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Preface 

Welcome to the Subspace 2007. It gives us great pleasure to bring forth its 
proceedings. 

Subspace methods such as CLAFIC* are not only important theory for solving 
many pattern recognition problems in computer vision, but also they have been 
widely used as a practical methodology for a wide variety of real applications. In 
particular, subspace methods have been studied intensively in the field of character 
recognition, contributing to a number of commercial optical character recognition 
(OCR) systems. Although the firstly proposed subspace method is nearly three 
decades old, a number of new techniques based on the same approach are still 
proposed every year in emerging fields between computer vision and other related 
technologies. For example, it is interesting to see that the Mutual Subspace Method, 
which is one of the most successful variants of subspace methods, is indeed almost 
identical to the Canonical Correlation Method in multivariate statistical analysis. 
The concept of subspace methods is also strongly related to the factorization method. 
Unfortunately, however, the significance of subspace methods is not yet fully 
recognized in the community of computer vision, despite the notable success of 
commercial products based on the subspace method.  

The goal of this workshop is to share the prominent potential of subspace 
methods with researchers working on various problems in computer vision, and 
encourage interactions leading to further developments of subspace methods. The 
fundamental theories of subspace methods and their applications in computer 
vision will be discussed at the workshop. We believe that Subspace2007 will 
stimulate fruitful discussions among participants and provide them novel ideas for 
future research in computer vision. 

*  S. Watanabe, N. Pakvasa, “Subspace method in pattern recognition”, in Proc. 1st 
Int. J. Conf on Pattern Recognition, 1973. 
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The Engineer’s Guide to The Subspace Method
- English Version -

Yoshiaki Kurosawa (Toshiba Solutions Corporation)

Abstract— The Subspace Method was developed around 1970,
and is now used as important basic technology in the pattern
recognition field. This report is written as a guide to this field.
The Subspace Method itself along with the Weighted Subspace
Method, Principal Component Analysis (PCA) as a tool for
fixing a subspace, it’s relationship to PCA used in Bayesian
Discrimination, the relationship between Subspace Method and
Bayesian Discrimination, and an incremental learning method
as another fixing method of subspace are all explained in this
report. Finally, “How to fix a subspace”, “How to construct a
similarity” and “New targets and applications” are discussed as
a future work.

Index Terms— subspace, Principle Component Analysis, Mul-
tiple Similarity, CLAFIC, weight

I. INTRODUCTION

THIS is a guide for any beginners and students starting out in
the field of pattern recognition and the Subspace Method

world. This is the English version of literature [1] written in
Japanese and previously presented at the workshop. Therefore,
it may be of little interesting for experts in this field and those
who attended the former workshop. This report consists of an
overview and basic facts about the Subspace Method. For more
detail about this field, book [2] is well known as a good textbook.
Unfortunately, however it is now out of print.

The definition of the Subspace Method and it’s history are
first described in this report. The Weighted Subspace Method
and Principal Component Analysis as a method for determining
a subspace are then explained. These methods have a relationship
with Bayesian Discrimination. Finally, an incremental learning
method for creating references is also introduced and three typical
directions in future research of this field are explained.

The Subspace Method was introduced around 1970 and has
been applied to many applications with various modifications.

The concept of the Subspace Method is to consider a pattern
cluster as a subspace in a linear space in which a pattern is
expressed as a vector. For more precise consideration, it must be
treated as a manifold, but it might be natural to treat it a subspace
for simple and basic design of pattern recognition systems.

For pattern recognition, it is basic and essential to discriminate
clusters which consist of many vectors. Even in NN recognition
systems, it is a fact that a linear space is separated by piece-
wise hyper curved surface. In this sense, the Subspace Method
approach is reasonable for discriminating patterns.

II. THE SUBSPACE METHOD

THE definition of the Subspace Method is as follows: Let N

be the number of pattern space dimension, that is the number
of pattern vector’s elements; let ϕi be reference vectors which are
normal and orthogonal; let r be the number of reference vectors;
and let x be an input vector. The similarity S is defined as

S =

r−1∑
i=0

(x,ϕi)
2. (1)

The reference vectors are defined for each category and the
similarity S is also calculated for each category. A category which
should be determined as an answer is a category which has the
maximum similarity. Here, the number r is the dimension of the
spanned space by ϕi，while the number of N is the total space’s
dimension. Both are “dimension” but the meanings are different.
Care should be taken to ensure they are not confused.

If the vectors ϕi and x are not normalized, the similarity is
described as the following equation which is more general:

S =

r−1∑
i=0

(x,ϕi)
2/‖x‖2‖ϕi‖2. (2)

As for the above mentioned two equations, sometimes we make
a mistake in mathematical analysis and computer programming
when we confuse (1) with (2). If possible, it is better to use (2).

In this method, a subspace spanned by reference vectors is
considered as a reference subspace for a certain category. The
input pattern’s projection on this subspace is considered as a
similarity between the input and the reference. A method which
has (2) with r = 1 is called Simple Similarity.

If we define a projection P as

P =

r−1∑
i=0

ϕiϕ
T
i , (3)

and represent an inner product as (a, b) = aT b, (1) are converted
to

S = xT Px. (4)

This is a simple and convenient expression.
The meaning of the Subspace Method is that the patterns of a

category which exist in some area of the total space is considered
as a subspace, and this subspace represents the category. As
for Simple Similarity, its reference which consists of one vector
represents a one dimensional subspace.

Principal Component Analysis (PCA) is a typical method to
obtain this reference subspace. As for the input patterns of a
category, their average projection on the reference subspace is
maximized when this subspace is obtained by PCA. The method
of PCA in this field was introduced as feature reduction or feature
selection method before the Subspace Method was proposed.

In 1963, a feature selection method in which the PCA was
applied to all patterns in all categories was proposed by Taizo
Iijima [3] in Japan at Electrotechnical Laboratory (ETL). ETL
was a research laboratory which had been recently united with
other laboratories and is now a division of Advanced Industrial
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Science and Technology (AIST). The same idea was also pro-
posed by Japanese researcher Satosi Watanabe, the professor at
the University of Hawaii [11] who proposed SELFIC. Then the
Subspace Method was proposed by Watanabe [7][8][9][10], and
this was called CLAFIC.

Independently, Iijima had been developing a similar idea after
the propose of PCA for feature reduction, and had been devel-
oping a new printed English letter character reader as a member
of a national project’s OCR development team. This project’s
target was pattern recognition and had several themes. A high
spec printed character reader had been developed by ETL and
Toshiba as one of the achievements of this project. This had
been started in 1966 and finished in 1970 and the OCR was
called ASPET70 (Analog Spatial Processor developed by Electro-
technical laboratory and Toshiba). ASPET71 was then developed
as an enhanced version. Multiple Similarity Method proposed by
Iijima [4] was used as core technology in these machines.

As for Multiple Similarity Method, it has been widely used
in the pattern recognition field, such as printed and handprinted
character recognition, kanji (Chinese characters used in Japan)
character recognition, speech recognition and image recognition.
This method was introduced by the fundamental theory of visual
pattern. This theory consists of integral equation, describes image
characteristics, and includes the idea of “Gaussian scale space”,
which was the theory of “blurring.” In practical use, this method
is equal to the Subspace Method if the weight parameters are all
one. Therefore, Multiple Similarity Method can be considered as
one of the first research results of the Subspace Method.

Those two pieces of independent research by Watanabe and
Iijima reached the Subspace Method world and both research
results had a huge affect on later researchers in this field.

The blurred character image pattern was used as a feature
pattern in Multiple Similarity Method. But the importance of
“blurring” was not known at the time. It was common sense
that a pattern must be observed precisely and sharply for better
recognition accuracy. The blurring technique was out of question.
Nowadays, the “blurring” is recognized as an important technique
of a pre-processing method for input image patterns. This is the
concept known as Gaussian scale space [6] now. But, in fact, this
was introduced by Iijima in 1959.

III. THE WEIGHTED SUBSPACE METHOD

AN important extension of the Subspace Method is the
Weighted Subspace Method, which is described by the

following equation with the introduction of weight values µi.

S =

r−1∑
i=0

µi(x, ϕi)
2. (5)

In this equation, a set of weight values determines the charac-
teristics of a recognition system.

The horizontal axis of Fig.1 shows the number of eigen vectors
which are ordered by the correspondent eigen value. The eigen
values which have a larger value correspond to smaller numbers.
The origin is zero here. The weight is one until a certain number
and after that it is zero in the Subspace Method. In case of the
method which is relevant to Modified Quadratic Discriminant
Function (MQDF) [12][13], the weight value gradually falls down
to a certain value and there it is zero afterwards. In case of the
concept of Compound Similarity [5], the weight values of certain

Weight

0

1

subspace method

method like MQDF

dimension of
subspacemethod like

compound
similarity

Fig. 1. Example of weight in the Weighted Subspace Method.

eigen vectors are set to minus. In this case of minus values, the
order of eigen vectors is not ruled by the value itself.

The method in which the weight goes down while the num-
ber increases indicates a concept that smaller contribution to a
similarity for smaller eigen values.

The concept of Compound Similarity is described as follows:
First, the difference between similar patterns are represented by
a subspace which is made to be orthogonal to the subspace of a
correct category. The normalized and orthogonal vectors of this
subspace representing the difference are added to the reference
vectors. The similarity is obtained by subtracting the projection
length of an input pattern on this subspace from the original
similarity.

As for MQDF, it is different from the Subspace Method, but
they are related to each other. Their relationship is described later.

IV. PRINCIPAL COMPONENT ANALYSIS

IN many cases, the term “Subspace Method” implies that the
reference of the Subspace Method is made by PCA. The

normalized orthogonal system of reference vectors is defined by
eigen vectors obtained by PCA.

Generally, PCA means that principal components are deter-
mined as vectors which start from the center point which is the
mean vector of pattern distribution. In comparison, the mean
vector is not used in the Subspace Method in which the mean
vector is treated as zero. The Subspace Method’s PCA is different
from usual PCA at this point.

Here, we begin by explaining usual PCA used in Quadratic
Discriminant Function (QDF).

Let α be the name of a learning target vector and this vector
be xα. Let m be the mean vector of these vectors. Then, let ϕ0

be an unit vector which represents the best direction of vectors
xα −m. Here, the meaning of “representing the best direction of
vectors” is that maximizing the square of inner product of xα−m

and ϕ0 . In this case, a condition that ‖ϕ0‖ = 1 are required, then
an unknown multiplier λ0 is introduced for this condition in the
following equation. The vector ϕ0 is obtained by PCA as a vector
which maximize the evaluation value J in this equation:

J =
∑

α

(xα − m,ϕ0)2 − λ(‖ϕ0‖2 − 1)

=
∑

α

{
∑

j

(xαj − mj)ϕ0j}2 − λ0(
∑

j

ϕ2
0j − 1). (6)

The vector ϕ0 is obtained by setting the partial derivatives of
J to zero. The evaluation value J is differentiated by ϕ0j which
is the element of ϕ0.
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∂J

∂ϕ0j
= 2

∑
α

(xα − m, ϕ0)(xαj − mj) − λ0(2ϕ0j) = 0. (7)

The following expression is obtained by ϕ0，m and xα which
are made by vertically arranging ϕ0j，mj and xαj .

2
∑
α

(xα − m, ϕ0)(xα − m) − λ0(2ϕ0) = 0. (8)

This is rewritten further as∑
α

(xα − m)(xα − m)T ϕ0 = λ0ϕ0. (9)

Here, let K be as

K =
∑

α

(xα − m)(xα − m)T . (10)

So (9) is expressed by

Kϕ0 = λ0ϕ0. (11)

In conclusion, ϕ0 becomes the eigen vector of covariance
matrix K. As for ϕi(i > 0), the story is the same, and ϕi are
obtained as the eigen vectors of (11). The number of eigen vectors
are equal to the dimension of total space and are orthogonal to
each other.

V. PCA ON HYPER TANGENT PLANE

THE method of PCA in the Subspace Method is described
as a method to find a projection P which maximize the

evaluation value J in the following equation:

J =
∑
α

xα
T Pxα. (12)

Here, P is defined as

P =

r−1∑
i=0

ϕiϕi
T , ‖ϕi‖2 = 1. (13)

An unknown multiplier λi is introduced to the above equation
and the following equation is obtained:

J =
∑
α

r−1∑
i=0

{(xα, ϕi)
2 − λi(‖ϕi‖2 − 1)}. (14)

The vectors ϕi which maximize J above are used as reference
vectors. This equation is the same as (6) with m = 0 except the
summation of i. The eigen vectors ϕi are independent of each
other and therefore the eigen equation becomes the same equation
(11) by a process which is the same as the previously described
calculation.

The result is a covariance matrix K such as,

K =
∑
α

xαxT
α , (15)

and an eigen equation such as,

Kϕ = λϕ. (16)

An input pattern’s norm is fixed to one in the Subspace Method.
Consequently, patterns are distributed on the surface of a hyper
sphere.

Instead of the surface of the hyper sphere, a hyper plane
which is tangent to the hyper sphere is used. In Figure 2, as
approximation for making it simpler, the patterns are assumed to
be distributed on this hyper plane which is orthogonal to an unit
vector e, which is the vector �PQ where P is the origin of the
hyper sphere and Q is the tangent point of this hyper plane to the
hyper sphere. The point Q is also the center of the distribution.

P

e=m

z

x

Q

Origin

Contour of
Distribution

Hyper Plane

Fig. 2. Example of pattern distribution on hyper plane which is tangential
to spherical surface.

In this figure, the mean vector m becomes to equal to the vector
e if the distribution is a Gaussian whose center is the end of vector
e. The reason is probably almost clear but it is explained briefly
below. Let the vector xα be expressed by xα = e + zα. The
distribution of the vectors zα which starts from the point Q to
the end of xα is Gaussian. It lies on the hyper plane. Let m be
the mean vector of xα. Then m = xα = e because zα = 0. Here,
the norm of xα is not one but must be near one. Consequently,
zα must be small.

The vector m is used instead of e and the norm of xα is
considered as approximately one, hereafter.

If we use usual PCA in this case, the vector m is used as the
mean vector and the covariance matrix becomes as follows:

K =
∑

α

(xα − m)(xα − m)T . (17)

Consequently, it is converted to,

K =
∑
α

zαzT
α , (18)

because xα = m + zα. The equation (18) is similar to (15), but
they are different. Here the problem is “Which is better?” or
“Which is correct?”. In the viewpoint of usual PCA, that is, the
viewpoint of Gaussian distribution as statistical assumption, the
covariance matrix (18) which is obtained from (17) is correct. Is
this true?

The conclusion is simple. Both are the same. The following
consideration proves this fact:

The equation (15) is obtained formally by making the mean
vector be zero in the covariance matrix in (17) which is equivalent
to (18), in spite of the fact that the mean vector is m. It is
not possible to make m be zero for this conversion. We need
a conversion with m which is not zero. Here, we see below the
fact that the mean vector m and the eigen vectors of (18) are
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equal to the eigen vectors of (15).

It is probably more sophisticated to use the equation,

K =
∑

α

xαxT
α − mmT , (19)

but here, it is proved by low-tech style:
(Characteristic 1)

The vector m is the eigen vectors of (15).
(Proof)

The inner product (zα, m) = 0 because the hyper plane and m

is perpendicular. Here, xα = m + zα，‖m‖ = ‖e‖ = 1.∑
α

xαxT
αm =

∑
α

xα(xα, m) =
∑
α

xα(zα + m, m)

=
∑

α

xα(m, m) =
∑
α

xα = m, (20)

Consequently, m becomes the eigen vector of (15). (End of
proof)

(Characteristic 2)
Eigen vectors ψi obtained from (18) is the eigen vectors of

(15).
(Proof)

Since the vectors ψi is the eigen vectors of (18),∑
α

zαzT
α ψi = λiψi. (21)

The vectors ψi and m are orthogonal because the hyper plane
and m are orthogonal.

In addition to that,
∑

α zα = 0 because the mean vector of
Gaussian is the origin of the hyper plane.∑

α

xαxT
αψi =

∑
α

xα(xα, ψi)

=
∑

α

(m + zα)(m + zα, ψi)

=
∑
α

m(zα, ψi) +
∑
α

zα(zα, ψi)

=
∑

α

zαzT
α ψi = λiψi. (22)

Consequently, ψi becomes the eigen vectors of (15) and it’s
eigen values become λi．(End of proof)

It becomes clear from previous consideration that “to adopt
the eigen vectors ϕi of (15) as a reference of Subspace Method”
and “to adopt the vector m and ψi in (18)” are the same. More
precisely, previous model is different from the Subspace Method
because m �= ϕ0 and ‖xα‖ �= 1. But this consideration is useful
for appropriate understanding of PCA in the Subspace Method.

The matrix K in (15) is called correlation matrix or moment
matrix. Confusingly, it is also often referred to as covariance
matrix.

VI. MULTIPLE SIMILARITY

IN Multiple Similarity Method, it is resembles the Subspace
Method in that eigen vectors are obtained by PCA as reference

vectors. Let the number of vectors be r. Let this eigen vectors
be ϕi，eigen values be λi. Multiple Similarity S is given by the
following equation:

S =

r−1∑
i=0

λi

λ0
· (x,ϕi)

2

‖x‖2 · ‖ϕi‖2
. (23)

Sometimes,
√

S is also called as Multiple Similarity.
If r is equal to the dimension of total space N , (23) becomes

as,

S =
1

λ0
xT Kx =

1

λ0

∑
α

(xα, x)2, (24)

where,

K =
∑
α

xαxT
α =

N−1∑
i=0

λiϕiϕi
T . (25)

The equation (24) corresponds to (4).
The meaning of (24) is that similarity is defined as the

summation of squared inner product of a input pattern vector
and a reference pattern vector. It is a reasonable measure to scale
the similarity.

Generally, (23) is called Multiple Similarity, but the term
“Multiple Similarity” often means the total concept of “blurring”,
and the fundamental theory of visual pattern.

VII. CANONICALIZATION

A technique called canonicalization is used in Multiple Sim-
ilarity Method. This method is for deducting the constant

component of an input pattern from itself. It is effective if
the number of bits is small for expressing the elements of an
input pattern vector. It is expected that this method contributes
recognition accuracy, but it has not yet been clarified. Let�1 denote
the vector whose elements are all 1. The symbol N express the
dimension of input vectors.

The canonicalization in which input vector x is converted to
x′ is shown below:

x′ = x − 1

N
(x,�1)�1, (26)

There is a way of using the mean vector of all category’s
patterns instead of the vector �1. Eigen vectors which are made
from canonicalized patterns has been also canonicalized; that is,
canonicalization for reference vectors is not required if they are
made of canonicalized vectors and by PCA.

VIII. BAYESIAN DISCRIMINATION

BAYESIAN Discrimination (BD) is also called Quadratic
Discriminant Function, and it is abbreviated to QDF in this

report. QDF is not the Subspace Method, but it has an important
relationship. This relationship is described briefly later. Before
this explanation, QDF and MQDF are introduced in this section
and the next section.

Let A and B denote two categories, and consider the case
of discriminating these two categories. It is possible to obtain
a frequency distribution by collecting pattern vectors x which
belong to A. The probability P (x|A) is calculated by dividing this
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frequency distribution by the number of patterns which belong
to A. This probability is called likelihood. Bayes’ Theory is as
follows:

P (A|x) =
P (x|A)P (A)

P (x)
. (27)

The probability P (A|x) is called posterior probability and
P (A) is prior probability. The probability P (A|x) for category
A and P (B|x) for category B are compared to decide which
category the input vector x belongs to. This is the basic idea of
QDF.

Here, the probability P (A) is assumed to have the same value
for any category. In addition, the probability P (x) has the same
value when the comparison is executed. Therefore, P (A) and
P (x) are negligible in the comparison and the likelihood P (x|A)

can be used for discrimination.
It is assumed that the pattern distribution is Gaussian in QDF;

that is, the appearance probability of pattern x is defined by the
following equation as the likelihood. Here, N is the dimension
of an input vector.

P (x) =
1√

(2π)N |K|
exp{−1

2
(x − m)T K−1(x − m)}. (28)

In this equation, (x−m)T K−1(x−m) is a quadratic form. It
is easy to understand if the case is two dimensional. For a simple
example, let m be 0. And let x be x = (x0, x1)

T and define K−1

as,

K−1 =

[
a c

c b

]
. (29)

Then the following equation is obtained:

xT K−1x = ax2
0 + 2cx0x1 + bx2

1. (30)

This shows that a contour obtained by (28) is an ellipse.
The vector m is a mean vector, K is the covariance matrix

of the pattern distribution in (28). This m and K are defined for
each category and the probability P (x) is calculated for each input
pattern x and for each category. In QDF, the category which has
the maximum P (x) is an answer category for the input pattern x.

Distribution of B
      Q(x)
   (Contour)

Distribution of A
      P(x)
   (Contour)

   Border
P(x) = Q(x)

Fig. 3. Two category discrimination by Bayes Discriminant Function.

The example of two category case is shown in figure 3 which
displays two pattern distributions on a two dimensional plane.

In this figure, P (x) denotes the appearance probability of the
input pattern x which belongs to the category A. Also Q(x) for
B. The area defined by P (x) > Q(x) is the area where an input
pattern is decided to be A. In addition, the area P (x) < Q(x)

means the category B. The line P (x) = Q(x) is the border and
is a superquadratic surface.

