging model by adding the state representing the offload-
ing. State (1,0) is the offloading state in which the image
processing on the drone is offloaded to a fog node. When the
drone offloads the image processing tasks to the fog node, the
state is changed from the aging state to the offloading state. We
assume that the MTTO follows the Exponential distribution
with rate po. If the image processing on the drone fails in the
offloading state, the state is changed to the failure state. We
assume that the failure time of the process in the offloading
state is exponentially distributed with rate A3. If the image
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Fig. 4. Proactive offloading with rejuvenation model
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processing task on the fog node fails due to software aging
in the offloading state, offloading is aborted, and the system
transitions to the aging state. We assume that the failure time
of the fog node process follows the Exponential distribution
with rate A4. In this model, state (2, 3) is the down state.

C. Proactive Offloading with Rejuvenation model

The proactive offloading with rejuvenation model shown in
Figure 4 extends the proactive offloading model by adding
the rejuvenation state. State (4,3) is the rejuvenation state
in which the image processing on the drone is rebooted.
Software rejuvenation can be performed when the process
on the drone is not failed, and when it does, the state is
changed to the rejuvenation state. We assume that the MTTRJ
follows the Exponential distribution with rate ps. In the
rejuvenation state, the drone process is rebooted. When the
rejuvenation completes, the process returns back to the normal
operation state. The reboot time is assumed to be exponentially
distributed with rate 4. In this model, state (2,3) and state
(4,3) are the down states.

V. ANALYSIS

To evaluate the reliability and performance of a drone image
processing system subject to software aging, we introduce
the quality measures, namely the steady-state availability, the
MTTD, and the average throughput.

A. Steady-state Availability

An image processing service is available when the process is
running either on the drone or the fog node. From the CTMCs,
the steady-state availability can be computed by the sum of the
probabilities that the system is in either one of the up states.
Let w = (71, 72, ..., T, ) be the steady-state probability vector
and denote the set of up states of the model k& € {1,2,3}
as Uy, where 1, 2, and 3, represent the aging model, the
proactive offloading model, and the proactive offloading with
rejuvenation model, respectively. The steady-state availability
of the system is given by

Ay = Siep, T ()



The transition rate matrices of the three models are given
by

0 A O
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The infinitesimal generator matrices )y is constructed from
the transition rate matrix Py. Then the steady-state probability
7 satisfies the following equation.

wQr = 0. ®)
Since the sum of the steady state probabilities is one, we have
mel =1, (6)

where e is an n-dimensional vector whose elements are 1.
Solving equations (5) and (6) for 7 yields the steady-state
probabilities. By equation (1) the steady-state availabilities
for the aging model, the proactive offloading model, and the
proactive offloading with rejuvenation model are derived as
follows.
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B. MTTD

The image processing service becomes unavailable when
the process encounters failure or undergoes rejuvenation. The
mean time to down (MTTD) from the time to start the process
at the normal operating state can be expressed as the sum of the
time spent in the up states before the system reaches either one
of the down states. Denoting the average sojourn time vector
as t = (t1,t2,....t,), the average time spent in each up state
starting from the normal operating state can be expressed by

MTTD =¥,y ti. (10)

TABLE I
PARAMETERS FOR NUMERICAL EXPERIMENTS

Variables Values [1/hour]
Process recovery rate on a drone pu1 =1
Offloading rate po = ﬁ

1

Software rejuvenation trigger rate 3 = UTTET

Process recovery rate in the rejuvenation | pg4 = 60
state

Aging rate of a drone process AL = é
Failure rate of a drone process Ao = ﬁ
Failure rate of a drone process in the of- | A3 = 2—14

floading state

Failure rate of a fog node process Aq = 2—14
Service rate on a drone r1 = 1200
Service rate on a drone in the aging state ro = 600
Service rate on a drone in the offloading | r3 = 1200

state

For the infinitesimal generator matrix ()i, define @, as a
submatrix consisting of only up states, and denote the cor-
responding subvector of ¢ as t,. The average sojourn time
satisfies the following equation [18].

tuQu = (11)

Solving equation (11) for £,, and using equation (10) yields
the MTTD.

—(1,0, ....,0).

C. Average throughput

Besides the availability and reliability, the performance of
the service also needs to be considered in system design. We
consider the throughput of the image processing that quantifies
the expected number of images processed per unit time. The
average throughput of image processing can be computed from
the steady-state probability in each state and the throughput
of image processing at the state. Denote the processing rate in
each state as r = (71, r9,....r,), the average throughput can
be given by

Average throughput =3 iy, Tt (12)

Note that the throughput is only counted in the up states, but
the processing rate must decrease in the aging state.

VI. NUMERICAL EXPERIMENTS

This section presents the results of numerical experiments to
show the effectiveness of the proposed software life-extension
technique.