Let’s apply log operation to the both sides of the equal symbol
in (28) and modify it. So when,

−2logP (x) − Nlog(2π) =

(x − m)T K−1(x − m) + log|K|, (31)

is obtained. The recognition process is changed to see the mini-
mum value of the right side term in this equation. The equation
is called Mahalanobis distance if the last term log|K| is omitted.
Next, let ϕi be the eigen vectors of K, λi be the eigen values,
Φ be the matrix which consists of eigen vectors. The following
equation is obtained by expressing K by the eigen vectors.

K = Φ

⎡
⎢⎢⎣

λ0 0 ... 0

0 λ1 ... 0
...

...
. . . 0

0 0 ... λN−1

⎤
⎥⎥⎦ΦT , (32)

Let the right term of (31) be the distance D as follows:

D =

N−1∑
i=0

1

λi
{(x − m, ϕi)

2} + log(

N−1∏
i=0

λi). (33)

The actual calculation of QDF is done by this equation. In
Mahalanobis distance, the term of log is omitted.

IX. MQDF

AS for QDF, the inverse of eigen value λi is used in the right
side term of (33). If we consider the above mentioned 1/λi

a weight, the weight is rising up from the value 1/λ0.
This is the way to see the total pattern space, whether a

subspace includes category’s patterns essential components or not.
The large value of 1/λi means that less essential components are
included and this cause the large distance value. This concept is
no good for a case where the eigen values of high dimension are
extremely low where the components are mostly noise. This is
because the distance calculated in the high dimension where λi

is extremely small becomes unstable.
To avoid this problem, there is a method in which the weight

is considered to be constant where the dimension number i is
greater than or equal to certain r in (33) [12][13]. This is MQDF.

Here, let’s see how the equation in MQDF is obtained from
(33). Firstly, (33) is modified by considering a constant value δ.
The eigen values whose number is greater than or equal to r is
substituted by δ .

D =

r−1∑
i=0

1

λi
{(x − m, ϕi)

2} +

N−1∑
i=r

1

δ
{(x − m, ϕi)

2}

+log(

r−1∏
i=0

λi) + log(

N−1∏
i=r

δ)

=

r−1∑
i=0

1

λi
{(x − m, ϕi)

2}
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+

N−1∑
i=0

1

δ
{(x − m, ϕi)

2} −
r−1∑
i=0

1

δ
{(x − m, ϕi)

2}

+log(

r−1∏
i=0

λi) + log(

N−1∏
i=r

δ)

=
1

δ
‖x − m‖2 −

r−1∑
i=0

(
1

δ
− 1

λi
){(x − m, ϕi)

2}

+log(

r−1∏
i=0

λi) + log(

N−1∏
i=r

δ)

=
1

δ
{‖x − m‖2 −

r−1∑
i=0

(1 − δ

λi
){(x − m,ϕi)

2}}

+log(

r−1∏
i=0

λi) + log(

N−1∏
i=r

δ), (34)

The term 1/δ at the first part is common for any category.
Therefore, it becomes possible to multiply δ by all the terms in
the equation, and the final distance is obtained as follows:

D = ‖x − m‖2 −
r−1∑
i=0

(1 − δ

λi
)(x − m, ϕi)

2

+δ

{
log(

r−1∏
i=0

λi) + log(

N−1∏
i=r

δ)

}
. (35)

This distance of MQDF has been proposed by the group from
Mie and Nagoya universities in the literature [12] with the method
Weighted Direction Index Histogram.

In that literature, it was introduced as Mahalanobis style
and was called Quasi-Mahalanobis Distance (Q-MD), and the
Bayesian style method was called Quasi-Bayes Distance (Q-BD).
The name MQDF used in the paper [13] is basically the same as
Q-BD. In this connection, the above mentioned feature extraction
method is the same as the method called Weighted Direction
Code Histogram (WDCH) and it is also effective and useful for
character recognition.

X. PROJECTION DISTANCE

WE have another method similar to the Subspace Method.
Let a mean vector be m, and it is defined as follows:

D = ‖x − m‖2 −
r−1∑
i=0

(x − m, ϕi)
2. (36)

In this equation, there is no restriction for norm of vectors.
This is the difference to the Subspace Method. In this method,
the distance of x and m is measured in the complement space of
the subspace which is spanned by the reference vectors ϕi . PCA
is often used in this case to obtain the reference vectors ϕi .

XI. INNER PRODUCT TYPE AND DISTANCE TYPE

TH e Weghted Subspace Method corresponding to MQDF is
shown here [14]. It is called Spherical MQDF (S-MQDF).

This method is obtained by a hypothesis that patterns are dis-
tributed on a spherical surface and the same process by which
MQDF is introduced. The equation has the same structure as
MQDF except for some terms.

The following equation shows the spherical version of Q-MD,
that is S-Q-MD. This is a simpler version of S-MQDF.

S = 2δ ln(x,ϕ0) + (x, ϕ0)
2 +

r−1∑
i=1

(1 − δ

λi
)(x, ϕi)

2. (37)

For the comparison of this to Q-MD, the equation of Q-MD is
shown as follows:

D = ‖x − m‖2 −
r−1∑
i=0

(1 − δ

λi
)(x − m, ϕi)

2, (38)

We can see the correspondence between above two equations.
The vector ϕ0 in (37) corresponds to the mean vector m in (38).

As for the other correspondence, Q-BD ( = MQDF ) corre-
sponds to S-Q-BD, Projection Method to the Subspace Method
and Euclidean Distance to Simple Similarity.

Table I shows relationship between these methods. The vertical
group of Q-BD in this table is based on Euclidean Distance and
uses distance for discrimination. In contrast to that, the group of
S-Q-BD is based on inner product and uses similarity. It is said
that the former is distance type and the later is inner product type
if we see the calculation process.

TABLE I

DISTANCE TYPE AND INNER PRODUCT TYPE.

distance inner product

Q-BD(MQDF) S-Q-BD

Q-MD S-Q-MD

Projection Distance Subspace Method

Euclidean Distance Simple Similarity

As for the characteristics of recognition accuracy, the methods
shown horizontally in table I are similar while the characteristics
of the methods shown vertically are different from each other.
From the experimental result [14], the performance is almost the
same if the weight parameter is the same. In conclusion, the
importance is in the weight parameters but not in the difference
of calculation method.

XII. INCREMENTAL LEARNING

HERE, we start form Learning Vector Quantization (LVQ),
and see the learning method for the Subspace Method. The

framework of LVQ [15] proposed by Teuvo Kohonen is shown
below.

Let x denote an input pattern, let m denote a reference vector,
let D denote distance.

D = ||x − m||2, (39)

is the distance used in LVQ. The learning process is as follows:
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m = m ± α(x − m), ( + : correct, − : error). (40)

Here the vector m is changed by the above equation as learning
process. This method can be also introduced by the learning
method of Probabilistic Descent (PD) [16][17]. This LVQ is
one of the basic techniques in the pattern recognition field and
often recognized as one of the Neural Network systems. On the
other hand, PD, an incremental learning method, is a powerful
technique applicable to many pattern recognition systems. It is
important to understand LVQ with PD concept. At the same time,
it is simpler to use PD to introduce the incremental learning
method for the Subspace Method.

Firstly, let’s apply PD to Simple Similarity.

S = (x,ϕ)2/‖x‖2‖ϕ‖2, (41)

is the definition of Simple Similarity and an recurrence formula
for ϕ is shown below:

ϕ = ϕ ± α(x, ϕ){x − (x,ϕ)ϕ}. (42)

This formula is rather complicated. Let’s look at a simpler one
where the normalization term is ignored.

S = (x,ϕ)2, (43)

is the similarity and the recurrence formula is,

ϕ = ϕ ± α(x, ϕ)x. (44)

It is a precondition that the vectors x,ϕ are normalized in this
equation. Consequently, (44) obtained by the process without nor-
malization can be said to be incorrect. Therefore, it is necessary
to introduce some operation of normalization. The most simple
way of doing this is to normalize ϕ each time the recurrence
formula is used. It is possible to adopt this approach instead of
(42).

Next, the case of the Subspace Method is shown.
The similarity is shown below:

S =

r−1∑
i=0

(x,ϕi)
2. (45)

The recurrence formula for ϕi is the same as (44). But, the
orthogonality and normality of the vectors ϕi are not preserved
in this case. The orthogonality and normality are required when
we adopt PD to (45). It is possible, but the calculation is complex
and there is a method like the one adopted in Simple Similarity,
i.e. a method in which the orthogonalization and normalization
are executed for the vectors ϕi at the time the recurrence formula
is used. An incremental learning method for the Subspace Method
with PD and Gram-Schmidt orthogonalization is the same as LSM
[18] which was proposed by Kohonen.

There is a similar method ALSM[19][20] in which the covari-
ance matrix K in (15) is changed by the following equation:

K = K ± αxxT , (46)

This method is the same as the method called the Learning
Multiple Similarity Method, [21][22] which was proposed by
Ken-ichi Maeda in 1980.

There is another incremental learning technology for the
Subspace Method, that is, DMD[23]. In the method LSM, the
recurrence formula is obtained from evaluation function without
consideration of othogonalization and normalization if PD is
assumed to be a basic concept. In contrast to that, the orthog-
onalization and normalization is included naturally in iterative
process in DMD. Rotation parameters in the projection matrix is
changed in this method.

There is more research [24] for applying PD to methods
relevant to the Subspace Method.

XIII. HOW TO FIX A SUBSPACE

ONE of important research targets in the Subspace Method
is how to fix a subspace.

A. Independent Component Analysis

In the recent research results, Independent Component Analysis
(ICA) is one of the interesting methods as a substitute for PCA.
Orthogonalization is not required in ICA and reference vectors
are extracted as a vector representing direction where a pattern
distribution has high density.

B. Feature Selection

The method of feature selection [3][8] is for selecting important
features from all features obtained from an input pattern. It has
been a major item for investigation since Iijima’s theory and
Watanabe’s SELFIC were introduced and is a research target at
the present time.

XIV. SIMILARITY

HOW to organize the similarity is a core factor if the
Subspace Method is used in pattern recognition.

A. The Mutual Subspace Method

The Mutual Subspace Method was created as an expansion of
the Subspace Method. It was proposed by K. Maeda [25] in 1985.
The similarity is defined as an angle between a subspace and a
subspace where it is an angle between a vector and a subspace
in the Subspace Method. This method is especially effective for
face recognition when faces are captured as image sequence such
as video [26] which includes many stills with many variations.
It is an effective approach to treat an input pattern as a subspace
which is made of an input image sequence. This has been proved
to be good for face recognition and it is expected to be applicable
in other areas.

B. Kernel Trick

The technique “kernel trick” is a noticeable technique as a key
factor in SVM. The idea is that recognition accuracy is expected
better if feature space has high dimension and is sparse space. For
this purpose, a conversion from original low dimensional feature
space to high, often infinitive, feature space is used in SVM.
This is called a kernel trick. This concept is the reverse of the
feature selection concept in which the feature space’s dimension
is decreased by a conversion. Kernel trick might be applicable to
the Subspace Method, and it has been already tried in the pattern
recognition community.
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C. Compound Similarity Like Methods

The details of Compound Similarity [5] are not described in
this report, but it’s concept can be explained simply as follows:

In this method, a similar pattern pair is considered, one is
denoted as A and the other is B. For the subspace of category A,
a subspace which represents B is introduced as S′

B in addition
to an ordinary subspace SA for A. For an input pattern which
belongs to category A, projection on SA is treated as positive,
while projection on S′

B is treated as negative. This idea is useful to
improve accuracy for similar pattern discrimination. It is possible
to construct various recognition systems by using this concept.

XV. NEW TARGETS AND NEW APPLICATIONS

THE typical application of the Subspace Method is character
recognition and it has been extended it’s capability to the

area of speech recognition and image recognition. It is expected
that it’s applications will spread to other fields. Even in the field
of character, speech and image recognition fields, it might be
possible to increase its use. Two areas are described as examples
of the recent applications of the Subspace Method.

A. Eigen Face

Eigen face [27] is the eigen vector of a covariance matrix made
of face images and it is used in a face recognition system as a
reference vector. This is one of the Subspace Method applications.
It was the typical approach to extract some parts from a face
image and analyze their relative positions and their figure for
recognition. It might be a breakthrough to use the Subspace
Method because it becomes easy to generate a reference which
is constructed by human operation in ordinary concept. This
application was astonishing to researchers who only applied the
Subspace Method to character recognition. It was felt that a face
was too complex to recognize with the Subspace Method.

B. Parametric Eigenspace Method

An image in the sequence of images is considered as a
vector in a linear space in Parametric Eigenspace Method [28] .
Consequently, the image sequence is treated as a vector sequence
in the space. Tracking or posture analysis is achieved by this
method. As for an ordinary concept, tracking object is achieved by
tracking feature points, portions or their figure which are extracted
from input images. This method could be a breakthrough because
it automatically constructs a system for object tracking or posture
analysis.

XVI. CONCLUSION

TH e capabilities of the Subspace Method are still not high
enough at the present time, some 40 years after the birth

of the Subspace Method. But new ideas are still being applied
to many fields of pattern recognition with modification of the
Subspace Method.

Euclidean Distance, inner product, angle between vectors,
Gaussian distribution and other important key factors are all
necessary for pattern recognition and the concept of subspace
is also necessary in this field. In comparison with Euclidean
Distance, inner product, and other simple items, a subspace is
rather complex. Consequently, there are many themes to investi-
gate in the concept of subspace. The subspace concept and the
Subspace Method will continue to play important roles in the
pattern recognition field.
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Abstract

Shape priors have been widely used for level set-based
tracking to solve some difficult problems, such as noisy
data, partial occlusions and weak contrast at the bound-
aries. In this paper, we propose a two-layer hierarchi-
cal level set-based tracking framework in which color and
shape information are fused sequentially. In the first layer,
the initial contour is evolved only with the color feature,
then the Mahalanobis distance-based discriminant crite-
rion is adopted to determine whether the shape model is
needed. If the shape model is needed, in the second layer
the contour is evolved with the shape constraint contin-
uously. For the second layer, a weighted shape distance
term (WSDT) is introduced into the pixel-wise contour evo-
lution equation to fuse the global shape information and
the local color information. Principal Component Analysis
(PCA) subspace of shape samples is trained off-line and up-
dated using an on-line algorithm. The experimental results
on several real video sequences demonstrate the robustness
and the effectiveness of our method.

1. Introduction

Level set-based methods are very popular in dealing with
many computer vision tasks such as object detection, image
segmentation and tracking [6] [7][15]. In the case of noise
or partial occlusions, low-level features (color, texture, etc.)
are inadequate to perform the above tasks. Thus, some prior
knowledge about the shape of objects is necessary to be in-
tegrated into the level set evolution framework.

There are lots of work on modeling statistical shape pri-
ors in the literature [2] [11] [17]. Leventon et al. [2] con-
struct a Gaussian distribution in the low-dimensional shape
subspace. A set of aligned training shape samples rep-
resented by the signed distance maps are projected into
an orthogonal subspace by Principal Component Analysis
(PCA). Paragios and Rousson [11] construct a pixel-wise
shape model that accounts for local variabilities. Each grid
location is described in the shape model using a Gaussian

density function. Unfortunately, the above two stable shape
models couldn’t be updated on-line, resulting in they are not
adaptation to new shapes.

Active Shape Models (ASMs) [9] are imperative for
tracking objects with continuous and large shape changes.
The partially learned ASMs (only finite samples are con-
sidered in the training step) are used to conduct tracking
and the new tracking results are returned to update the
ASMs [9]. In [3], Cremers proposes a dynamical statis-
tical shape prior model which combines the concepts of
Markov chains and autogressive models. The probability
of observing a particular shape at a given time instance de-
pends on the shapes observed at previous time instances.
Fussenegger et al. [9] create an on-line active shape model.
The training samples are embedded into an orthogonal sub-
space and an incremental PCA (IPCA) algorithm [14] is
used to update the active shape model. However, the above
IPCA algorithm only handles one new sample per update.
A robust extended R-SVD algorithm [10] is widely used
for appearance-based tracking recently. This algorithm not
only handles multiple samples at the same time, but also
computes the eigenbasis with mean update.

Generally, researchers [11] [13] introduce the shape pri-
ors into level set-based framework through construction of
a shape difference term on the variational level. In our
method, we also incorporate a level set-based shape differ-
ence term into the variational model. However, our method
is different from current methods in several aspects. Firstly,
an exponential term weighting the shape difference term
(named WSDT) is proposed to balance the initial shape and
the target shape. Secondly, the initial shape corresponds to
the one obtained only with the color information, the tar-
get shape is the one inverse-transformed to the image after
being evolved in the shape subspace. Thirdly, WSDT not
only captures the whole shape information learned from the
shape subspace model, also regards local color variabilities.

Our method has the following characteristics:

• We propose a two-layer level set-based framework
for combing color feature and shape priors hierarchi-
cally. At first, the initial contour is evolved only with
the color information. And then, the Mahalanobis
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distance-based discriminant criterion is proposed to
determine whether the shape model is integrated into
the whole tracking framework or not. If the shape
model is needed, sequentially, the contour obtained
from the first layer is evolved with the shape constraint.

• The shape subspace-based evolution and the color
space-based evolution are well fused by a weight term
in the pixel-wise contour evolution equation. With this
weight term, both the global shape information and the
local color information are considered.

• The shape model is constructed in an orthogonal sub-
space. A robust incremental learning algorithm is
adopted to update the shape model. The shape model
is updated every few frames to reflect shape changes
of the object.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of our method. Section 3 describes
the off-line training process of the shape prior model. The
on-line tracking process which comprises the color-based
contour evolution and the shape priors-based contour evo-
lution is introduced in Section 4. Section 5 presents the
incremental learning algorithm for shape subspace model.
Experimental results are given in Section 6. The last sec-
tion concludes the paper.

2 Overview of our method

The proposed method contains two phases: the off-line
training stage and the on-line tracking stage. The goal of
the off-line training stage is to train a shape subspace model
using a set of aligned samples. The shape subspace are ob-
tained through the Singular Value Decomposition (SVD).
At the on-line tracking stage, for each frame initial con-
tours are evolved only with the color information in the first
layer, after being aligned to the mean shape of the shape
model, the Mahalanobis distance-based criterion is adopted
to determine whether the shape model is added or not. If
the shape model is needed, in the second layer the con-
tours are evolved with the shape constraint continuously,
otherwise, the tracking results obtained only with the color
feature are considered as the final tracking results. After
the final tracking results are obtained, they are returned to
update the ASMs using an incremental learning algorithm.
Obtained contours at time t are the initial contours for the
time t + 1. Figure 1 shows the flowchart of our framework.

3 Off-line training

The off-line training stage consists of two steps: (1)
shape registration; (2) computation of the eigenspace of the
training samples.

3.1 Shape registration

Contours are represented by the level set method [8].
The level set function chosen in our method is the com-
monly used signed distance function. Zero value of this
function corresponds to a contour. The shape information
of the object is also embedded in the signed distance map
represented by Φ:

Φ(x, y) =


0 (x, y) ∈ C

d(x, y,C) (x, y) ∈ Rout

−d(x, y,C) (x, y) ∈ Rin

(1)

where Rin and Rout denote respectively the regions inside
and outside the contour C and d(x, y,C) is the smallest Eu-
clidean distance from point (x, y) to the contour C:

d(x, y,C) = min
xc,yc∈C

√
(x − xc)2 + (y − yc)2 (2)

Shape registration is implemented using the Paragios’s
variational method [12]. An objective function is con-
structed to find a global optimal transformation A which
minimizes the sum of squared differences between the cur-
rent shape D and the target shape S (randomly chosen from
the training samples). The function is defined as:

E(s, θ, T ) =

"

Ω

(sΦD(x, y) − ΦS (A(x, y)))2dxdy (3)

where A includes three parameters: a scale factor s, a ro-
tation angle θ and a translation vector T = (Tx,Ty). ΦS

and ΦD are the signed distance maps for the current shape
D and the target shape S respectively. Three iteration equa-
tions about (s, θ,T) are obtained using a gradient descent
method:


∂s
∂t =2

!
Ω

(−ΦD + ∇ΦS ·∇sA)(sΦD − ΦS (A))dxdy
∂θ
∂t =2

!
Ω

(∇ΦS ·∇θA)(sΦD − ΦS (A))dxdy

∂T
∂t =2

!
Ω

(∇ΦS ·∇TA)(sΦD − ΦS (A))dxdy

(4)

3.2 Computation of the eigenspace of the
training samples

After obtaining the optimal transformation parameters
(s, θ,T), the training samples are transformed to be aligned
with the target shape. Before the SVD is calculated, each
signed distance map is flattened into a column vector. The
mean vector µ is computed by taking the mean of these col-
umn vectors. Construct an M×N-dimensional data matrix X
whose column is a sample vector subtracted from the mean
vector µ. M is the length of each sample vector and N is the
number of the training samples. Compute the SVD of X:

X = UΣDT (5)
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Figure 1. Flowchart of our method.

where U is an M × N-dimensional matrix whose column
vectors are the eigenvectors of the shape subspace and Σ is
an N×N-dimensional diagonal matrix of the corresponding
singular values.

In our shape model, we choose the first k (k ≤ N)
columns of U represented by Uk as the eigenbasis and Σk

is the diagonal matrix composed of the corresponding first
k singular values. Thus, our shape model {µ,Uk,Σk} is con-
structed through the above procedure.

4 On-line tracking

The on-line tracking stage hierarchically consists of
three steps: contour evolution based on the color feature
(the first layer), the Mahalanobis distance-based discrim-
inant criterion and contour evolution with the shape con-
straint (the second layer).

4.1 Contour evolution with the color fea-
ture

The method we adopt in this step is a region-based ac-
tive contours method, modeling the features of both object
and background regions in the level set speed model. In our
method, we train a color Gaussian Mixture Model (GMM)
in object and background regions respectively. The HSV
color space is chosen in this model. The estimated prob-
ability density function (pdf) at pixel xi in the color space
can be formulated as:

p(xi|µ, σ) =

k∑

j=1

ω jη(xc
i , µ

c
j,Σ

c
j) (6)

where xc
i is the color feature at pixel xi, ω is the weight pa-

rameter of the GMM model, k is the number of the Gaussian

modes and η is a Gaussian pdf:

η(xc, µc
j,Σ

c
j) ∝

1

|Σc
j |

1
2

exp{−1
2

(xc − µc
j)

T (Σc
j)
−1(xc − µc

j)} (7)

After the color GMM model is constructed, the data en-
ergy function is formulated based on the segmentation idea
similar to [4] [5]. The key factor in this process is to find
the optimal partition operator represented by a contour be-
tween the object region and the background region. The
data energy function Edata is defined as follows:

Edata ≈ −
"

xi∈Rin

log P(xi|θin)dxi−
"

x j∈Rout

log P(x j|θout)dx j (8)

where the definitions of Rin and Rout are same as those in (1),
θin is the parameters of the object GMM model {ωin, µ

c
in,Σ

c
in}

and P(xi|θin) is the object likelihood function which is com-
puted using (6). P(xi|θout) and θout are defined by analogy.

Minimizing the above energy function by solving the
correlated Euler-Lagrange equations [4], we obtain the level
sets advection speed model in which a (2l + 1) × (2l + 1)
square neighboring subregion around the center pixel is de-
fined. The object and the background posterior probabilities
which we denote by PRin (Ix̃) and PRout (Ix̃) are also calculated
in the speed model with the assumption that they have the
same prior probabilities:

PRin (Ix̃) = P(x̃|θin)/[P(x̃|θin) + P(x̃|θout)] (9)

PRout (Ix̃) = P(x̃|θout)/[P(x̃|θin) + P(x̃|θout)] (10)

The level sets advection speed model of each pixel (x, y) is
obtained by:

Fx,y = −
l∑

i=−l

l∑

j=−l

log PRin (Ix̃)Ha(Φ(x̃, t)) (11)

+

l∑

i=−l

l∑

j=−l

log PRout (Ix̃)(1 − Ha(Φ(x̃, t)))
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where x̃ is the neighboring pixels of center pixel (x, y): x̃ =

(x + i, y + j) and Ha(Φ(x̃, t)) is a Heaviside function:

Ha(Φ(x̃, t)) =

{
0 Φ(x̃, t) ≥ 0
1 Φ(x̃, t) < 0 (12)

The contour is evolved to the desired boundary by mod-
ifying Φ iteratively with the overall speed F in the normal
direction:

∂Φ

∂t
+ (Fx,y + Fcurv)|∇Φ| = 0 (13)

where Fx,y is the external force reflecting the data attach-
ment and Fcurv = −εκ(x, y) is the internal force proportional
to the curvature κ(x, y) of the contour, the term Fcurv has
a smoothness effect on the contour. The detailed stable
numerical approximation scheme of the above equation is
given in [1]. The evolution result obtained in this step is
denote by Φc.

4.2 Mahalanobis distance-based discrimi-
nant criterion

After the contour evolution result based on the color fea-
ture Φc is obtained, it’s aligned with the target shape by
shape registration which has been described in Subsection
3.1. The current shape D and the target shape S in this step
correspond to the obtained shape Φc and the mean shape of
the shape model respectively.

Based on the optimal registration parameters, the result
obtained in the first layer Φc is affinely transformed into
a normalized vector represented by x and then projected
into the subspace. Eventually, Φc is represented by a k-
dimensional vector α:

α = UT
k (x − µ) (14)

where Uk and µ are parameters of the trained shape sub-
space model. The Mahalanobis distance between x and the
mean shape µ is formulated as follows:

γ2 = (x − µ)T C−1(x − µ) (15)

where C is the covariance matrix C ≈ UkΣ
2
kUT

k , substitution
of this formula into (15), we can obtain:

γ2 ≈ (x − µ)T UkΣ
−2
k UT

k (x − µ) = αT Σ−2
k α (16)

If γ2 is bigger than the predefined threshold T , the shape
subspace model is integrated into the whole tracking frame-
work and the result Φc obtained in the first layer is evolved
continuously. Otherwise Φc is considered as the final track-
ing result and is returned to update the shape model directly.

4.3 Contour evolution with the shape con-
straint

In the second layer, a weighted shape difference term
(WSDT) is proposed to evolve contour (obtained in the first
layer) with the shape constraint. With this term, both the
global shape information and the local color information are
considered.

Firstly, the obtained contour Φc is evolved in the shape
subspace. We construct the global shape energy function
EGshape based on the Mahalanobis distance described in
(16):

EGshape = αT Σ−2
k α (17)

where α is the k-dimensional vector representing a contour
in the shape subspace. The iteration function about α is
obtained using gradient descent method:

∂α

∂t
= −∂EGshape

∂α
= −2Σ−2

k α (18)

Let the initial value of α represented by αinitial be Φc.
Through finite iteration steps the final α f inal is obtained.

Secondly, an estimate of the evolved shape x̃ is recon-
structed from Uk and µ based on the obtained α f inal:

x̃ = Ukα f inal + µ (19)

The reconstructed shape x̃ is inverse-transformed into the
image plane based on the transformation parameters ob-
tained in the shape registration step. The signed distance
map containing the inverse-transformed shape is recom-
puted and we denote it by Φ0.

Thirdly, current methods usually model the pixel-wise
contour evolution equation with shape constraint by con-
structing a shape distance term which has the following for-
mat:

∂Φ

∂t
= −2(Φ − Φm) (20)

where Φm is the level set function of the given training shape
or the mean of a set of training shapes. In our method,
we replace Φm with Φ0 and a weighted shape distance term
(WSDT) is proposed into the pixel-wise contour evolution
equation to balance the result evolved only with the color
feature (denoted by Φc) and the result evolved in the shape
subspace (denoted by Φ0):

∂Φ

∂t
= −2(Φ − Φ0)[1 − e−( Φ−Φ0

σ )2
] (21)

where σ is the parameter controlling how fast the expo-
nent function converges to zero. In this pixel-wise evolu-
tion equation, the initial value of Φ is Φc obtained in the
first layer. The item in the square bracket is the weight
item which is a function of the distance between Φ and Φ0
(denoted by d(Φ,Φ0)). This weight term has the following
characteristics:
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1. Within the evolution process, if d(Φ,Φ0) is small in a
pixel location, the weight item is close to zero. Thus,
the value of Φ doesn’t change much, i.e. it approx-
imates to the initial value Φc. This means the result
based on the color feature Φc is more credible com-
pared with the result obtained with the shape constraint
Φ0 in this pixel location.

2. Within the evolution process, if d(Φ,Φ0) is large in a
pixel location, the weight item is close to one. Thus,
the evolution process for Φ is going on till its value
approximates to the value Φ0. This means in this pixel
location Φc is trustless due to the background noise or
occlusions and the result with the shape constraint Φ0
is more credible.

After several iteration steps, d(Φ,Φ0) is becoming smaller
and smaller. Due to the effect of the weight term, Φ con-
verges for all pixels. However, for some pixel locations
where d(Φ,Φ0) are large at the beginning, Φ converges too
soon, resulting in an inaccurate result. To solve the above
problem, we adjust the parameter σ to control the evolution
speed at different pixel locations. σ is determined by the
distance between Φc and Φ0 (denoted by d(Φc,Φ0)):

σ = βe−(Φc−Φ0)2
(22)

where β is a positive constant. Thus, at pixel locations
where d(Φc,Φ0) are large, the evolution of Φ is still going
on even though d(Φ,Φ0) are getting smaller and smaller. At
pixel locations where d(Φc,Φ0) are small Φ stops evolution
soon. Consequently, the result obtained with the color fea-
ture (represented by Φc) and the result evolved in the shape
subspace (denoted by Φ0) are combined well.

5 Incremental learning algorithm

After the final evolution results are obtained, they are
transformed into the normalized format and returned to up-
date the shape model. In this step, we adopt an efficient
and effective online algorithm [10] which has been widely
used for appearance-based tracking. This algorithm is supe-
rior to other current subspace updating algorithms [14] [16].
Firstly, it correctly updates the sample mean and the eigen-
basis. Secondly, it can handle blocks of data rather than a
single data. Through this algorithm, the shape changes of
the tracking target are incrementally learned.

For our method, the shape model is updated every
few frames. Assuming that the previous shape model
{µi−1,Ui−1,Σi−1} and new data X are given , at stage i the
new shape model {µi,Ui,Σi} is incrementally updated as
shown in Algorithm 1.

Algorithm 1 Incremental Learning Algorithm for subspace
Input :
old mean vector µi−1, old basis Ui−1, old singular values Σi−1,
new data X with mean µnew, the number of the previous data n0,
the number of the new data nnew, “forgetting factor” coefficient
f f , the maximum number of columns for the Ui matrix k
Output :
new mean vector µi, new basis Ui, new singular values Σi

ith stage :
1. Update the mean vector µi =

f f ·n0
(nnew+ f f ·n0)µi−1 + nnew

(nnew+ f f ·n0)µnew

2. Let X be zero mean X = X − µnew

3. Construct the combined matrix
X′ = ( f f · Ui−1Σi−1 | X |

√
n0nnew

n0+nnew
(µi−1 − µnew))

4. Compute the QR decomposition of the combined matrix
X′ = QR

5. Compute the SVD of matrix R
R = UΣDT

6. Compute the final eigenvectors and singular values
U′i = QU, Σ′i = Σ · √n0/(nnew + f f · n0)

7. Let Σi be the diagonal matrix whose elements are the k largest
singular values of Σ′i and Ui be the final eigenbasis matrix whose
first k columns are chosen from U′i

6 Experiments

To verify our method, we have performed several exper-
iments on various real sequences.

In our experiments, all the videos are captured with
a moving camera, a tracked object is represented with a
grayed contour (colored in color image). Some difficult
cases occur in our experiments, such as background distur-
bance (similar color between object and background), mo-
tion blur and partial occlusions. At the shape model off-
line training stage, good training samples without missing
data (obtained before difficult cases happen) are used to
construct the eigenspace of shapes. The sample is a 3000-
dimensional vector. The first 20 eigenvectors are chosen
as the eigenbasis. l in (11) is independent of sequences
and is fixed to 2. The threshold T for the Mahalanobis
distance-based discriminant criterion is set to be 16. At the
on-line updating stage, tracking results are returned every
three frames. The ”forgetting factor” coefficient f f in Al-
gorithm (1) is set to be 0.95.

In the first experiment, we track a Mickey head with a
moving camera from Frame 1 to Frame 155. In this se-
quence, there are some disturbances around the tracked ob-
ject. The color of the scripts in background is the same as
the color of the Mickey head. The camera zooms and tilts
as the object moves. The parameter β in (22) is set to be 100
for this sequence. As shown in Figure 2.(a), although with
the background disturbance, we still track the contour of the
Mickey head accurately. In the 151th frame, there exists se-
vere motion blur. The boundary contrast between object and
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Figure 2. Tracking results for several real sequences: (a) Tracking results for a moving Mickey head
sequence. The frame numbers are, respectively, 1, 49, 111, 139 and 151; (b) Tracking results for a
moving face sequence. The frame numbers are, respectively, 50, 59, 65, 107 and 118; (c) Tracking
results for a moving hand sequence. The frame numbers are, respectively, 25, 38, 45, 110 and 117.

background is weak. But the object is still tracked robustly.

In the second experiment, we demonstrate the perfor-
mance of our method on the sequence of a moving face.
The camera zooms and moves as the person changes her
face’s pose continuously. During the process, the face is
partially occluded by a moving hand. A shape model is
used to recover the part of the contour occluded by the hand
and is incrementally updated as the tracking proceeds. The
parameter β in (22) is set to be 200 for this sequence. The
tracking results are shown in Figure 2.(b). We are still able
to track the contour of the face even though it is occluded
by a hand which has the similar color with it. From Frame
50 to Frame 118, the face looking ahead becomes looking
downwards, which leads to shape changes. With the in-
cremental shape model, continuous shape changes caused
by pose changes are well handled. In the 107th and 118th

frames, the contours still enclose the object tightly and ac-
curately.

To stress the learning ability of the active shape model,
obvious shape changes occur in the third experiment. We
track a moving hand partially occluded by an object from
Frame 1 to Frame 120. Firstly, the shape samples of hand

with separate fingers are trained off-line. Secondly the
trained shape model is used to conduct contour evolution
when occlusion occurs in the tracking process. Thirdly, the
shape of the hand is gradually changed to the one with com-
bined fingers. The shape model is updated on-line and it is
used to recover the occluded part when the new shape is
confronted with occlusion. The parameter β in (22) is set
to be 150 for this sequence. As we can see from the track-
ing results shown in Figure 2.(c), we keep good track of the
contour of the occluded hand even though the new shape
appears in the 110th and 117th frames. Our method is good
adaptation to the new shapes.

In Figure 3, we have shown the tracking results for three
different cases. The adopted sequence is the moving hand
sequence in Figure 2.(c). The first case is we only consider
the color information for the contour evolution. The track-
ing results are illustrated in Figure 3.(a). We can find that
only considering the color feature is not enough to perform
tracking when confronted with partial occlusions. Shape
priors are needed to be incorporated into the whole frame-
work. Figure 3.(b) and Figure 3.(c) are the latter two cases
which add the shape priors into the whole tracking frame-
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Figure 3. Tracking results for three different cases: (a) Tracking results of using color feature only;
(b) Tracking results without the shape subspace update; (c) Tracking results of our proposed method
which updates the shape subspace model on-line. The same column corresponds to the same frame.
From left to right, the frame numbers are, respectively, 25, 38, 45, 110 and 117.

work. The difference between these two cases is the shape
subspace model isn’t updated during the tracking process
in Figure 3.(b) and the shape model is incrementally up-
dated in Figure 3.(c). As shown in Figure 3.(b), in the
beginning, the shapes of the object don’t change a lot, the
tracking results are satisfied with the help of the shape pri-
ors. However, when new shapes appear, the stable shape
priors couldn’t provide the correct prior information. Thus,
from this comparison, we can find our method with adaptive
shape subspace model can keep good track of the objects
with continuous shape changes.

7 Conclusions

In this paper, we have proposed a robust level-set based
object tracking framework in which color information and
shape priors are fused sequentially. Firstly, the initial con-
tour is evolved using the color feature , providing the initial
value for pixel-wise contour evolution with the shape con-
straint. Secondly, the obtained result is evolved in the shape
subspace, providing the final value for pixel-wise contour
evolution with the shape constraint. Thirdly, a weighted

shape distance term (WSDT) is proposed into the pixel-wise
contour evolution equation to balance the above two values.
Finally, the obtained final result is returned to update the
adaptive shape model incrementally. Our method has been
tested on several real video sequences. Objects are accu-
rately tracked under partial occlusions, background distur-
bance and motion blur. Experimental results have demon-
strated the effectiveness of our approach.
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Abstract

This paper proposes a method for an Eigenspace-based

prediction of a vector with missing components by modify-

ing a projection of conventional Eigenspace method, and

demonstrates the application to the prediction of the path

of a walking person. This modification is based on domain-

specific knowledge of data, and a linear combination of vec-

tors in the null space of Eigenspace is added so that a cost

function of smoothness of path is minimized. Some exper-

imental results on actual paths are shown to demonstrate

how the proposed method works.

1 Introduction

It is useful to estimate or predict unknown future data

from previously observed data in past or present not only

for meteorology and economics, but also for computer vi-

sion. Generally, the AR model or Kalman filter are used to

estimate time series of data. Although predicting gestures

and tracking people also use similar methods, a prediction

for such sequences is not so simple because usually their

behavior cannot be captured by the Gaussian signal model.

On the other hand, patterns of behavior and motion of peo-

ple in daily life have few variations: same gesture has sim-

ilar motion and a same person walks in similar paths in a

same scene. Thus, scene-dependent information of time se-

ries in such applications can be learned as prior knowledge

in advance.

Eigenspace approach has been widely used to learn such

domain-specific information from samples. Fod et al.[4]

and Yacoob et al.[10] used Eigenspace to recognize motion

of a person, and Nakajima et al.[7] predicted spatially and

temporally to recognize gestures by Eigenspace made from

sample gestures. These methods use learning of Eigenspace

E with samples, and recognition and prediction are per-

formed based on projection of a vector x onto Eigenspace

spanned by several eigenvectors ej :

a = ET x, E = [e1, e2, . . .]. (1)

A problem of these Eigenspace-based methods is that

they merely use a projection of a vector with all compo-

nents: i.e., for a vector to be recognized or predicted, it

should have the same dimensionality as the samples that

were used to construct the Eigenspace. However, we have

no components corresponding to future data for prediction,

and occluded data for recognition. A simple solution is to

just put 0 for such missing components in the vector:

â = ET x̂, x̂ = [x1, x2, . . . , xp, 0, 0, . . .]T , (2)

but its result is awful[6] and a reconstructed vector Eâ is

not similar to the original vector x.

One way to reconstruct a vector without using all pix-

els has been proposed by Leonardis et al.[6] to achieve a

robust recognition when an object is occluded. Fidler et

al.[3] utilized it to make LDA robust. Nakajima et al.[7]

used a similar method for reconstruction and prediction, and

Amano [2, 1] proposed methods to fill-in occluded regions.

These methods are good for discrimination or recognition,

but seem to fail to reconstruct or predict a vector with miss-

ing components1 because characteristics of domain-specific

data, such as smoothness or continuity, are ignored. These

are summarized in section 2.

In this paper, we propose a new Eigenspace-based pre-

diction method by modifying the conventional projection-

based prediction with domain-specific knowledge of data,

1These missing components can be regarded as outliers, but robust sub-

space techniques such as a robust PCA proposed by De la Torre et al.[5]

are not applicable because there are outliers not in learning samples but in

a new test sample and also our case more than 50% components in the test

sample are missing.
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and demonstrate an application to predict the walking path

of people. The modification uses Null space, the orthocom-

plement of Eigenspace, and a linear combination of vectors

in the null space (null vectors) is added to the prediction

so that a reconstructed vector with missing components (in

our case, a person’s walking path) satisfies some character-

istic of data such as smoothness. Coefficients of the linear

combinations are computed by the decent gradient method.

The organization of this paper is as follows. Eigenspace-

based prediction is explained in Sec.2, then in Sec.3 we

describe modification of the prediction with null vectors

and estimation of linear combination of null vectors with

the gradient decent method. Experimental results on actual

paths are shown in Sec.4.

2 Eigenspace-based Prediction of a Path

This section introduces a prediction of a person’s path

based on projection onto Eigenspace.

2.1 Construction of Eigenspace with Sam-
ple Paths

In this paper, a path of a person is defined as a sequence

of successive coordinates of the person over frames. Here

we describe how to obtain a sequence of a path for learning.

First, regions in a frame where changes in intensity oc-

cur are extracted by using background subtraction. Then,

the size of each region is used to reject regions other than

people. The center of gravity of a region is used as a posi-

tion of a person in the frame.

N paths are acquired for learning, then the paths are nor-

malized in length that is defined as a sum of Euclidean dis-

tance between two successive coordinates. First the shortest

path in the N paths is chosen. All paths are cut to the short-

est length, then resampled so that all paths have the same

length, M number of coordinates. Each i-th normalized

path is represented by a vector yi with 2M elements pt as

follows:

yi = (pT
1 ,pT

2 , . . . , pT
M )T ∈ IR2M , (3)

pt = (pxt
, pyt

)T ∈ IR2, (4)

where pt is a 2D vector representing t-th coordinates in a

path.

EigenspaceE is constructed with the normalizedN sam-

ple paths yi that are centered by subtracting an average vec-

tor m (= 1
N

∑N
i=1 yi) in advance, then eigenvectors ei are

computed:

E = [e1, · · · , eN ], (5)

ei = (eT
i1,e

T
i2, . . . , e

T
iM )T ∈ IR2M , (6)

where E represents a matrix of Eigenspace spanned by the

eigenvectors (or Eigenpaths) {ei}, and eit ∈ IR2 corre-

sponds to t-th 2D coordinates in ei.