A. Experimental plan

The parameter values used in the numerical experiments are
shown in Table I. For the service rates and the failure rates,
we set the values used in the previous studies [1][15]. For
o and ps, which are reciprocal of MTTO and MTTRJ, we
consider them as variables in the sensitivity analysis. First, to
confirm the effectiveness of proactive offloading, the steady-
state availability, the MTTD, and the average throughput are
computed by varying the MTTO in the proactive offload-
ing model. Next, to evaluate the effectiveness of proactive
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offloading with rejuvenation, we compare the results of the
proactive offloading model with rejuvenation model by varying
the MTTRIJ. Moreover, we investigate the optimal MTTRJ that
maximizes the steady-state availability.

B. Results

1) Proactive Offloading model: The experiments are con-
ducted by varying the MTTO from 1 hour to 100 hours at one-
hour intervals in the proactive offloading model. The results
of the steady-state availability, the MTTD, and the average
throughput are shown in Figure 5(a), Figure 5(b), and Figure
5(c), respectively.

It can be seen that a shorter MTTO improves the steady-state
availability, the MTTD, and the average throughput. Compared
with the steady-state availability by the aging model, the value
is improved to 0.965853659 (1.85%) by setting MTTO to one
hour. Note that the availability can be further improved by
setting MTTO as short as possible. In an extreme case, when
e — 400, the steady-state availability reaches 0.967741935.
The MTTD is improved to 28 hours, which is 1.57 times
longer than the MTTD without using proactive offloading for
software life-extension. In an extreme case, when po — 400,
the MTTD value is increased up to 30. The average throughput
is also improved to 1123.9, which is 1.48 times larger than
the throughput without using proactive offloading. The average
throughput can be maximized to 1161.3, by po — +00 in an
extreme case.

2) Proactive offloading with rejuvenation model: Next, we
fix the MTTO to an hour and vary the MTTRIJ from 1 hour to

100 hours at one-hour intervals in the proactive offloading with
rejuvenation model. The results of the steady-state availability,
the MTTD, and average throughput are shown in Figure 6(a),
Figure 6(b), and Figure 6(c), respectively.

From Figure 6(a), we observe that the steady-state avail-
ability is maximized at 2 hours of MTTRJ. As the MTTRJ
increases over 2 hours, the availability decreases gradually and
asymptotically approaches the steady-state availability of the
proactive offloading model without rejuvenation. The results
indicate that the system availability can be further improved by
the combination of software life-extension and rejuvenation.

From Figure 6(b), we can observe that the MTTD is smaller
than the MTTD in the proactive offloading model. The MTTD
increases as the MTTRIJ increases. This is reasonable as a
shorter MTTRJ can easily make the system in down states by
frequent rejuvenations.

On the other hand, as shown in Figure 6(c), the average
throughput is higher than the average throughput in the proac-
tive offloading model when MTTRJ is shorter than one hour.
The throughput becomes smaller as the MTTRIJ increases,
and it asymptotically approaches the average throughput of
the proactive offloading model. This is due to the fact that
a shorter MTTRI increases the probability of staying in the
normal operating state which has a high processing rate.

In summary, while the steady-state availability of the system
can be improved by proactive offloading with rejuvenation, we
need to carefully determine the MTTRIJ as it can potentially
sacrifice the MTTD and the average throughput.
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3) Optimal MTTRJ: As presented in Figure 6(a), the
steady-state availability can be maximized at a certain MTTRJ.
The optimal MTTRIJ can be analyzed from (9). When we take
the partial derivative of A3 with respect to ,7137 we have

943  X'Y — XY'

Ay = = ; (13)
S0l (X+Y)?
0X
XIZaj:—MBQ()\l+)\2+)\3+)\4+M2+2M3),
M3
oY A1 M3
V= =—-"(hops®) + = (- X + X).
51 ul(zus) #4( 3 )

Hs

A3’ can be plotted as a function of MTTRJ (= i) as shown
in Figure 7.

As the sign of A3’ changes at 2.22378 from positive to neg-
ative as MTTRIJ increases, 2.22378 [hours] is found to be the
optimal MTTRIJ that maximizes the steady-state availability
in this system. Note that the optimal MTTRJ may change by
choosing different values of MTTO. It is an interesting future
work to explore the best combination of MTTO and MTTRJ
considering the steady-state availability, the MTTD, and the
average throughput.

VII. CONCLUSION

This paper presents proactive offloading as an effective
countermeasure to software aging in a drone image processing
system. To evaluate the effectiveness of the approach, we
modeled the state transitions of the system using CTMCs and
analyzed the models to evaluate the steady-state availability,
the MTTD, and the average throughput. Numerical results
show that the steady-state availability, the MTTD, and the
average throughput are improved by proactive offloading.
When software rejuvenation is used after proactive offloading,
the steady-state availability can be further improved. We also
show that the steady-state availability is maximized when we
set MTTRJ to 2.22378 under our parameter configurations.

While we assumed an environment in which communication
during offloading is always stable, the communication between

the drone and the fog node may become unstable depending on
the location, resulting in delays or failures in offloading. Future
research will evaluate the effectiveness of the system, taking
into account changes in the communication environment. It
is also an important future work to validate the models with
experimental studies.
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