2.2 Eigenspace-based Path Prediction

In prediction, a path of a new person is not fully traced,

and there is no coordinates of the person in future. Sup-

pose that a new person is tracked and the path is normalized

to have s coordinates p′

1, . . . , p
′

s as the same way for the

learned paths.

y′ = (p′T
1 , . . . , p′T

s )T ∈ IR2s, where s ≤ M. (7)

For unknown coordinates p′

s+1, . . . , p
′

M , we set them to

zero p′

t = 0 = (0, 0)T , then an extended vector y′′ is ob-

tained:

y′′ = (p′T
1 , . . . , p′T

s ,0T , . . . ,0T︸ ︷︷ ︸
(M−s)

)T (8)

= (y′T , 0, . . . , 0︸ ︷︷ ︸
2(M−s)

)T ∈ IR2M . (9)

In the framework of conventional Eigenspace methods,

the observed vector y′′ is represented by a linear combina-

tion of the eigenvectors so that the following L-2 error norm

is minimized [6] with respect to a:

||y′′ − Ea||2 =

∣∣∣∣∣
∣∣∣∣∣y′′ −

N∑
j

ajej

∣∣∣∣∣
∣∣∣∣∣
2

(10)

=
M∑
t

∣∣∣∣∣
∣∣∣∣∣p′

t −
N∑
j

ajejt

∣∣∣∣∣
∣∣∣∣∣
2

, (11)

where a = (a1, a2, . . . , aN )T is the coefficient of the linear

combination. In our case, unknown coordinates are set to

zero, so the norm is rewritten as:

||y′′ − Ea||2 =
s∑

t=1

∣∣∣∣∣
∣∣∣∣∣p′

t −
N∑
j

ajejt

∣∣∣∣∣
∣∣∣∣∣
2

+
M∑

t=s+1

∣∣∣∣∣
∣∣∣∣∣

N∑
j

ajejt

∣∣∣∣∣
∣∣∣∣∣
2

. (12)

The second term in the above equation affects greatly the

estimates of the coefficient a. Instead, using only the first

term and omitting the second term lead to a more appropri-

ate estimate of the coefficient. This estimation is done by

solving the following linear system [6, 3]:

E′T E′a = E′T y′′, (13)

E′ = diag(

2s︷ ︸︸ ︷
1, · · · , 1,

2(M−s)︷ ︸︸ ︷
0, · · · , 0) E (14)
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whereE′ is a subspace ofE spanned by truncated eigenvec-

tors, but their basis are no longer orthogonal to each other.

Note that rank(E′T E′) = N or det(E′T E′) 6= 0 should

be held so that the linear system doesn’t become under-

determined. This means 2s > N , hence the estimation can

be done after several positions of a person are observed.

The reconstruction with the estimated coefficients a is as

follows [2, 1, 7]:

y∗ = Ea = E(E′T E′)−1E′T y′′. (15)

2.3 Modifying a Projection Outside of
Eigenspace

The predicted path y∗ is represented by a linear combi-

nation of eigenvectors ei,

y∗ = Ea = a1e1+a2e2+ · · ·+aNeN =
N∑

i=1

aiei. (16)

However, Eq.(15) shows us that y∗ is a projection of y′′

onto a subspace spanned by non-orthonormal vectors[8, 3],

in this case not E but the truncated subspace E′. There-

fore, there is no reason to believe that the projection repre-

sents the original data well because the truncation of the

Eigenspace depends not on principal components corre-

sponding to small eigenvalues (usually referred as dimen-

sionality reduction) but just the length of observation. Also,

this projection does not take into account the characteristics

of a person’s walking path, and the estimated path y∗ results

in something different from a real path.

In this paper, we propose the use of the orthocomplement

of the Eigenspace, denoted as E⊥, where IR2M = E +E⊥.

All vectors in E⊥ are orthogonal to any vectors in E, and

vice versa: e.g., ∀ℓ ∈ E⊥ ⇒ Eℓ = 0. Therefore, we call
E⊥ as the null space of E, and a vector in the null space is

called a null vector. By using null vectors in the null space,

a path is represented as follows:

ỹ = y∗ +
∑

k

bkℓk =

N∑
i=1

aiei +
∑

k

bkℓk (17)

Estimated path y∗ in Eq.(15) is identical to the equation

above when coefficients bk for null vectors in the second

term are zero.

The concept of the proposed method is that domain-

specific knowledge discarded by the conventional projec-

tion can be found in the null space if we can find the ap-

propriate coefficients bk for the null vectors ℓk. This topic

is described in the next section. It should be noted that the

projection of ỹ onto E is still y∗.

3 Null Vector Modifications

The proposed method shown in this section adds null

vectors to the projected path y∗ so that the modified path ỹ

looks like a person’s walking path. In this paper, we make

an assumption that a person walks toward a destination, and

does not turn suddenly, and the path is smooth and does not

have a sharp curve. Here we introduce a cost function of

smoothness of a path that has never been used by conven-

tional Eigenspace-based estimations.

First, we assume that K null vectors ℓk =
(ℓT

k1, ℓ
T
k2, . . . , ℓ

T
kM )T ∈ E⊥ are given. Then the linear rep-

resentation of the modified path ỹ is:

ỹ =
N∑

i=1

aiei +
K∑

k=1

bkℓk

= (p̃T
1 , p̃

T
2 , . . . , p̃

T
M )T , (18)

p̃t =
N∑

i=1

aieit +
K∑

k=1

bkℓkt. (19)

Let ut be a vector defined by two successive
2coordinates

p̃t, p̃t+1, and θt be an angle subtended by ut and ut+1:

ut = p̃t+1 − p̃t, (20)

cos θt =
uT

t ut+1

||ut||||ut+1||
, 1 ≤ t ≤ M − 2. (21)

Next, we define a cost function J so that the smaller the

angle θt is the smoother the path is:

J =
M−2∑
t=1

cosα θt, α = 1, 3, 5, . . . (22)

The steepest gradient method is used to maximize the

cost function for coefficients of the null vectors bk (k =
1, . . . ,K) as bk ← bk + ∂J

∂bk

, and all bk are initialized to 0.

A stopping condition is max
k

∣∣∣ ∂J
∂bk

∣∣∣ < 10−5. The Jacobian

of J comprises ut and ℓt (omit detail).

In the discussion above, we assume that the null vectors

are given. However, there are no established methods to get

null vectors. Also there are a lot of variations to choose null

vectors from the null space. For example, assume that there

are 13 paths comprised of 250 coordinates given as samples.

The dimensionality of the Eigenspace is up to 13, however,

the null space has 500 − 13 = 487 dimensions. Usually

the number of samples is much fewer than the number of

coordinates in a path. Therefore it is difficult to find the

most appropriate null vector to modify the predicted path.

2Of course, we can two coordinates distant from each other ept and

ept+k . In this case, the sum of k-curvature (see, for example, [9]) over the

path is minimized.
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Figure 1. A frame of video and paths used in the experiments. (a) Predicted path y∗ (green) and

actual path y (red). (b) 13 sample paths y1, . . . , y13, (c) 5 eigenvectors e1, . . . , e5, (d) 3 samples used

for null vectors v1, . . . , v3 and (e) 3 null vectors ℓ1, . . . , ℓ3. Note that ej and ℓk are scaled properly for

visualization.
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Table 1. Initial and converged values of the cost func-

tion J with a null vector ℓ1 for different α.
α 1 3 5 7 9

J (init.) 234.56 215.23 201.26 190.71 181.87

J (conv.) 235.20 217.95 206.06 196.84 189.18

b1 −15.14 −27.36 −34.18 −36.96 −38.33

Table 2. Comparison of the number

of the null vector.
ℓ1 ℓ2 ℓ3

∑
bkℓk

K 1 1 1 3

J 235.20 234.67 239.88 240.727

b1 −39.73 0 0 −4.80
b2 0 −5.90 0 14.07
b3 0 0 −34.54 −42.62

In this paper, null vectors are obtained from paths other

than sample paths. In general, the dimension is so high

that the new paths probably do not lay on the Eigenspace

spanned by the sample paths. The null vectors ℓk in the

null space are made from the new vectors vk by using the

Gram-Schmidt orthonormalization:

ℓ′k = vk −
N∑

i=1

(vT
k ei)ei −

k−1∑
j=1

(vT
k ℓj)ℓj , (23)

ℓk =
ℓ′k

|ℓ′k|
. (24)

Wemay add the new paths for null vectors to the learning

sample paths to construct the Eigenspace instead to make

the null space. This way seems to make use of the infor-

mation of the new paths for better prediction, however, all

information of learning samples are truncated by eq.(14),

then no way to retrieve information corresponding to the

missing components in the new paths.

4 Experimental Results

We implemented the proposed method, and evaluated us-

ing real image sequences of 714×480 in size. In the exper-
iment, a video camera was fixed to a tripod, and movies

were recorded as MPEG files, then 17 paths were obtained

by off-line processing. People walked from the bottom left

to the top right of the frame (Fig.1(a)). 13 paths were used

as samples to make an Eigenspace (Fig.1(b)), and another

three paths were used for null vectors (Fig.1(d)(e)). The

remaining path is used for prediction (Fig.2). When learn-

ing, each path was cut so that it consisted of 350 coordi-

nates, then 50 points are sparsely downsampled with linear

interpolation for noise reduction. Finally M = 250 coordi-
nates are resampled for a path. When predicting, a person

is tracked and the path was normalized at each frame.

Predicted paths y∗ with N = 13 are shown in Fig.2(a)

for several different positions p′

s represented by ©. The

prediction near to the start position (for small s) deviated

largely from the actual path. As s increases, the prediction

becomes similar to the actual path.

Next, Fig.2(b) shows the modification by a null vector

ℓ1. The estimated path y∗ was predicted at s = 100.

Actually the modification is slight, but ỹ is indeed more

smoother than y∗. Table.1 shows values of the cost function

and estimated coefficient b1 when α changes. Although b1

differs for different α, this variation is so small and does not

affect the shape of the path because the null vector ℓ1 has

500 elements but its norm is normalized to 1. Therefore, the

choise of α is trivial and we set α = 1 for all experiments.

Fig.3(a) illustrates results of modification by each null

vector. Fig.3(b) shows the result by using 3 null vectors at

the same time, and Table.2 shows the estimated parameters.

Although the modified path depends on which path is used,

the difference is small.

Another experiment is shown in Fig.4. Fig.4(a) shows 30

sample paths used to construct Eigenspace. Unlike the pre-

vious experiment, the walking path curves twice and looks

like the S letter. Predicted and modified paths of a new

path are shown in Fig.4(b) for different positions. This re-

sult shows that the proposed method is applicable to curved

complex path in which prior knowledge is effectively used.

5 Conclusion

In this paper, we proposed a method for predicting a

vector with missing components based on Eigenspace with

null space modifications. We applied the method to paths

of walking people in a real sequence, and demonstrated in

the limited experiments how the proposed method works.

There are many things to be considered, such as the num-

ber of the null vectors, the way to obtain the null vectors,

the choice of other cost functions that represent domain-

specific knowledge. Also futher experiments should be

done. Nevertheless, the concept of the proposed method

— to explore out of the subspace spanned by samples based

on a prior knowledge — can be applicable to any other sub-

space recognition methods. We will investigate the possi-

bility in other pattern recognition problems.
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Figure 2. (a) Predicted paths y∗ for different

position s. (b) Predicted path y∗ (solid) when

s = 100, and modified path ỹ (dashed).
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Figure 3. (a) Modified path ỹ using each null

vector. (b) Modified path ỹ using 3 null vec-

tors.
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Figure 4. (a) Learned 30 paths. N = 30,M =
300. (b) Predicted and modified path.
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Abstract

In this paper, we propose a novel pose estimation method
for a cyclic image squence of a rotating object with sub-
space by block diagonalization of a matrix representing
transformation from an image to another. The transfor-
mation by the matrix is formulated as the action of cyclic
group, and the power of a block diagonal matrix represents
pose and appearance change in the sequence. Distance-
based and angle-based methods are proposed to estimate
pose. Experimental results with real image sequences of
COIL-20 demonstrate that the subspace proposed in this
paper is useful for pose estimation.

1 Introduction

When a three dimensional object rotates about an axis
(as shown in Fig.1), the sequence of images of the object is
cyclic: the last image is followed by the first image. When
we have such a sequence ofn imagesx0, x1, . . . , xn−1, the
cyclic property is represented by cyclic group:

xj+1 mod n = Gxj .

G is an element of a cyclic group, however, we can think
it is a matrix. This relationship is essential for images of
one parameter rotation, but no attentions have been paid.
We propose to use the cyclic property for view-based pose
estimation by linear subspace approach.

1.1 Related works

Estimation of pose of an object in an image is an im-
portant task in computer vision and pattern recognition, and
methods are categorized into model-based and view-based.
Model-based methods, such as [8], assume a model is given:
such as known object shape, rigid motion, and projections.
This approach estimates 3DOF (degrees of freedom) ro-
tation of objects, however, requires precise geometry and

(a) (b)

Figure 1. Images of an object by (a) in-plane
and (b) off-the-plane rotation.

restricted scene where the model can be applied. On the
other hand, the advantage of view-based or appearance-
based methods is to use just images of the object and make
no assumptions about shape of objects and projections from
3-D to 2-D. Although it is difficult to deal with 3DOF ro-
tation, many studies have been done even if the rotation is
1DOF (one parameter rotation).

A major view-based method is Parametric Eigenspace
method proposed by Murase et al.[10]. It learns Eigenspace
of images of an object with continuously changing pose pa-
rameters. This method has been applied in a variety of areas
and demonstrated its usefulness. However, there are prac-
tical problems including that it is not easy to extend the
expression of spline to many (more than 2) DOF, and the
search over a spline curve/surface is not closed-form but
an iterative search involving expensive computation. And a
theoretical question arises:what is the Eigenspace or sub-
space of images of a 3D object rotating about an axis?

For some special cases, analyses has been developed.
Uenohara et al. [19, 5] proposed an efficient computation
of Eigenspace for images rotating about the optical axis (so
just two dimensional image rotation, orin-plane rotationas
shown in Fig.1(a)) by using DCT or DFT[13]. Chang et
al.[3] showed the same result for translational shift. Jorgan
et al.[7, 5] extended for images of multiple objects rotating
in-plane. Sengel et al.[17] considered in the limit when the
number of images is infinite for Jorgan’s method[7], then
estimated a pose parameter directly witharctan.
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It is not easy foroff-the-plane rotation: when an object
is rotated about an arbitrary axis in three dimensional space
(see Fig.1(b)). In the case of in-plane rotation, appearance
of an object in images basically does not change. But in
three dimensional rotation, even for 1DOF, it is impossi-
ble to find eigenvectors analytically because the appearance
change depends on many properties of an object, such as
shape, reflectance, shadow and etc. Therefore, many re-
searches have been done with kernel methods or nonlinear
manifold learning such as [21, 18]. Gabriele [14, 15] pro-
posed feature-based pose estimation and view generation
with elaborated grid graph representation with Gabor jets.
Zhao et al.[21] used kernel PCA instead of linear PCA[10],
and recently Vik et al.[20] proposed non-Gaussian model-
ing of appearance subspace with a method similar with [10].

However, there are few linear subspace approaches while
it is still important[4]. Chang et al.[3] demonstrated to com-
pute eigenvectors for synthetic images of an 3D cylinder
just painted in black and white and rotated about an axis,
then observed that eigenvectors of the images are similar
with cosines. Sengel et al.[17] handled appearance changes
in images of a rotating object as different image templates,
but continuous pose parameters are not estimated.

A subspace approach for off-the-plane rotation was pro-
posed by Okatani et al.[12]. They applied linear regression
to the problem: first relates images with parameters by a lin-
ear map (matrix), and estimates the matrix by using pseu-
doinverse, then parameters are estimated by applying the
matrix to an image of novel view. Amano et al.[1] used a
variation of pseudoinverse with dimensionality reduction of
Eigenspace of images, then estimated pose parameter lin-
early. Some authors use kernel methods: Ando et al.[2]
used support vector regression instead of linear regression
for 3DOF rotation, and Melzer et al.[9] employed kernel
canonical correlation analysis (kernel CCA) for 2DOF.

These regression-like methods have shown their ability
of pose estimation. However, they do not explain how the
images are represented in a subspace. The answer has been
shown for in-plane rotation by analytically obtained eigen-
vectors, but still not for off-the-plane rotation.

1.2 Our approach

In this paper, we propose a novel approach for off-the-
plane rotation with a cyclic group acting on an image se-
quence. As mentioned above, analytical methods derived
eigenvectors of images of in-plane rotating object, while re-
gression methods used a matrix between images and param-
eters for off-the-plane rotation. In contrast, the proposed
method focuses on the transformation from an image to an-
other in an image sequence of off-the-plane 1DOF rotation
in three dimensional space. The transformation can be seen
as cyclic group, and we represent it as a matrix decomposed

by block diagonalization. The main contribution of this pa-
per is to show that the appearance change in an off-the-plane
sequence can be realized by the power of the block diago-
nal matrix discussed from the view point of subspace. This
have never been done by regression/CCA subspace methods
or analytical Eigenspace methods.

2 Formulation of appearance change in im-
age sequence with cyclic permutation

2.1 Matrix representation of relationship
between images

We represent a relationship ofn images in a given im-
age sequencex0, x1, . . . , xn−1. The images are taken
by rotating an object about an axis in three dimensional
space (i.e., off-the-plane rotation), and each imagexj =

(xj1, xj2, . . . , xjN )T ∈ IRN is a N dimensional vector
taken at angle1 θj = 2jπ/n. Throughout the paper, we
assumeN > n, the number of pixels in the images is larger
than the number of images.

First we consider the following matrixG that transforms
an image vectorxj into xj+1:

xj+1 mod n = Gxj , xj = Gjx0, xj = Gnxj . (1)

This transformation is the result of the action by a cyclic
groupGn = {G,G2, . . . , Gn} of degreen acting from left
side on the image sequence.G is called a generator (or
primitive element) ofGn, andGn is an identity element.
The group theory is an abstract concept, however, we focus
only on linear transformation: that is, throughout the paper,
G ∈ IRN×N is a matrix andx ∈ IRN is a vector.

However, one can ask the question:Why can you obtain
thejth imagexj from the first imagex0 by just multiplying
a matrix j times? Whenx0 is the frontal pose andxj is
the back, due to occlusions and so, does notxj have any
common information withx0? The answer is below.

The transform can be written in a matrix form as follows:

[x1 x2 · · · xn−1 x0] = G[x0 x1 · · · xn−2 xn−1], (2)

or

X1 = GX0, (3)

where

X1 = [x1 x2 · · · xn−1 x0], (4)

X0 = [x0 x1 · · · xn−2 xn−1]. (5)

1For simplicity, the angles are evenly spaced. If the angles are irregu-
larly sampled, the linear functionθ(j) = 2jπ/n is replaced with an ap-
propriate nonlinear function such as piecewise linear functions or a spline
curve.
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Figure 2. Two projections X+
0 , X0 and a rota-

tion M composing the transformation G.

Here we obtainG with X+
0 , a Moore-Penrose general-

ized (pseudo) inverse ofX0 with the singular value decom-
position (SVD)X0 = EΣV T , as follows:

G = X1X
+
0 , X+

0 = (XT
0 X0)

−1XT
0 = V Σ−1ET . (6)

Therefore, the answer of the question above is that the ma-
trix G indeed transformsx0 to xj whatever the geometry
of an object in the images is2. The reason is that Eq.(3) is
an under-determined system becauseN > n. Of course the
pseudoinverse in Eq.(6) is not a unique3 and many pseu-
doinverses hold Eq.(3), however, this is not a problem but a
necessary condition that Eq.(1) and Eq.(3) exactly hold.

When we consider the transformation fromX0 to X1, it
can be represented with an×n column permutation matrix
M multiplied from right side ofX0:

X1 = X0




0 1
1 0

1 0

.
.
.
.
.
.

1 0
1 0


 = X0M, (7)

then Eq.(6) is rewritten as follows:

G = X0MX+
0 . (8)

2.2 Two projections and a rotation

With Eq.(8), it is interesting that we can interpretG as
an combination of projections to an subspace and a rotation
in the subspace. See Fig.2.

First G transforms the sequenceX0 into In (n × n
identity matrix) because ofX+

0 X0 = In. This means
xj−1 7→ ej , i.e., each imagexj−1 is mapped to a canoni-
cal unit vectorej in which all components are 0 exceptj th

2Imagine how largeG is — N ×N ! Even whenG is decomposed,U1

andU2 are the same size withX0. Therefore,G has so enough elements
that represent information between images even ifx0 andxj do not have.

3It is unique in the sense that a minimum norm solution is given.

Figure 3. Rotations by Aj
k in 2-D subspaces.

component is 1. Next,M moves the unit vectorej to ej+1.
This can be done by just shifting components inej , butM
is indeed rotation about the axisn = (1, 1, . . . , 1) ∈ IRn

and makes the unit vector form a locus of a hypercircle on a
hyperplane4 in IRn. Finally X0 projects vectors back to the
image space from the subspace.

Therefore, the images in the sequence are projected onto
the circle in the subspace, and well separated with distance√

2 from each other5, and transfered from one to the next
by M .

For recognizing unknown pose between learned poses,
the concept of the proposed method is to extend thisdis-
crete rotationM into continuous rotationby interpolating
M with block diagonalization discussed below.

2.3 Decomposition of G

M is decomposed with a real block diagonal matrixD
and a real orthogonal matrixW asM = WDW T . Then,
the decomposition ofG is

G = U2DU1, U1 = WT X+
0 , U2 = X0W, (9)

where

D =




1
A1

A2

. ..


 , Ak ∈ IR2×2, (10)

D has2 × 2 blocksAk at its diagonal part. See appendix
for the detail of the block diagonalization.

With U1U2 = In, the transformation fromx0 to xj can
be represented as

xj = U2D
jU1x0, (11)

instead ofxj = Gjx0.
Here, the matrixU1 can be regarded as a projection from

the image space onto an-dimensional subspace represent-
ing the pose of an object in the images. See Fig.3 in which
we callx′ = U1x an image in the subspace. Each pair of

4It is perpendicular ton, and the distance to the origin is1√
n

.
5∀j, k, j ̸= k ⇒ ||ej − ek|| =

√
1 + 1 =

√
2.
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row vectors ofU1 corresponding a2 × 2 block Ak of D is
a linear projection from the image space onto two dimen-
sional (2-D) subspace spanned by the row vectors. These 2-
D subspaces are independent and orthogonal to each other
because all blocks do not overlap. Therefore, the projection
of an original image is a set of projections onto different 2-
D subspaces, and multiplyingD in the subspace means 2-D
rotations (withAk by θk) of 2-D vectors comprised of two
pixels of the image in the subspace.

2.4 Demonstrating the subspace

As the derivation above, the matrixG transform an im-
age to another in the image sequenceX0 by the power of
G:

xj = Gjx0, or xj = U2D
jU1x0. (12)

Therefore,j (the power ofDj) decides how much the image
x0 is transformed in the image sequence.

Now we are interested in not only observing the trans-
formation fromx0 to xj but also extending the range of the
powerj from several integer numbers (0, 1, . . . , n − 1) to a
real interval[0, n[.

For an off-the-plane rotation sequence, Fig.4(a) demon-
strates an example using object 4 in COIL-20 [11]. 36
images includingx0, x1, x2 (0, 10, 20[deg]) are used
for learning. Two images (5,15 [deg]) corresponding to
x0.5, x1.5 are shown for comparison. The lower row shows
imagesx0.1j created by

x0.1j = G0.1jx0 = U2D
0.1jU1x0, (13)

for j = 0, 1, 2, . . . , 20. The created imagesx1.0 andx2.0

are exactly same with the learned imagesx1 andx2. For
the other images between learned images, especiallyx0.5

andx1.5 for comparison, the appearance are very similar
with actual intermediate images. Actually they look like
one made by blending two learned images, but our objec-
tive is not to make created images close to the real ones,
but to utilize them for pose estimation as shown in the next
section.

Although the proposed method is formulated for a sin-
gle axis rotation, Eq.(3) can be applicable to any revolv-
ing image sequence such as a light turns around in front
of a face. Fig.4(b) illustrates such an example for differ-
ent light directions. 20 face images of P00 in the Yale Face
Database B [6] includingx1, x2,x3, x4, x5 (cropped) are
used for learning. The lower row shows images are created
by x0.25j = G0.25jx0. Discussion on the estimation of
light direction is out of scope of this paper, but this example
implies that the proposed method can be used for estimating
illumination change.
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Figure 5. Euclidean distance in the subspace
between Djx′

0 and x′
j (learned j = 5, 11, 17,

and not learned j = 22.5, 28.5, 34.5). Horizon-
tal axis is the power j of Dj .

3 Estimation of pose of an object in novel
view

In this section, we propose two methods for estimation
of pose of a new image by using the subspace described in
the previous section.

3.1 Estimation by distance in the sub-
space D

As shown at the end of the last section, we have shown
that extending real numbers of the powerj of Dj gives im-
ages between learned samples.

Here we make an assumption thata novel imagex is
matched withGjx0 for somej and this also holds for im-
ages in the subspace:x′ is matched for somej with Djx′

0

in the subspace, wherex′ = U1x and′ denotes an image in
the subspace. For matching, we use the Euclidean distance
in the subspace:

j = argmin
j∈[0,n[

||x′ − Djx′
0||2, (14)

θ = jθ1 =
2π

n
j. (15)

See appendix forθ1 and constructingDj .
The estimation performs exhaustive search forj and it

seems to be computationally expensive. However, we can
use an effective algorithm for the search by using coarse-
to-fine strategy. Fig.5 shows distances in the subspace by
Eq.(15) for some real image sequence (see the later section
for details). We can observe that the distances have sharp
minima at correspondingj for learned images. Even for
images not used for the learning, the distances have smooth
minima around correctj. Based on this observation, first we
search a minimum ofj with a large step, then find around
the minimum again with more smaller step, and gradually
the interval of search shrinks. This strategy decreases com-
putational cost and achieves estimation at any precision.
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(a)

x0 x1 x2

x0.0 x0.1 x0.2 x0.3 x0.4 x0.5 x0.6 x0.7 x0.8 x0.9 x1.0 x1.1 x1.2 x1.3 x1.4 x1.5 x1.6 x1.7 x1.8 x1.9 x2.0

(b)

x0 x1 x2 x3 x4 x5

x0.0 x0.25 x0.50 x0.75 x1.0 x1.25 x1.50 x1.75 x2.0 x2.25 x2.50 x2.75 x3.0 x3.25 x3.50 x3.75 x4.0 x4.25 x4.50 x4.75 x5.0

Figure 4. Images created by repeatedly multiplying a matrix Gj to the first image x0. (a) images of
off-the-plane rotation from COIL-20. Gj = G0.1. (b) images of changing light direction from Yale Face
Database B. Gj = G0.25. Upper row shows learned images, and lower row shows created images
between each learned images. Note that supplemental full-length movies are attached/embedded in this PDF file
(use Adobe Reader to see it).

3.2 Estimation by angle of vectors in a 2D
subspace A1

The estimation method described above involves itera-
tive search for minimum even if there is the efficient algo-
rithm. Here we propose a direct estimation method without
any searching. As mentioned before, an image is projected
by U1 onto many different 2-D subspaces in which a 2-D
vector of two pixels is rotated byAk. Now we focus on
two pixels correspondingA1 where the pair of pixels in two
learned images next to each other,xj andxj+1, have the
angleθ1, the incremental step of the rotation.

So we propose to estimate a pose parameter for a novel
image in the subspacex′ with x′

0 by using the angle sub-
tended by two 2-D vectors,x′′,x′′

0 ∈ IR2, corresponding to
the 2-D subspace ofA1. To extract a 2-D vectorx′′ ∈ IR2

from x′ ∈ IRn corresponding toA1, just multiply the fol-
lowing 2 × n matrix:

x′′ =

(
0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
x′. (16)

Butx′ = U1x is substituted above, the 2-D vectorx′′ ∈ IR2

is directly extracted fromx ∈ IRN by combiningU1 and the
2 × n matrix:

x′′ = U ′
1x, (17)

U ′
1 =

(
0 1 0 0 · · · 0
0 0 1 0 · · · 0

)
U1, (18)

andx′′
0 ∈ IR2 is extracted:

x′′
0 = A1U

′
1x0. (19)

HereU ′
1 is the 2-D subspace proposed in this paper for esti-

mating the pose angle.

Figure 6. A part of images used for the ex-
periments. x0, x1, . . . are learned (with box
marks), x0.5,x1.5, . . . are tested images.

The angleθ subtented by the two 2-D vectors is calcu-
lated withcos θ andsin θ. The innter product betweenx′′

andx′′
0 computescos θ:

cos θ =
x′′T

0 x′′

||x′′
0 || ||x′′||

. (20)

sin θ is computed by cross product with two 3-D vectors
extented with 0:

x′′′
0 = (x′′T

0 , 0)T ∈ IR3, (21)

x′′′ = (x′′T , 0)T ∈ IR3, (22)

(0, 0, sin θ)T =
x′′′ × x′′′

0

||x′′
0 || ||x′′||

. (23)

Then,θ = tan−1
(

sin θ
cos θ

)
is the angle betweenx′′ andx′′

0 ,
then the estimate of the pose of the imagex.

4 Experimental results

We implemented the proposed method with Scilab-4.1
and evaluated with a real image sequence of the object 4
(the cat) from COIL-20[11]. The 72 images areN = 128×
128 in size, taken by rotating the object by 5 degrees each
(see Fig.6). The rotation of the images is 1DOF (single axis
rotation), but it is off-the-plane rotation because the axis is
not the optical axis of the camera.
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Figure 7. Estimation results with (a)(b) distance-based and (c)(d) angle-based method for images
xj (j = 0, 0.5, 1, 1.5, 2, . . . , 35.5). (a)(c) Estimated pose.

Table 1. RMSEs with two methods for 20 objects in COIL-20 (in [deg]).
object No. 1 2 3 4 5 6 7 8 9 10

with distance 1.21 1.39 1.56 1.80 1.23 29.71 1.44 1.60 1.05 1.53
with angle 0.73 1.69 3.84 1.23 2.55 7.33 2.97 2.69 6.74 1.66

object No. 11 12 13 14 15 16 17 18 19 20 average
with distance 1.58 23.05 1.03 1.90 8.33 8.83 7.71 13.10 1.64 3.32 5.65
with angle 5.78 4.18 3.11 7.38 2.01 1.53 2.35 3.64 6.99 2.21 3.53

Figure 8. RMSEs of estimation with std. for
10 trials for noisy images. Horizontal axis is
the magnitude [−d, d] of uniform noise added.
Vertical axis is average RMSE for 20 objects
for only images not learned, but with noise.

For learning eigenspace and computingU1, we used
36 images corresponding to 0, 10, 20,. . . degrees as im-
agesx0, x1, . . . , x35 in the experiment. Therefore,θ1 =
10[deg] in this experiment. Another 36 images correspond-
ing to 5, 15, 25, . . . degrees were used not for learning but
for evaluation as imagesx0.5, x1.5, . . . , x35.5.

To illustrate properties of the subspace, we computed
Euclidean distances between learned imagesx′ and the im-
agex′

0 rotated by the power ofD in the subspace. Fig.5
shows the distances, and the horizontal axis is the powerj
of Dj , and the vertical axis is the Euclidean distance. For

example, the distance withx5 is ||x′
5 − Djx′

0||2 and has a
sharp minimum atj = 5 which means that the subspace is
well learned. The distances withx′

5 and the other learned
imagesx′

j , or equivalentlyDjx′
0, are all the same distance,√

2. When the powerj is a real number, the distance devi-
ates from

√
2 and seems to be an interpolated curve com-

prised of sinusoids with different frequencies. The devia-
tion from

√
2 (or ripple width) is so small that the search

for minimum is not affected.
Fig.5 also shows distances with images not used for

learning. Even if the images are not learned, the distance
have smooth minimum around correct power. This means
that the distance in the subspace is useful for the pose esti-
mation.

Next, in Fig.7(a)(b) we show result of pose estimation
with the method described in section 3.1, the search for min-
imum of j with the distance. Correct poses for the learned
imagesxj (j = 0, 1, 2, . . .) are estimated with no error.
Poses for the images not learnedxj (j = 0.5, 1.5, 2.5, . . .)
are also estimated well. The maximum error is about
7[deg], and almost less than±2[deg], and RMSE (root
mean squared error) for tested images only (not including
learned images) is 1.80[deg]. Fig.7(c)(d) shows estimation
result with the method described in section 3.2, the use of
angle of two vectors in 2-D subspace. The maximum error
is about 4[deg], and RMSE is 1.23[deg]. This means that
the angle-based method is better than the distance-based
method, and the angle of the two vectors in the 2-D sub-
space well represents the pose of the object in an image.
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This is supported by estimation results shown in Tab.1
for all 20 objects in COIL-20 with both distance-based and
angle-based methods. The result of Fig.7 is shown at ob-
ject No. 4 in Tab.1. In average, RMSE of the angle-based
method (3.53[deg]) is smaller than that of the distance-
based (5.65[deg]).

Fig.8 shows the robustness of the angle-based method
for noisy images shown. These images are contaminated
by uniform noise up to±200 without any intensity normal-
ization (negative pixel values and large values are just used)
where the range of pixel value in original images is between
0 and 255. Even when±200 uniform noise is added, the
average RMSE of angle-based method is less than 7[deg],
while error of the distance-based method increases larger
than 14 [deg]. This result demonstrates how robust the
angle-based method is as well as the subspace proposed in
this paper is useful for pose estimation. Note that for clut-
terd images (e.g., objects are occluded by a black rectangle),
the proposed angle-based method has shown a good perfor-
mance (not shown in this paper).

5 Conclusions

We have proposed a novel framework with cyclic group
for appearance change in an image sequence of a rotat-
ing (1DOF but off-the-plane) object in 3-D. The proposed
method constructs a subspace by block diagonalization of a
matrix that represents cyclic group acting on the image se-
qeunce and transforms an image to another in the sequence.
We have shown how the power of the block diagonal ma-
trix produces the transform between images in and not in
the sequence, then proposed two methods to estimate pose
of a novel image; distance-based and angle-based. Experi-
mental results with real image sequences demonstrated that
the angle-based method is robust against noise and better
than the distance-based method. The experiments are still
limited, and comparisons with conventional methods are
planned for the future.

Some limitations of the proposed method should be no-
ticed. First, the method is applicable to sequences in which
an object in images are revolutionary rotated: for example,
a face sequence taken from left side to right side with frontal
face has no images of the back of the head, so it is not ap-
plicable. Second, it seems to be difficult to extend the pro-
posed method to handle with 3DOF rotation of an object.
These are caused by the use of the matrixG as a cyclic
group. Therefore, future works include to find an appropri-
ate representation of relationship between such image se-
quences with group theory for extending application area of
the proposed method. And also we have to investigate the
pseudoinverse used in the derivation that is theoretically not
determined uniquely because we assumeN > n. It is clear
that the linear map defined by the pseudoinverse is crucial

to improve generalization and decrease estimation error for
unknown pose.
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A Complex diagonalization ofM

A n × n permutation matrixM to be diagonalized and
its characteristic equation are[16, 3, 13, 7]:

M =




0 1
1 0

1 0

.
.
.
.
.
.

1 0
1 0


 ,

|M − λI| =

∣∣∣∣∣∣∣
λ −1
−1 λ

−1λ

.
.
.

.
.
.

−1 λ
−1 λ

∣∣∣∣∣∣∣ = λn − 1,

so the eigenvaluesλ aren different primitiven-th roots of
unity ζn:

λk =
n
√

1 = ζk
n = e

2kπ
n i, k = 0, 1, 2, . . . , n − 1,

where i =
√
−1. Let wk = (w1, w2, . . . , wn)T be the

eigenvector correspondingζk
n, then

Mwk = ζk
nwk

(wn, w1, w2, . . . , wn−1)
T = (ζk

nw1, ζ
k
nw2, . . . , ζ

k
nwn)T .

Therefore, the eigenvector is

wk = (ζ(n−1)k
n , . . . , ζ2k

n , ζk
n, 1)T ,

andM is diagonalized asM = W ′D′W ′H with:

D′ = diag(1, ζn, ζ2
n, . . . , ζn−1

n ), (24)

W ′ = (w0, w1, w2, . . . , wn−1),

whereH denotes complex conjugate andW ′ is the basis of
complex DFT (Discrete Fourier Transform) [13].

B Real block diagonalization ofM

Next, block diagonalization ofM is shown[16, 3, 13].ζk
n

andζn−k
n , eigenvalues ofM , are complex conjugate to each

other. To make corresponding complex conjugate eigen-
vectorswk, wn−k real vectors, dividing them into real and
imaginary parts:

wk =
1√
2
(ck + isk), wn−k =

1√
2
(ck − isk).
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Then, the multiplication ofM with the vectors

M(wk,wn−k) = (wk, wn−k)

(
ζk
n 0
0 ζn−k

n

)
,

is rewritten withζk
n = cos θk + i sin θk as follows:

M(ck, sk) = (ck, sk)

(
cos θk sin θk

− sin θk cos θk

)
= (ck, sk)Ak.

Now M is diagonalized with block diagonal matrixD as
M = WDW T , where

D =

{
diag(1, A1, A2, . . . , As), n is odd,

diag(1, A1, A2, . . . , As,−1), n is even,

W =

{
(w0, c1, s1, c2, s2, . . . , cs, ss), n is odd,

(w0, c1, s1, c2, s2, . . . , cs, ss, wn/2), n is even,

s =

{
n−1

2 , n is odd,
n−2

2 , n is even,

whereW is the basis of DFT[13]. Note thatW ′ andW are
normalized so that norm of each column vector is 1.

C The power ofD

If we needDj , the angle in the2 × 2 blocks Ak are
multiplied:

Dj =

{
diag(1, Aj

1, A
j
2, . . . , A

j
s), n is odd,

diag(1, Aj
1, A

j
2, . . . , A

j
s, (−1)j), n is even,

Aj
k =

(
cos jθk sin jθk

− sin jθk cos jθk

)
.

Note thatDj becomes a complex matrix whenn is even.
This property is the most usefull one for the proposed

formulation becauseGj can be calculated by just multiply-
ing the angleθk with j. If you use the Jordan (normal or
canonical) form as block diagonalization ofM , Dj is not
easy to compute. And actually all eigenvectors ofM are
different to each other, the Jordan form ofM is equivalent
to the eigendecomposition Eq.(24); no Jordan form exists
for M .
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Abstract

Principal component analysis (PCA) evaluates geomet-
ric features of a point cloud for dimension reduction,
pattern-recognition and classification. We develop the PCA
of a point cloud on the basis of scale-space representation
of its probability density function (PDF). First, we explain
the geometric features of point cloud in scale space, and ob-
serve reduction of dimensionality with respect to the loss of
information. Second, we introduce a hierarchical cluster-
ing of point cloud, and analyse the statistical significance
of the clusters and their subspaces. Finally, we present
a mathematical framework of scale-based PCA, which de-
rives a statistically reasonable criterion for how to choose
the number of components to retain, or how to reduce the
dimensionality of point cloud.

1. Introduction

In this paper, we investigate the principal components
in the scale space of point cloud1. In the book “Pattern
Recognition” [1], Iijima introduced a framework of prin-
cipal component analysis of generalised figures, which are
images of an image in the linear scale space. He showed that
the Hermite functions are base function system in the scale
space of two-dimensional images. This analytical property
of the base functions in the linear scale space is dimension-
independent. In the book the global properties of the base
functions in the scale space treat modal expression of im-
ages in the scale space. In the first one-thirds of book, linear
scale space theory is dealt with from the view point of obser-
vation of two-dimensional images, since “Patten Recogni-
tion” of Iijima was established to introduce a mathematical
framework of character recognition2.

1In this paper, we call a set of points distributed in a space of arbitrary
dimension a point cloud. A point cloud is a set of points in the three dimen-
sional Euclidean space for shape modelling, and is a set of feature values
in a feature space of arbitrary dimension for manifold learning.

2IIjima called the general theory of pattern recognition based on the
theory of pattern.

As a sequel of the clustering method using scale-scale
analysis, we develop a local principal component analy-
sis in Gaussian scale space. This analysis evaluates local
dimensionalities and directionalities of clusters in a point
cloud in a Euclidean space of arbitrary dimension [9, 10].
In [9], dimensionalities and directionalities of the clusters
of a point cloud are extracted using the voting-based learn-
ing algorithm. In [2, 3, 4, 5, 6, 7, 8], they clarified that
scale-space analyses clarify hierarchy among the clusters,
and derived scale-based analyses and algorithms for the de-
termination of the number of clusters in a point cloud. In
this paper, we develop a framework to extract the clusters
in point cloud and to evaluate their statistical significance
or cluster validity. This treatment clarifies the dimensional-
ities, principal directions, and hierarchical relations of valid
clusters in point cloud under the uncertainty of spatial res-
olution of observation. According to the scale-space the-
ory, such uncertainty is axiomatically approximated by the
Gaussian kernel.

In Section 2, we review and apply classical and mod-
ern scale-space analyses to the point cloud density. In Sec-
tion 3, we introduce a hierarchical clustering of the point
cloud. We also present a cluster validation scheme based on
statistics. In Section 4, we derive stochastic moments and
their estimators for the point cloud density in scale space.
Then, we present the scale-based PCA for the hierarchical
clusters. We discuss statistical significance of the principal
components and structure of the point cloud.

2. Scale-Space Analysis of Point Cloud

2.1. Scale-Space Representation of Point Cloud
Density

Let P = {p| p ∼ f,p ∈ Rd} be a point cloud ind-
dimensional Euclidean space. Our problem is to extractin-
formative featuresfrom the point cloudP . The spatial in-
formation is defined by the underlying probability density
function (PDF)f(x). The PDF describes the distribution
of relative frequency with which the sample point would be
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obtained as an element of the point cloud by a finite num-
ber of repetition of observation. Unless the PDF is uniform,
it provides meaningful difference of the frequency with re-
spect to spatial position. The point cloudP with a finite car-
dinality illustrates the PDF at some level of geometric de-
tail. Therefore, extraction of the informative features from
P is essentially the estimation off(x) and its geometric
features.

If we do not have prior belief on parametric form of
f(x), nonparametric approach is applicable to the PDF esti-
mation. The nonparametric kernel estimate off(x) [11, 12]
is

f̃(x, σ) =
1

card(P )

X
p∈P

K(x − p, σ) (1)

whereK is the normalised kernel function, andσ is called
the bandwidth of the kernel. This estimated PDFf̃(x, σ) in
(1) is normalised so that∫

x∈Rd

f̃(x, σ)dV = 1 (2)

The estimated PDF̃f(x, σ) with a suitable kernel function
converges to the true PDFf(x) if σ → 0 when the cardi-
nality of P approaches to infinity.

The Gaussian kernel

K(x, σ) = G(x, σ) =
1

√
2πσ2

d
e¡

|x|2

2σ2 (3)

has been widely used for the PDF estimation [13]. In the
PDF estimation using the Gaussian kernel, the bandwidthσ
determines how much the point cloud is smoothed to pro-
duce the density estimate. Although there is a body of lit-
erature dealing with the problem on bandwidth selection
in the kernel density estimation [13], analyses off̃(x, σ)
in (x, σ)-space are of great help to clarify how the struc-
ture of the point cloud is simplified with increasingσ. The
(x, σ)-space is called the Gaussian scale space, whose the-
ory [14, 15, 16, 17] can be applicable to the PDF estimation
as well as image analyses. In this paper, we regardf̃(x, σ)
with the Gaussian kernel as a scale-space representation of
PDF estimated from the point cloudP . The scale parameter
σ controls the level of estimated geometric detail. We enu-
merate some remarkable properties of the PDF estimation
with an isotropic Gaussian kernel.

• f̃(x, σ) satisfies the scale-space axioms [14, 16, 18],
which include invariance under basic geometric trans-
forms.

• Settingσ =
√

2τ , f̃(x,
√

2τ) satisfies the linear diffu-
sion equation

∂f̃

∂τ
= ∆f̃ . (4)

The initial function atτ = 0 is the Delta mixture in
Eq. (5), and a superposition of the Gaussian functions
represents uncertainty of the location of the points after
the timeτ .

• f(x, σ) converges to mixture of the Dirac delta func-
tion asσ → 0.

lim
σ→0

f̃(x, σ) =
1

card(P )

X
p∈P

δ(x − p) (5)

In other words,f(x, 0+) acts as a lookup table because
it returns∞ only at the data pointsx = p and other-
wise0.

• In the limit asσ → ∞, the functionf̃(x, σ) converges
to zero with the volume of one. Such PDF is said to be
featureless providing null information.

• The number of modes of the homoscedastic Gaussian
mixture seldom increases as the scaleτ increases [22].
That is, mode creation is less expected if the Gaus-
sian functions are unequally weighted. It is known
that anisotropic Gaussian mixtures with different co-
variances yield spurious modes outside the convex hull
of P .

• The scale parameterσ controls the information quan-
tity measured by Shannon entropy [21], that is, the
measure of the uncertainty monotonically increases
with σ.

In pattern recognition, we regard the point cloudP as a
set of feature vectors. Local geometric features off(x) cor-
respond to specific features of data. For example, geometric
moments characterise the distribution shape by a centroid,
variance, distortion (asymmetry by skewness, peakedness
by kurtosis, ..), and so on. In PCA, the PDFf(x) is assumed
to be ad-dimensional Gaussian function whose mean vec-
tor and covariance matrix define its ellipsoidal equiprobable
level set. We will deal with the stochastic moments in Sec-
tion 4. The derivatives off(x) also describe the differential
geometric features. Local maximisers off(x), or the modes
{ξ|∇f(ξ) = 0}, are the most expected and typical features
within a group or a class of the features. We will discuss
the behaviour of the modes in scale space, which give us
an insight into dimension reduction with respect to the loss
of information. The mode behaviour also leads to a natural
method of data clustering known as the scale-based cluster-
ing or scale-space clustering [2, 3, 4, 5, 7]. Hereafter, we
call f̃(x, σ) thegeneralised PDFafter the fashion of scale-
space theory [20].

2.2. Behaviour of Modes in Scale Space

One of the primitive geometric features of the gener-
alised PDF is the stationary point (a. k. a. critical point)
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where the spatial gradient vanishes.

{(ξ, σ)|∇f̃(ξ, σ) = 0} (6)

The stationary point can be classified intod+1 types based
on the combination of signs of the eigenvaluesλl of the
Hessian matrixH = ∇∇>f(x, σ). We denote the signs of
the eigenvalues as(±,±, . . . ,±). For example, ifd = 2 we
have3 types of stationary point: local maximum(−,−),
saddle(+,−), and local minimum(+, +). A local maxi-
mum (−,−, . . . ,−) of a PDF is called the mode in proba-
bility theory and statistics.

Trajectory of Mode The position of the stationary point
changes with respect to scale. The trajectory of the station-
ary point in the scale space is called the stationary curve (a.
k. a. critical curve) in the scale-space theory. A stationary
curve can be denoted by one-dimensional manifoldξ(σ) in
scale space. Zhao and Iijima [19] have firstly showed that
the stationary curve is a solution to the following system of
differential equations.

H
dξ(

√
2τ)

dτ
= −∇∆f̃(ξ,

√
2τ) (7)

The trajectory of a mode of̃f(x, σ) also satisfies Eq. (7).
Every point(x, σ) = (p, 0) (p ∈ P ) is a starting point
of the trajectory of mode. The trajectory of mode has a
endpoint in scale space. In this paper, we denote the scale
of the endpoint byσt.

Equiprobable Level Set The probability density at the
mode, i.e.,f̃(ξ, σ), must decrease with increasingσ since
f̃(x, σ) obeys the diffusion equation (4) and Laplacian
∆f̃ = traceH =

P
l λl < 0 at the mode. This indicates

that equiprobable level sets are nested in the scale space. In
image analysis, the nested level set associated with a local
extremum is called the extremum stack [24, 25]. In the same
manner, one can associate a modeξ(σ0) with an equiprob-
able level set in scale space whose probability density is
equal tof̃(ξ, σ0).

Flow of Probability Density As the scaleσ increases, the
probability density disperses inRd space maintaining the
normalised condition in Eq. (2). Since the diffusion equa-
tion (4) governs this process, the dispersing flowF of prob-
ability density can be defined as

F = −∇f̃(x, σ). (8)

The local maxima, minima and saddles are sources, drains,
and confluent points of the density flow with respect to scale
[20, 26, 28].

In the scale-space analysis [20, 27, 28], topological
structure among the stationary points can be analysed by the

flow curves of the density flow. In two-dimensional case, a
saddle(+,−) has a pair of each inward and outward flow
curves calledseparatrices. A separatrix of the inward flow
curves connect between modes off̃(x, σ), i.e., the sources
of the flow.

In higher dimensional spaces, the separatrices are hyper-
surfaces which separate regions of different flow behaviour.
We haved − 1 types of saddles in ad-dimensional space,
e.g., (+,−,−) and (+, +,−) for d = 3. Let us denote
the number of positive and negative eigenvalues ofH at
a stationary point bys+ and s¡, respectively. Then, the
space in the vicinity of the saddle can be decomposed into
s+-dimensional ands¡-dimensional subspacesS+ andS¡
each of which is spanned by the corresponding eigenvec-
tors. Since the saddle is a local minimum in the subspace
S+, the density flow inS+ is in inward directions to the
saddle. A similar statement holds inS¡. Therefore,S+ and
S¡ can be called the subspaces of attracting separatrix and
repelling separatrix of a saddle, respectively.

We remark that the stationary points of̃f(x, σ) are
representative points of geometric components, which can
be symbolised as a graph of the flow-curve connections.
In three-dimensional space, for example, local maxima
(−,−,−) correspond to vertices of the graph. Saddles
(+,−,−) and (+, +,−) represent edges and faces of the
graph, respectively. Local minima reside in volumes. See
Fig. 1(a).

Structural Simplification If the scaleσ is sufficiently
small, the generalised PDF̃f(x, σ) consists of card(P )
small blobs in an isotropic Gaussian shape. Asσ increases,
the blobs merge with each other into large ones, and the
modes at their peaks disappear one after another. The topo-
logical structure formed by the flow-curve connections is
simplified according to this degeneration off̃(x, σ).

It is known from scale-space theory and catastrophe the-
ory that the Fold catastrophe generically describes annihi-
lation and creation events of two stationary points, which
differ with respect to the signs of one eigenvalue ofH that
becomes zero at the point of events [29, 30]. Therefore,
a mode off̃(x, σ) with signs(−,−, . . . ,−) is generically
annihilated with a saddle with(s+, s¡) = (1, d − 1). Sim-
ilarly, two saddles with(s+, s¡) and(s+ + 1, s¡ − 1) (or
(s+ − 1, s¡ + 1)) meet and disappear at a point in the scale
space. Saddles with(s+, s¡) = (d − 1, 1) can be annihi-
lated with local minima with(s+, s¡) = (d, 0). We have
introduced a point at infinity in a scale space as one of the
local minima for topological consistency [31]. We have also
shown from Eq. (7) that motion of the two points just be-
fore the annihilation is in the direction of the zero principal
curvature [32].

As a consequence, every type of stationary points are in-
volved in a sequence of the simplification of topological

ACCV 2007 Workshop Subspace 2007

34



structure. Figure 1 illustrates an example of the structural
simplification in a three dimensional space. Observe how
the dimensionality is reduced from three to zero especially
when the modes disappear. Even in higher dimensional
spaces, one can find a subspace spanned only by the sta-
tionary points involved in the structural simplification, and
observe a similar process of dimension reduction.

Convergence to Centroid If σ is sufficiently larger than
the spatial size of the point cloud, the whole point cloud is
regarded as a universal cluster represented by one remain-
ing mode of the generalised PDF. This mode converges to
the centroid of the point cloud according to the following
proposition in [20, 23].
Proposition 1 One remaining local maximumξ(σ) of
ũ(x, σ) = G(x, σ) ∗ u(x), i.e., a convolution function with
Gaussian, converges to the centroid ofu(x) if σ → ∞.

Proof

∇ũ(x, σ) = ∇(G ∗ u) = (∇G) ∗ u

= (xG) ∗ u − x(G ∗ u).

Since∇ũ = 0 at the local maximumξ(σ), we have

ξ(σ) =
(xG) ∗ u

G ∗ u
→ x ∗ u

1 ∗ u
(σ → ∞)

¤
The generalised PDF̃f(x, σ) can be described as a Gaus-
sian convolution of the delta mixture in Eq. (5). The cen-
troid of a PDF is nothing more than the mean vector, i.e.,
the first moment.

Mode Hierarchy The generalised PDF̃f(x, σ) starts
with card(P ) Gaussian blobs. The merging process of
the blobs with respect to scale hierarchically associates
the modes of blobs with each other. Thus, the card(P )
points are classified into hierarchical clusters. The hierar-
chy among modes is described as a tree, which is called the
mode tree [33]. The mode tree also represents the hierar-
chy of the points or clusters in the point cloud. Note that
not only the modes but also all of the other types of sta-
tionary points have hierarchical relationships among them.
The mode tree is a subgraph of the scale-space tree for local
maxima [32].

3. Hierarchical Clustering and Validation

3.1. Scale-Based Hierarchical Clustering

Clustering methods of data points using scale space have
been proposed by many authors [2, 3, 4, 5, 6, 7, 8]. Most
of them can be considered to be based on the mode hier-
archy described in the previous section. We presented an

algorithm of the construction of mode tree for hierarchical
clustering [8].

The detected clusters, however, are invalid at small
scales. The smaller the scale is, the more the modes of
f̃(x, σ) are dependent on the positions of sample points.
If the point cloudP does not have enough cardinality, the
generalised PDF̃f(x, σ) cannot approximate at the small
scales the true PDFf(x) in detail. As the result, any esti-
mate using the generalised PDF̃f(x, σ) with small scales
is so random and experimentally less reproducible. We re-
quire a validation scheme to identify the clusters by modes
with the statistically significant reproducibility.

In [3, 4, 5, 7], the detected clusters in scale space have
been validated by several properties of the clusters: the
number of clusters vs. scale, compactness, isolation, life-
time and birthtime. It is suggested that the decrease in the
total number of clusters pauses at the number of valid clus-
ters for a relatively long period of scale. Their methods of
finding such pause, however, are heuristic.

3.2. Cluster Validation by Critical Scale

We have proposed a statistical criterion to identify the
valid clusters by thelife of mode. The life is defined as the
terminating scale of the trajectory of mode in scale space,
i.e., σt. We focused on the axiomatic fact that a set of uni-
formly distributed points does not contain the reproducible
clusters. We showed that the uniformly distributed points
present a Weibull-like unimodal distribution of the life. The
valid cluster can be defined as a cluster with a statistically
significant life out of this unimodal distribution. Conse-
quently, the cluster validation can be established by the sta-
tistical rejection method using the unimodal life distribu-
tion. See [8] for more detail.

We call the critical value of scale used for the rejec-
tion the critical scale. Since any estimate using̃f(x, σ)
with scales smaller than the critical scale is judged to be
invalid, the critical scale is a threshold of spatial measure
above which the given data is informative and under which
any result of pattern analyses based on the PDF estimation
looses statistical significance. In the scale-based clustering,
the critical scale is a significance level of cluster validity.
The critical scale also provides the statistical significance in
the determination of dimensionalities of subspaces of clus-
ters, which will be discussed in the next section.

We present an algorithm of recursive discovery of valid
clusters using the mode tree.
ClusterDiscovery(mode treeT , cluster listL, critical value
α)

1 letΣ be the set of life values stored inT ;

2 let s be the subroot ofT with the second largest life-
timeσ2;

3 if IsRejected(σ2, Σ, α)
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Figure 1. An example of the simplification of topological structure of generalised PDF. The up and
down triangles indicate the local maximum (mode) and local minimum. The disc and cross indicate
the saddles with signs (+,−,−) and (+, +,−), respectively. The solid lines are the flow-curve con-
nections associated with the saddles with (+,−,−). The dotted lines are the connections between
the saddles with (+,−,−) and (+, +,−). The structure is simplified from (a) to (l). At a scale of
annihilation, the annihilation point is indicated by the square.

4 ClusterDiscovery(Subtree(T , s), L);

5 ClusterDiscovery(T\Subtree(T , s), L);

6 else pushC :=Leaves(Subtree(T , s)) into L;

7 endif .

Here,IsRejectedis the function that performs the rejection
method and returns true ifσ2 is significantly large for the
given critical valueα. The functionSubtree extracts the
subtree with subroots from the treeT . Leavesreturns the
leaves of the given tree.

4. Mathematical Framework of Scale-Based
PCA

4.1. Stochastic Moment

In probability theory and statistics, structural features of
data distribution are typically described by thestochastic
moments. For a given PDFf(x), thenth-order stochastic
moment is given by

In : f → 1

in
∇n

kφ(k)|k=0 . (9)

Here,i =
√
−1, andφ denotes the characteristic function

defined as

φ(k) = F [f(x)](k) =

∫
x∈Rd

f(x)eik>xdV (10)

which is similar to the well-known moment-generating
functionM(t) = φ(−it). For example,I1 andI2 are re-
spectively mappings from a PDFf(x) to the mean vector
and the moment matrix with respect to the origin.

I1 : f →
∫
x∈Rd

xf(x)dV = E[x] = µ (11)

I2 : f →
∫
x∈Rd

xx>f(x)dV = E[xx>] = M (12)

4.2. Central Moment

The stochastic moment can be converted to a moment
about a specific point. We modifyIn to define the stochastic
moment with respect toa ∈ Rd as follows.

In(a) : f → 1

in
∇n

kφ(k)e¡ik>a
∣∣∣
k=0

(13)

Clearly,In(0) is equivalent toIn. In(a) defines the trans-
lation of the stochastic moment. The characteristic function
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can be locally expanded in power series as

φ(k)e¡ik>a =

∫
x∈Rd

f(x)eik>(x¡a)dV

=

∫
x∈Rd

f(x)

∞X
m=0

1

m!
{ik>(x − a)}mdV

=

∫
x∈Rd

f(x)dV + i

∫
x∈Rd

k>(x − a)f(x)dV

+
1

2
i2

∫
x∈Rd

(x − a)>kk>(x − a)f(x)dV

+ · · · . (14)

As a special case, lettinga = µ, we obtain the so-called
central moments. For instance,I1(µ) always mapsf to
zero vector, andI2(µ) yields the covariance matrix.

I2(µ) : f →
∫
x∈Rd

(x − µ)(x − µ)>f(x)dV

= E[(x − µ)(x − µ)>] = Σ

Therefore, it is possible to regardIn(µ) as thecentral mo-
ment generator. The central moments correspond to the
Taylor expansion coefficients of Fourier transform of char-
acteristic function about the meanµ. The PDFf(x) can be
reconstructed from inverse Fourier transform of its charac-
teristic function if all of the stochastic moments are finite
and the series in Eq. (14) converges absolutely nearx = a.

4.3. Moment Estimation

The central moments can be derived from any PDF
model. If a singled-dimensional Gaussian distribution is
assumed as the PDF model for a point cloud, i.e.,p ∼
N (µ,Σ), then one can obtain the mean vectorµ and the
covariance matrixΣ by I1(0) andI2(µ), respectively. One
should note that odd-order central moment generators for
the Gaussian distribution provide zeros due to the symmetry
of Gaussian function, and any even-order central moment
can be expressed as the second-order central momentΣ.
The central moment generatorIn(µ) for n ≥ 3 therefore
provides no additional information about the distribution.
In fact, PCA can only deal with a linear subspace under
the assumption of multidimensional Gaussian distribution.
PCA estimates the major axes of ellipsoidal equiprobable
level set, which is determined byΣ. Usually, the maximum-
likelihood estimates ofµ andΣ written as

µML =
1

card(P )

X
p∈P

p (15)

ΣML =
1

card(P )

X
p∈P

(p − µML )(p − µML )> (16)

are used in PCA. They are called sample moments.

Henceforth, we derive the central moments from the gen-
eralised PDFf̃(x, σ). We define the characteristic function
with scaleσ as

φ̃(k, σ) = F [f̃(x, σ)]

=
1

card(P )

X
p∈P

e
¡ |k|2

2 1
σ2 eik>p. (17)

The mean vector and central moment are then

I1(0) : f̃ → 1

card(P )

X
p∈P

p = µ̃ (18)

In(µ̃) : f̃ → −in

card(P )
∇n

ke
¡ |k|2

2 1
σ2

X
p∈P

eik>(p¡µ̃). (19)

The mean vector̃µ of generalised PDF coincides withµML .
While µ̃ is independent of the scaleσ, In(µ̃) generates the
central moment as a function ofσ. The covariance matrix
Σ̃(σ) of generalised PDF is given byI2(µ̃) as

I2(µ̃) : f̃ → 1

card(P )

X
p∈P

(p − µ̃)(p − µ̃)> + σ2I

= ΣML + σ2I = Σ̃(σ) (20)

whereI denotes the identity matrix. The scaleσ increases
diagonal dominance byσ2. Accordingly, every eigenvalue
of the matrixΣ̃(σ) is incremented byσ2 while the eigen-
vectors ofΣ̃(σ) are equal to those ofΣML .

The matrix Σ̃(0) coincides withΣML . This property
might seem confusing because the generalised PDF with
σ = 0 is not Gaussian but delta mixture. This is caused by
the difference of PDF model. Unlike the single Gaussian
distribution assumed in PCA, the generalised PDFf̃(x, σ)
approximates any distribution at a scale above a critical
scale. If we can select a suitable scaleσ, the scale-based
central moments we have derived can quantify the struc-
tural feature of distribution such as the principal directions,
asymmetry, peakedness, and so on.

4.4. Scale-Based PCA

We apply the moment estimation for each valid cluster
discovered in the point cloudP by the algorithmCluster-
Discovery. According to the mode tree, the generalised
PDF f̃(x, σ) can be hierarchically decomposed into the
PDFs for the valid clusters.

f̃(x, σ) =
CX

c=1

f̃c(x, σ) =
CX

c=1

X
p∈Pc

G(x − p, σ) (21)

Here,Pc (c = 1, . . . , C) are the valid clusters correspond-
ing to the subtrees in mode tree, andP = ∪cPc. We remark
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that the scaleσ in Eq. (21) is just a common parameter con-
trolling the whole scale of the PDF. There exists a suitable
scaleσc for eachf̃c to describe the distribution of thec-th
clusterPc. At least, suchσc should be greater than the crit-
ical scale so as for the clusterPc to be valid, and less than
the lifeσt so as forPc to be separate from the others.

Let µ̃c andΣ̃c(σc) denote the mean vector and covari-
ance matrix ofPc calculated byI1(0) in Eq. (18) and
I2(µ̃c) in Eq. (20) usingf̃c(x, σc), respectively. Then, we
can employ PCA for the clusterPc by eigendecomposition
of Σ̃c(σc). Since the scale-based covariance matrix is writ-
ten as

Σ̃c(σc) = ΣML
c + σ2

cI, (22)

the eigenvectors of̃Σc(σc) is same as those ofΣML
c . The

eigenvalues of̃Σc(σc) are greater than or equal toσ2
c . This

contribution of the scale parameter to the eigenvalues is
quite simple, but it suggests a very remarkable consequence
that the eigenvalues ofΣML

c less than the square of criti-
cal scale are buried under the scale contributionσ2

c . Such
small eigenvalues are neitherprincipal nor statistically sig-
nificant.

A major problem in PCA is how to choose the number
of principal components to retain. This problem is essen-
tially the same as what the dimensionality of the subspace
of the data is. The suggestion by Eq. (22) provides us with a
statistically reasonable criterion: if the cluster is discovered
by the rejection method with a critical scaleσα, choose the
eigenvalues ofΣML

c which are greater thanσ2
α.

5. Summary and Discussion

We have attempted to make a first step towards a math-
ematical framework of PCA on the basis of the scale-space
theory on point cloud density and statistical principles of
cluster discovery. The main novelties of this work are:

• Observation of topological structure of point cloud in
scale space and the reduction of dimensionality with
respect to scale.

• Explanation for scale-based clustering and cluster va-
lidity in terms of statistical significance.

• Derivation of stochastic moment generator from a PDF
estimated in scale space.

• Scale-based PCA and a criterion for choosing principal
components.

We extended a scale-space theory to the kernel density
estimation of the point cloud in a Euclidean space of ar-
bitrary dimension. The topological structure of the point
cloud density is naturally determined by the flow of prob-
ability density with respect to scale. Since the bandwidth
of the Gaussian kernel, i.e., scale, controls the information

quantity, we can observe structural simplification of the es-
timated point cloud density with respect to the loss of infor-
mation.

We explained the validity of clusters discovered by the
scale-based hierarchical clustering. The statistical signifi-
cance of reproducibility of the cluster discovery is guaran-
teed by the rejection method using the life of mode in scale
space. The critical value of scale in the rejection method
is the so-called critical scale, which discriminates between
valid and invalid clusters.

The scale-based PCA is mathematically derived from the
first- and second-order stochastic moments calculated by
the Gaussian kernel density estimate of point cloud. The
scale-based PCA can be applied to individual valid clus-
ters. Although the calculated second moment in Eq. (22)
is very simple, this result suggests an important fact. If one
switches the PDF model from parametric to nonparametric,
the bandwidth of the kernel contributes to the significance
of eigenvalues. Consequently, the eigenvalues of principal
components must be greater than the square of critical scale.
Otherwise, the cluster is not guaranteed its validity in the
subspace spanned by eigenvectors with the small eigenval-
ues.

Determining the number of principal components is an
essential problem in PCA, and it has been treated exten-
sively in the literature prior to subspace methods. We refer
to [34] for a comprehensive overview. For this problem, we
would like to note that the termσ2

cI in Eq. (22) induces
the so-called sphericity of the cluster. The sphericity is the
degree of how spherical the distribution is. Generically, the
covariance matrix of a point cloud or its cluster does not
have a purely zero eigenvalue. That is, the estimated density
distribution is not confined in a subspace ofRd but it is d-
dimensional elliptic in a strict sense. Our scale-based PCA
implies that the cluster requires some sphericity to be iden-
tified as a valid cluster, and the sphericity need to be greater
than the critical scale in radius. From this point of view,
only the principal components with the eigenvalue greater
than the critical scale might reflect a valid contribution to
the similarity measure with subspace in classification meth-
ods.
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Abstract

Kernel eigenspace method is introduced in this paper
for representing, classifying and detecting multi-class ob-
jects with non-linear characteristics. The main focus of
this paper is to detect and classify moving vehicle from
its viewpoint image using kernel eigenspace. The kernel
eigenspace extracts non-linear features of multi-class mov-
ing vehicles by mapping input space to a higher dimen-
sional feature space choosing an appropriate radial basis
function. The obtained results provide us a clustered fea-
ture space of the car and non-car for classifying them by
separating the dimensional space or comparing the eigen-
vectors called eigendimension matching. Eigendimension
matching conforms whether an image feature is in-space or
out-space comparing the dimensional ranges. The exper-
imental results show the robustness of the feature separa-
tion using kernel eigenspace in our car database that lead
to the cars’ detection and classification from learning only
the viewpoints. Extended experiments with various generic
databases shows the remarkable performance of clustering,
detecting and separating vehicle image using the the pro-
posed method.

1 Introduction and Motivation

In practice, a vision researcher has no choice to detect
or not to detect any particular objects in a real time envi-
ronment. It is considered as a failure of a machine (ulti-
mately to a researcher) when you can not detect any ob-
servation. Therefore, detection and classification in an un-
constrained environment is always a challenging problem.
In the past years, many fruitful methods have been devel-
oped for the object detection [6] and classification. In gen-
eral, object detection can mainly be done by two ways: part
based [1, 2, 14] and shape based object recognition [11]. In
the part based approaches, an object structure is encoded by
using a set of patches covering important parts of the object.
These patches themselves are detected using interest point

operators. In affine invariant approaches for object recog-
nition small patches are extracted from the image which
are characterized by view point invariant descriptors [2].
These descriptors are used to match the object. Shape or
appearance based methods [3, 8–10] use a global approach
for capturing the object structure. Eigenspace (also well-
known as PCA [5]) is one of the powerful technique for ex-
tracting global structure from a high dimensional data set.
It has become well-known to the vision communities af-
ter its successful application for extracting facial features
in the Eigenfaces method [15, 16]. However, eigenspace
is only powerful for linear feature extraction and, there-
fore, it is not suitable for non-linear feature selection. Ker-
nel eigenspace (well-known as kernel PCA), on the other
hand, was introduced as a nonlinear extension of eigenspace
in [14], which computes the principal components [5] in
a high dimensional feature space which is nonlinearly re-
lated to the input space. Our interest is on non-linear data
and, therefore, we focus on using kernel eigenspace for
classifying our non-linear datasets. It has also previously
been introduced in some literatures as a KPCA. Yang [18]
and Moghaddam [8] compared the face recognition perfor-
mance and Eigenfaces method by using Kernel PCA with
the cubic polynomial kernel and Gaussian kernel, respec-
tively. In addition, Kernel eigenspace is also used to model
the variability in classes of 3D-shapes [13, 17]. Liu [7] has
recently employed it for recognition of facial expression us-
ing Gabor filters. Features derived by Gabor filters were
nonlinearly projected onto higher dimensional feature space
by employing fractional power polynomial as a kernel func-
tion. For the classification, traditional classifiers employed
for classifying the object features include Bayes classifier,
SVM, Discriminant functions, etc. The traditional classi-
fiers only work with linearly separable datasets. In order
to avoid this limitation, similarity measures using L1 or L2
norm are employed for classifying the features and/or ob-
jects. However, our focus is to deal with highly nonlinear
datasets that produce non-convex feature space.

This study will focus to separate and cluster the fea-
ture spaces with appropriate designing the radial basis func-
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tion. Once the features are separated with respect to the
datasets, we then define the maximum and minimum ranges
of eigendimensions or we group the feature space to clas-
sify the object classes such as car and non-car images. If
there are more classes in the space, it clusters appropriately
and then group them using the eigendimension ranges. It is
worthwhile to mention that the present study employs vari-
ous car’s viewpoint images for training the system. We de-
velop the feature space only using viewpoint images (neg-
ative and positive samples) and then classify the respective
feature spaces matching the eigendimension. Therefore, the
proposed method does not require to employ any traditional
classifiers. The classifications do not depend only on two-
class problems as proposed in [2] but it can successfully
classify the multi-class problems as well.

2 Kernel eigenspace for extracting non-linear
feature space

Let assume that our data mapped into a higher dimen-
sional feature space, φ(x1), . . . , φ(xl), is centered, i.e.,∑l

k=1 φ(xk) = 0. In this circumstance, the covariance ma-
trix is

C =
1
l

l∑

j=1

φ(xj)φ(xj)T . (1)

The eigenvalue equation now becomes λV = CV. The
eigenvalues (λ ≥ 0) and eigenvectors (VεF) need to be
computed satisfying the eigen equation. Instead of ex-
plicitly computing the nonlinear map φ, we achieve the
same goal by employing the kernel function k(xi, xj) =
(φ(xi), φ(xj)), which computes the dot product of vectors
xi and xj in the higher dimensional space. As all solu-
tions V lie in the span of φ(x1), . . . , φ(xl), we consider the
equivalent system substituting the Eq. 1 onto the basic eigen
equation of λV=CV

λ(φ(xk).V) = (φ(xk).CV) (2)

for all k = 1, . . . , l, and their existence co-efficient
α1, . . . , αl such that

V =
l∑

i=1

αiφ(xi). (3)

Substituting Eq. 1 and Eq. 3 into Eq. 2 and defining
a l × l gram matrix K := (φ(xi).φ(xj)), we arrive at this
eigenvalue problem for solving non-zero eigenvalues. A de-
tail calculation can be found in [14].

lKα = K2α (4)

For principal component extraction, we compute projection
of the image of a test sample φ(x) onto the eigenvectors Vk

in F according to

(Vk.φ(x)) =
l∑

i=1

αk
i (φ(xi).φ(x)). (5)

The kernel functions can also be considered of as func-
tions measuring likelihood between instances. If the two
samples are similar, the kernel will be greater. If the sam-
ples, on the other hand, are dissimilar the kernel value falls
to zero [2]. We use the following gaussian kernel for this
measurement:

k(x, y) = exp(−||x− y||2)/(2σ2) (6)

where the radial basis function 2σ2 or 2c. Some other ker-
nels are also widely used such as polynomials (k(x, y) =
(x.y)d) and sigmoid (k(x, y) = tanh(κ(x.y) + Θ)).

Finally, for extracting the features of kernel eigenspace,
let x be a test example whose map in the higher dimensional
feature space is φ(x). The features of the kernel eigenspace
for this test image can be derived by

f = VT φ(x) = AT B (7)

where A = α1, . . . , αl and B =
[φ(x1)φ(x), . . . , φ(xl)(x)].

The ultimate feature vectors become F = f1k, . . . , fnk

where k is the total number of eigenvectors that we retained
for each class.

3 Eigendimension as a classifier

In the visual classification, many popular classifiers
are employed for separating the features including nearest
neighborhood (such as L1 and L2 norm), SVM, Bayes clas-
sifier, fisher linear discriminent, etc. Among them, nearest
neighborhood is mostly used for such classification. In fact,
the above mentioned classifiers work as hyperplane classi-
fiers where the datasets are considered to be linearly sep-
arable. However, our employed datasets produced highly
non-linear and non-convex feature space and, therefore, the
traditional classifiers are, most of the time, not suitable for
such application. An alternate solution has been proposed to
learn the classifiers using adaboost in [2] that need manual
computation, and it is computationally expensive. To avoid
these, we propose eigendimension matching algorithm [12]
that work as a classifier itself.

In the eigenspace, classes of objects or different objects
conform to different spaces, and therefore, they can easily
be classified by comparing their vectorial dimensions. The
basis of the proposed method lies on this fact and we need
only a few eigendimensions for classifying the unknown
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manifold. In this method, we need to calculate the mini-
mum and maximum range of each eigendimension of the
training datasets. The classification decisions are:

• Every selected eigendimension of the testing dataset
should be greater than or equal to the minimum range
of the corresponding eigendimension of the training
dataset.

• Every selected eigendimension of the testing dataset
should be lesser than or equal to the maximum range
of the corresponding eigendimension of the training
dataset.

This, in fact, groups the eigenspace based on their classes
and they are classified by comparing their dimensional
space.

4 Experimental Details

To observe the effectiveness of kernel eigenspace’s abil-
ity to separate the feature space, we have designed two dif-
ferent experiments, (1) First experiment concentrates on be-
ing able to classify the various orientations of a car. (2) the
second experiment focuses on making an accurate and fast
decision on whether an image observed by our system is of
a car or not. The orientations of the cars are limited in three
viewpoints: Car-rear, Car-front and Car-side. The other
road side images are considered as non-cars.

The platform used in this study is a 1999 Toyota Land-
cruiser 4WD as shown in Fig. 1(a). It is equipped with
the appropriate hardware and software to provide the envi-
ronment for a developing drivers’ assistance system that in-
cludes traffic system monitoring, monitoring of the drivers’
state, vehicle state monitoring and vehicle control. A single
camera is used, shown in Fig. 1(b), for tracking the out-
side scenes including car and non-car images. Since camera
mounted in the car, we can obtain only the view points of
the other vehicle around the smart cars. These viewpoints
are classified as three different views: Car-rear, Car-front
and Car-side. The other road side images are considered as
non-cars.

For classifying a car’s presence in a particular image,
we employed the eigendimension matching technique. By
considering only the maximum and minimum ranges of the
cars’ feature space, we are able to classify images that lie
within this range as cars and the rest as Non-cars. We
then compare the success of the eigendimension matching
classifier against the conventional distance-based classifiers
including Euclidean and Mahalanobis distance. Some of
comparison results with other methods are also given in
Table 1. For detecting a car, a sliding window along with
Bayes voting method is employed.

(a) Toyota Landcruiser (b) Camera mounted in the car

Figure 1. Smart Car Platform: Toyota 1999

4.1 Data Sets

As a simulation for various traffic scenarios, we used the
standard and non-standard data sets, shown in Table 1, some
of them are available in the public domain. It should be
noted that all images are captured from real-world scenes
with natural lighting change, background and occlusion.
Some of the images used in the experiments are shown in
Fig. 2

Each of the images that has been used in our experiments
are initially resized into a 32 × 32 image from its original
resolution. The images obtained from the Smart Cars and
Caltech are colour images. These are converted to grey-
scale before the eigenspace is developed. The other images
from RTA and UIUC are already grey images, hence we
omit this pre-processing conversion step.

Table 1. Datasets used in the experiment
Data Set Train

Image
Test
Image

Our
Perfm.

Sad
& Ali
[2]

Fergus
[4]

Smart
Cars
-Car-back

1800 1800 97% Nil Nil

Smart
Cars -
Car-front

90 90 97% Nil Nil

Smart
Cars
-Car-side

34 34 88% Nil Nil

Smart
Cars
-Non-car

100 100 99% Nil Nil

Caltech -
Car-back

170 480 97% 96% 90.03%

RTA -
Car-front

260 260 96% 92% 87.2%

UIUC -
Non-car

260 260 97% 94% 82%

The training part of the data was used for computing the
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Figure 2. Some of the images used in the ex-
periments

non-linear feature spaces and base learners, while the other
part was employed for testing. The detection was based on
whether an object of interest, in our case car, was present in
the scene or not. Since the classification is our main focus,
details of object detection are out of scope of this study. The
results from experiments are then optimized by varying the
scale factor of the Gaussian kernel function.

5 Experimental Results

For both experiments, we first develop the feature space
for the different data sets according to Eq. 7. Fig. 3 and
Fig. 4 show the feature space of the various orientations of
the Smart Cars’ and the caltech datasets. Fig. 4 and Fig. 6
shows the clustering results between caltech Car-rear, RTA’s
Car-front images and non-car images. Fig. 3 and Fig. 4
represent the feature spaces for the first Experiment where
results of clustered spaces are well separated to implement
eigen dimensional matching for the classification. As for
Experiment 2, Fig. 5 and Fig. 6 show the clustering re-
sults between caltech Car-rear and UIUC’s Non-car images
and RTA’s (NSW Road Transport Authority, Australia) Car-
front and UIUC’s Non-car respectively.

As discussed earlier, we tuned the Gaussain Kernel with
the scaling factor to achieve higher classification rates. This
was a trial and error process. A scaling factor of 1 can be
noted as the optimum. We can easily observe the clear sep-
aration involved in the feature space. As the next step, we
conducted performance evaluation of the three classifiers
by associating a confidence statistic to each classifier. In
this case we used a T-statistic, from which we computed the
bounds for the confidence intervals. For both experiments
we computed the bounds at 95% confidence. The results
can be interpreted as follows - ”One can say with 95% con-
fidence that classifier X will produce classification rates be-
tween Y% and Z% with false positive rates between M%
and N%”, where X is the classifier, Y and Z the classifica-
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tion rates and M and N the false positive rates. Performance
of the various classifiers for both experiments are shown be-
low in Table 2 and Table 3.

The results show the excellent performance of the
eigendimension matching classifier as compared to the con-
ventional distance based classifiers after performing feature
extraction using kernel eigenspace. All car orientations, car
and non-car images are well separated in their respective
feature spaces. The reason for the success behind eigendi-
mension matching algorithm lies in the fact that the feature
spaces were well separated for classifying car and non-car
from their respective viewpoints. Detection performances
have also listed in Table 1 and the obtained results are also
compared with two well known methods.
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space (rbf 1.0)
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car spaces (rbf 1.0) of UIUC data

Table 2. Experiment 1 - Evaluation of the clas-
sifiers

Classifier Confidence Intervals
Classification
Rate

False Posi-
tives

Eigendim.
Matching

87.1%-100% 0%-10%

Euclid. Dis-
tance

61.2%-81.1% 18.5%-38.1%

Mahalan.
Distance

31.9%-100% 0%-64.4%

Table 3. Experiment 2 - Evaluation of the clas-
sifiers

Classifier Confidence Intervals
Classification
Rate

False Posi-
tives

Eigendim.
Matching

84.0%-100% 0%-14.4%

Euclid. Dis-
tance

66.4%-98.7% 2.4%-28.1%

Mahalan.
Distance

55.2%-97.4% 0%-23.4%

6 Conclusion

This study highlights the achievements of kernel
eigenspace in vehicle classification and detection. The suc-
cess of multi-class feature separations for the car classifi-
cation and detection of multi-class objects can be seen in
this paper. The ability of the classifier to identify the pres-
ence of a car from an occluded image is also a highlight
of this study. The simplicity of kernel eigenspace for fea-
ture extraction, which only involves optimizing the scaling
factor of the kernel, makes it more of an attractive prospect
than the method proposed by [2]. Feature classification us-
ing eigenspace grouping is also a simple steps compare to
other methods such as adaboost. However, the employed
data variations which claimed to be non-linear and multi-
class in this study was not clearly described due to its lim-
ited scope. Moving to the future, we will strive to improve
the detection rate by integrating the other methods such as
Adaptive Boosting and SVM classifier.

References

[1] S. Agarwal. Learning to detect objects in images via a
sparse part-based representation. IEEE Transaction on Pat-
tern Analysis and Machine Intelligence, 26(11):1475–1490,
2004.

[2] S. Ali and M. Shah. A supervised learning framework for
generic object detection in images. In International Confer-
ence on Computer Vision, pages 1347–1354, 2005.

[3] Y. Bogomolov and et al. Classification of moving targets
based on motion and appearance. In British Machine Vision
Conference, 2003.

[4] R. Fergus and et al. Object class recognition by unsuper-
vised scale invariant learning. In Computer Vision and Pat-
tern Recognition, 2003.

[5] R. C. Gonzalez and P. Wintz. Digital Image Processing.
Addison-Wesley Publishing Company Limited, 1986.

ACCV 2007 Workshop Subspace 2007

44



[6] S. Gopte. Detection and classification of vehicles. IEEE
Transaction on Intelligent Transportation System, 3(1):37–
47, 2002.

[7] C. Liu. Gabor-based kernel pca with fractional power poly-
nomial models for face recognition. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 2004.

[8] B. Moghaddam. Principal manifolds and probabilistic sub-
spaces for visual recognition. IEEE Transaction on Pattern
Analysis and Machine Intelligence, 24(6):780–788, 2002.

[9] H. Murase and S. K. Nayar. Visual learning and recognition
of 3-d objects from appearance. International Journal of
Computer Vision, 5(14):39–50, 1995.

[10] M. M. Rahman and S. Ishikawa. Recognizing human behav-
iors employing global eigenspace. In International Confer-
ence on Pattern Recognition, 2002(CDROM Version).

[11] M. M. Rahman and S. Ishikawa. Human motion recog-
nition using an eigenspace. Pattern Recognition Letters,
6(26):687–697, 2005.

[12] M. M. Rahman and A. Santhanam. Moving vehicle classifi-
cation using eigenspace. In IEEE/RSJ International Confer-
ence on Robotic Systems, pages 3849–3854, 2006.

[13] S. Romdhani and S. Gong. A multi-view nonlinear active
shape model using kernel pca. In British Machine Vision
Conference, pages 483–492, 1999.

[14] B. Schölkopf, A. J. Smola, and K.-R. Müller. Non-linear
component analysis as a kernel eigenvalue problem. Neural
Computation, 10:1299–1319, 1998.

[15] M. Turk and A. Pentland. Eigenfaces for recognition. Jour-
nal of Cognitive Neuroscience, 1991.

[16] M. A. Turk and A. P. Pentland. Face recognition using eigen-
faces. In International Conference on Computer Vision and
Pattern Recognition, pages 586–591, 1991.

[17] C. J. Twining and C. J. Taylor. Kernel principal compo-
nent analysis and the construction of non-linear active shape
models. In British Machine Vision Conference, 2001.

[18] M. H. Yang and N. Ahuja. Face recognition using kernel
eigenfaces. In International Conference on Image Process-
ing, pages 37–40, 2000.

ACCV 2007 Workshop Subspace 2007

45



Nonlinear k-subspaces based appearances clustering of objects under varying
illumination conditions

Xi LI and Kazuhiro Fukui
Graduate School of Systems and Information Engineering

University of Tsukuba, JAPAN
{xili@viplab.is,kfukui@cs}.tsukuba.ac.jp

Abstract

Unsupervised clustering of image sets of 3D objects has
been an active research field within vision community. It
is a challenging task since the appearance variation of the
same object under different illumination condition is often
larger than the appearance variation of different object un-
der the same illumination condition. Some previous meth-
ods perform the appearance clustering using k-subspaces
algorithm by assuming that the set of images of a Lam-
bertian object approximately reside in a low dimensional
linear subspace. This paper further extends the original k-
subspaces clustering algorithm to the nonlinear case. The
sum of the squares of distance to corresponding feature
points of each nonlinear subspace cluster centers is min-
imized using Expectation-Maximization like iteration pro-
cedure. Those distances can be novelly defined via inner
product by kernel trick. Experiments on different datasets
show that the proposed kernel-based nonlinear k-subspaces
clustering algorithm achieves much higher clustering rate
than its linear counterpart.

1 Introduction

Unsupervised clustering of image sets of 3D objects un-
der varying viewing conditions has been an active research
field within computer vision community[1, 2, 3, 4, 5, 6, 7].
Typically, there are several viewing aspects that could af-
fect the 2D image appearances during the projection pro-
cedure: the relative orientation between the viewing cam-
era and the target object, the illumination conditions under
which the images are acquired, and the reflective properties
of the surface. As in [7], this paper studies the problem of
unsupervised clustering of images sets of objects with Lam-
bertian surface taken under varying illumination conditions
while the target objects are in fixed poses. The objective is
to partition the given image sets into disjoint subsets corre-

Figure 1. Sample images of two persons un-
der varying illumination conditions in the a)
PIE database[8] b) YaleB database[9]. The ap-
pearance variation of the same object under
different illumination condition is larger than
the appearance variation of different object
under the same illumination condition which
renders the clustering according to the un-
derlying identity a difficult task.

sponding to underlying identities. It is a challenging task
since the appearance variation of the same object under dif-
ferent illumination condition is often larger than the appear-
ance variation of different object under the same illumina-
tion condition. Figure 1 shows an example of such case
using CMU PIE face dataset[8] and YaleB face dataset[9].
It can be clearly seen that a direct standard clustering using
Euclidean distance metric such as k-means algorithm will
yield poor result.

Previously, several algorithms have been proposed for
the problem of appearances clustering of objects under
varying illumination conditions[1, 2, 3, 4, 5, 6, 7]. The
most related to our work is[7]. In their work, J. Ho et al.
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presented an appearance-based methods for clustering im-
age sets of 3-D objects, acquired under varying illumina-
tion conditions, into disjoint subsets corresponding to each
subject.They iteratively performed appearances clustering
using K-subspaces algorithm by assuming that images for
the same object approximately reside in a low dimension
linear subspace[2, 5, 6]. The K-subspaces clustering algo-
rithm can fully exploit the linear geometric structure hidden
among the image sets. They proposed two method for the
initialization: One is based on the concept of illumination
cones and the other is based on spectral clustering, where
the affinity matrix is computed by image gradient compar-
isons.

Recent studies show that non-linear subspace approxi-
mation via kernel trick is superior compared to their lin-
ear counterpart because the real life high dimensional data,
such as the vectorized image data, is often inherently non-
linear rather than simple normally distribution[10]. One
of the most representative innovation has been the kernel
principal component analysis(KPCA), which makes use of
the kernel trick to non-linearize PCA and extract nonlin-
ear subspaces. This kind of kernel based algorithms can
model complex real life data structures more faithfully and
have achieved much success within machine learning and
pattern recognition communities[10]. Motivated by those
successes, this paper proposes a novel algorithm that per-
forms nonlinear subspace clustering in the mapped high
dimensional feature space. Firstly, the input patterns are
mapped into a high-dimensional feature space via a nonlin-
ear mapping function. Then the nonlinear subspaces are
extracted in the feature space and distances between the
mapped feature points and extracted nonlinear subspaces
are defined via inner products by kernel trick. The ob-
jective function, which is the sum of the squares of dis-
tance to corresponding feature points of each nonlinear
subspace cluster centers, is minimized using Expectation-
Maximization like iteration procedure. Experiments on
two different face datasets show that the proposed nonlin-
ear Kernel K-subspaces Clustering(Kernel-KsC) algorithm
converges quickly and achieves much higher clustering rate
than that of the original Linear K-subspaces Clustering
(Linear-KsC) algorithm.

The rest of this paper is organized as follows: Firstly,
we describe the Linear-KsC algorithm for unsupervised ap-
pearances clustering of objects under varying illumination
conditions in Section 2. Section 3 describes the proposed
Kernel-KsC algorithm in detail. Experimental results of
the clustering performance comparison between the Linear-
KsC algorithm and the proposed Kernel-KsC algorithm us-
ing CMU PIE face dataset and Yale face dataset are pre-
sented in Section 4. Section 5 draws the conclusion.

2 Unsupervised appearances clustering

J. Ho et al.[7] showed that both the illumination cones
based method and the gradient metric based method give
reasonable results for the initialization of the iteration pro-
cedure of the linear K-subspaces clustering. They claimed
that the computation of gradient metric was reliable in low-
resolution images and could give promising clustering re-
sults. Here we adopt the similar framework as in [7]. That is
to say, firstly we also use the gradient metric based method
for the initialization and then the initial rough clustering
results are further refined using subspace clustering. We
put the emphasis on showing the superiority of the pro-
posed kernel K-subspaces clustering algorithm over its lin-
ear counterpart. For the sake of completeness, we describe
the main idea of gradient metric based clustering initializa-
tion and the iterative procedure of the original linear K-
subspaces clustering algorithm briefly in the next subsec-
tions.

2.1 Spectral clustering based on gradient
affinity

Suppose there are N input images {I1, ..., IN} where
each image has s pixels. The idea of gradient affinity is sim-
ple to directly compare between image gradient pairs. The
differences in the magnitude of the image gradient and the
relative orientation over the whole image plane are summed.
Once we get the affinity matrix, standard spectral based
algorithms[11] can be used to perform unsupervised clus-
tering. For more details, refer to literatures[7]. Also, Some
variants of the spectral clustering algorithm have been de-
veloped for the problem of automatic determination of the
number of cluster centers[12]. This paper focuses on the su-
perior performance of the proposed nonlinear K-subspaces
clustering algorithm over its linear counterpart and we sim-
ply assume that the number of the cluster centers in known
in advance.

Previous studies on illumination invariants show that the
set of monochrome images of a convex object with a Lam-
bertian reflectance forms a convex polyhedral cone when
illuminated by an arbitrary number of point light sources
at infinity[4, 5]. This implies that the collection of appear-
ances of objects can be approximated by some low dimen-
sional linear subspaces. So the initial rough clustering re-
sults using spectral method based on gradient affinity can
be further refined via subspace clustering algorithm.

2.2 Linear K-subspaces Clustering

Linear K-subspaces Clustering(Linear-KsC) algorithm
is an extension of the traditional K-means clustering algo-
rithm. While the K-means clustering algorithm tries to find
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K cluster centers using Euclidean distance metric between
point pairs, the objective of K-subspaces clustering algo-
rithm is to find K linear subspace base clusters using dis-
tance metric between points and subspace bases. The K-
subspaces clustering algorithm shares the similar idea with
the k-means algorithm and the flowcharts of both iteration
procedure are almost the same. Firstly, each point is as-
signed to the nearest subspace cluster base. The distance is
computed as the length of the difference vector between the
original point and its reconstruction using the correspond-
ing subspace base center ( In the next section, we will show
that the computation of the distance can be written in the
form of inner product, which renders the extension to the
nonlinear case possible ) . Then the subspace bases are up-
dated by principal component analysis. Usually the itera-
tion procedure converges quickly in just several number of
loops. It should be noted that the original 2D image matrix
representation is firstly transformed into 1D vector form.

Specifically, the linear K-subspaces clustering algorithm
can be described as follows:

Algorithm 1: Linear K-subspaces Clustering(Linear-
KsC)

1. Initialization: Suppose there are N input images
{I1, ..., IN} where each image has s pixels. Starting with
a collection {S1, ..., SK} of K subspaces of dimension d,
where Si ∈ Rs. The corresponding orthnormal bases for
each subspace is denoted as Ui with size s× d;

2 Points assignment: Denotes ρ(xi) ∈ {1, ..., K} as the
cluster label for point xi. Then each point is assigned a new
label as follows:

ρ(xi) = argmink‖(Is×s − UkUT
k )xi‖ (1)

where k ∈ 1, ..., K;
3 Subspace update: Update each subspace bases Ui, i ∈

{1, ..., K} using the new label information. Ui can be
formed by retaining the eigenvectors corresponding to the
top d eigenvalues of the scatter matrix constructed using
those sample points with label i. This can be easily com-
puted via principal component analysis[10];

4 Repeat step 2 and 3 until convergence: The iteration
procedure will stop if the label information does not change
in two successive iteration steps.

3 Kernel K-subspaces Clustering(Kernel-
KsC)

Although the method in the previous section can give the
clustering result reasonable to some extent. It still has the
limitation that the refining procedure using Linear-KsC is
based on the assumption that the appearances of a target ob-
ject can be approximated well using linear subspace. Recent

studies show that often the distributions of the high dimen-
sional image data are inherently nonlinear. Many success-
ful algorithm for extracting those complex nonlinear struc-
tures in real life data have been proposed and one of the
most representative ones is the Kernel Principal Component
Analysis(KPCA)[10]. KPCA has achieved great success in
the areas of pattern recognition and image processing, such
as face recognition and image de-noising . We will show
that combining the K-type clustering framework with the
kernel based nonlinear feature extraction would yield much
better result for the problem of appearances clustering of
objects under varying illumination conditions.

In the next of this section, we first review the nonlinear
subspace extraction using KPCA for completeness. Then
we define the distance between point and nonlinear sub-
space in the transformed feature space. Intuitively, the dis-
tance can be defined as the “length” of the difference vector
between points and nonlinear subspace in the transformed
feature space. But a direct computation of the distance
is infeasible due to the high, or even infinite, dimensional
space. Fortunately, those difference vectors can be written
in the form of linear combination of transformed high di-
mensional feature points, which makes it possible to com-
pute the distance via “kernel trick” without explicitly im-
plement the inner product in the high dimensional feature
space. Next we will describe the proposed nonlinear Ker-
nel K-subspaces Clustering(Kernel-KsC) algorithm in de-
tail. Promising experimental results will be presented in
section 4.

3.1 Nonlinear subspace extraction via
KPCA

Recent studies in pattern recognition community show
that often the target distributions, such as those of multi-
view patterns of a 3D object or image sets of a single objects
under varying illumination conditions, is highly nonlinear.
The simple linear subspace representation is not suitable for
representing highly nonlinear structures. Several non-linear
dimension reduction methods have been proposed. One
representative is the kernel principal component algorithm
which is an unsupervised non-linear feature extractor[10].
Kernel principal component analysis allows estimation of
non-linear subspace for the data distribution such as face
images.

First, the input pattern xi ∈ Rs, i ∈ {1, ..., m} is trans-
formed from s dimensional input space I onto an higher
dimensional feature space F via a nonlinear mapping φ :
Rs → Rsφ , x → φ(x). To perform the standard PCA on
the mapped patterns, we need to calculate the inner product
(φ(xi)•φ(xj)) between the function values. Direct calcula-
tion of those inner products is difficult since the dimension
of the feature space F could be very high, possibly infi-
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nite. Kernel learning theory shows that if the nonlinear map
φ is defined through a kernel function k(x, y) which satis-
fies Mercers conditions, the inner products (φ(xi) • φ(xj))
can be calculated from the inner products k(x • y). A
common choice is to use the Gaussian kernel function:
k(x, y) = exp(−‖xi−xj‖2

σ2 ) where σ is the scale parameter.
The N orthonormal basis vectors ei, i = {1, ..., N}, which
span the nonlinear subspace, can be represented by the lin-
ear combination of all the m transformed patterns in the fea-
ture space φ(xj), j = {1, ..., m}, i.e. ei =

∑m
j=1 aijφ(xj)

where the coefficient aij is the j-th component of the eigen-
vector ai corresponding to the i-th largest eigenvalue λi

of the m × m matrix K defined by Ka = λa where
kij = (φ(xi) • φ(xj)) = k(xi, xj). Each ai is normalized
to satisfy λi(ai, ai) = 1 The projection of the mapped φ(x)
onto the i-th orthonormal basis vector ei of the nonlinear
subspace base can be computed by the following equation
via the kernel trick: (φ(x), ei) =

∑m
j=1 aijk(x, xj)

3.2 Kernel K-subspaces Clustering

The purposed Kernel K-subspaces Clustering(Kernel-
KsC) algorithm assigns each input pattern to its nearest non-
linear subspace base. Denote D(x, S) as the difference be-
tween an input pattern in the transformed space φ(x) and its
reconstruction using a nonlinear subspace S with the corre-
sponding orthonormal basis vector defined in Section 3.1.
Here we only keep the first d basis vectors the nonlinear
subspace S with higher eigenvalues. Then

D(x, S) = φ(x)−ΘS(ΞS(φ(x))) (2)

where ΞS(φ(x)) ∈ Rd is the projection of φ(x) onto the
nonlinear subspace S and ΘS(ΞS(φ(x))) is its reconstruc-
tion. Denote the d dimensional nonlinear subspace S as

S = [e1, ..., ed] (3)

= [
m∑

j=1

a1jφ(xj), ...,
m∑

j=1

adjφ(xj)]

then

ΘS(ΞS(φ(x))) (4)

= [
m∑

t=1

a1tφ(xt), ...,
m∑

t=1

adtφ(xt)]×

[
m∑

s=1

a1sφ(xs), ...,
m∑

s=1

adsφ(xs)]T φ(x)

= [
m∑

t=1

a1tφ(xt), ...,
m∑

t=1

adtφ(xt)]×

[
m∑

s=1

a1sφ(xs) • φ(x), ...,
m∑

s=1

adsφ(xs) • φ(x)]T

= [
m∑

t=1

a1tφ(xt), ...,
m∑

t=1

adtφ(xt)]×

[
m∑

s=1

a1sk(xs, x), ...,
m∑

s=1

adsk(xs, x)]T

Here the inner product in the transformed space , which is
difficult to compute due to the inherently high or infinite
dimension of the transformed space, is implemented via the
kernel trick. After some algebraic derivations, we obtain:

ΘS(ΞS(φ(x))) (5)

=
m∑

t=1

{
d∑

r=1

art

m∑
s=1

arsk(xs, x)}φ(xt)

=
m∑

t=1

Btφ(xt)

where

Bt =
d∑

r=1

art

m∑
s=1

arsk(xs, x), t = 1, ..., m (6)

So from the definition of equation2

D(x, S) = φ(x)−
m∑

t=1

Btφ(xt) (7)

For the sake of clearness, we represent x as x0 and let B0

equals to the value of −1, then

D(x, S) = −
m∑

t=0

Btφ(xt) (8)

That is to say, the difference vector D(x, S) can be written
in the form of linear combination of nonlinear transformed
input patterns. The square of the length of the difference
vector D(x, S) can be computed using the inner product as
follows:
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‖D(x, S)‖2 =
m∑

i=0

m∑

j=0

BiBjφ(xi) • φ(xj)

=
m∑

i=0

m∑

j=0

BiBjk(xi, xj)

(9)

Based on the definition of the distance between input pat-
terns in the transformed space and nonlinear subspace
bases, we can define the objective function to be minimized
as follows:

K∑

i=1

∑

ρ(xj)∈i

‖D(xj , Si)‖2 (10)

The iteration procedure of the proposed Kernel K-subspaces
Clustering (Kernel-KsC) method can be described as fol-
lows:

Algorithm 2: Kernel K-subspaces Clustering(Kernel-
KsC)

1. Initialization: Starting with an initial labeling of the
input image pattern {x1, ..., xn} into K clusters. Compute
the nonlinear subspaces Si, i = {1, ..., K} of the corre-
sponding data with label i via kernel principal component
analysis defined in Section 3.1;

2 Points assignment: Denotes ρ(xi) as the cluster label
for point xi. Then each point is assigned a new label as
follows:

ρ(xi) = argmink‖D(xi, Sk)‖2 (11)

where k ∈ {1, ..., K}. The ‖D(xi, Sk)‖2 can be computed
using equation 9;

3 Non-linear subspaces update: Update each nonlinear
subspace bases Si, i ∈ {1, ..., K} using the new label infor-
mation via kernel principal component analysis;

4 Repeat step 2 and 3 until convergence. The iteration
procedure will stop if the change of the value of the objec-
tion function is small enough, or equivalently if the label
information does not change anymore in two successive it-
eration steps.

The iterative procedure of the proposed Kernel-KsC al-
gorithm implement appearances clustering by assigning
each input pattern(the vector form of the original 2D im-
age matrix) according to the underlying nonlinear subspace
distribution structure, which is a more accurate description
of the real life data than its simple linear counterpart. Thus
a higher correct clustering rate can be achieved, which will
be demonstrated in the next section. The correct clustering
rate can be defined as:

K∑

i=1

τi/n (12)

where n denotes the total number of images and τi de-
notes the maximum number of images with the same true
identity clustered into the class i.

4 Experimental results

We used the CMU PIE database[8] and the Yale Face
Database[9] as the test sets for performing unsupervised ap-
pearance clustering under varying illumination conditions.
We compared the clustering performance of the proposed
nonlinear kernel K-subspaces method with that of its linear
counterpart. The iteration procedures of both algorithms
were initialized using the gradient affinity based spectral
clustering method proposed in [7]. For both of the data
sets, the proposed nonlinear K-subspaces clustering method
achieves satisfactory clustering results and outperforms its
linear counterpart. The detail of the experiments will be
given below. We use the Gaussian kernel function[10] in all
the following experiments.

For the CMU PIE database, we used a subset of 40
frontal or near-frontal images of 68 individuals which were
taken under different illumination conditions. Figure 1(a)
shows the sample image sets for two specific subjects. First,
the resolution of the original images are resized from orig-
inal 32 × 32 pixels to 16 × 16 pixels and the range of im-
age intensities are normalized to {0, 1}. Then the gradient
fields are computed and the spectral clustering was imple-
mented using the similarity measurement matrix . After
initialization, the proposed nonlinear Kernel K-subspaces
Clustering (Kernel-KsC) and Linear K-subspaces Cluster-
ing (Linear-KsC) algorithms are implemented respectively.
Although there are several studies show that the number of
cluster centers can be selected automatically by analyzing
the distributions of the corresponding eigenvalues such as
in [12], in this paper we assume the number of clusters,
i.e. K, is known in advance since the emphasis of this
work is to show the superiority of the proposed Kernel-
KsC algorithm, which is a nonlinear extension to the origi-
nal Linear-KsC algorithm by exploiting the inherent non-
linear distribution property in the input patterns, over its
linear counterpart. Figure 2(a) and (b) show the objective
function value during iteration procedure for the proposed
nonlinear K-subspaces clustering algorithm and the origi-
nal K-subspaces clustering algorithm, respectively. Figure
2(c) shows the correct clustering rate comparison of the two
methods during iteration. Although the appearance varia-
tion of the same person is fairly large due to the varying il-
lumination conditions,the proposed nonlinear K-subspaces
clustering method achieved satisfactory clustering results
and outperforms its linear counterpart greatly.

The Yale B database used in our experiment consists of
450 images with 45 frontal images of each person captured
under varying light directions. Figure 1(b) shows sample
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Figure 2. Experimental results for PIE database:(a) and (b)are the objective function values as a
function of the number of iterations for Linear-KsC and Kernel-KsC,respectively. (c) shows correct
clustering rate comparison of the two methods during iteration.
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Figure 3. Experimental results for YaleB database:(a) and (b)are the objective function values as a
function of the number of iterations for Linear-KsC and Kernel-KsC,respectively. (c) shows correct
clustering rate comparison of the two methods during iteration.

images of two persons from these subsets. Each image is
resize to resolution of 16 × 14 pixels and initialized using
the same method as for the PIE database. Figure 3 show the
experiment results.

Both of the above experiments clearly show that nonlin-
ear K-subspaces and linear K-subspaces method converge
quickly in just several iteration steps. And the proposed
nonlinear kernel-based K-subspaces clustering algorithm
achieves much lower error rate than the linear K-subspaces
clustering algorithm.

5 Conclusions and future work

This paper studies the problem of appearance clustering
under varying illumination conditions and a novel nonlin-
ear kernel K-subspaces clustering algorithm is presented.
The proposed Kernel-KsC algorithm further extends the
original K-subspaces clustering algorithm to the nonlinear

case since inherently the distribution of the real life im-
age data has a complex nonlinear structure rather than sim-
ple linear case. Firstly, the input space is mapped into a
high-dimensional feature space using nonlinear mapping
function. Then the nonlinear subspaces are extracted in
the feature space and distances between the mapped fea-
ture points and those nonlinear subspaces are computed
via inner products by kernel trick. Experiments on several
real life data sets show that the proposed nonlinear kernel
K-subspaces clustering algorithms converges quickly and
achieves higher clustering rate that that of the original linear
K-subspaces clustering algorithm.

Besides successful applications in computer vision
community, recently subspace clustering algorithm also
achieves successes in other areas such as data mining and
bio-informatics, where the data may also have inherent non-
linear properties. We believe that the proposed kernel-
based nonlinear subspace clustering algorithm can outper-
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form its linear counterpart for those problems. The appli-
cation of the proposed nonlinear K-subspaces clustering in
other fields might be future research directions.
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Abstract 
 

Human face image recognition is an active research 

area in image processing applications because there 

are many potential applications which cover human 

computer interactions, forensics, and surveillance.   

The proposed scheme based on holistic information 

face image obtained by multi-resolution wavelet 

analysis and minimum Mahalanobis classifier to 

classify the facial features to the person’s class. Facial 

feature is built by keeping small part of frequency 

domain coefficients which have big magnitude value. 

Next, from facial features we calculate the mean of 

each face class and global covariance. By assuming 

that each class has multivariate normal distribution 

and all classes have the same covariance matrix, 

Mahalanobis distance can be used to classify the facial 

features to person’s class. The aim of proposed system 

is to solve the high space requirement and retraining 

problems of classical LDA and PCA. The system is 

tested using several face databases and the 

experiments result is compared to well-known classical 

LDA and PCA method. 

Keywords : facial feature, matching, wavelet, LDA, 

eigenface  

 

1. Introduction 
 

The idea of face recognition was inspired by the 

ability of human being to recognize object or pattern 

based on training process. As we have known, human 

has good recognizer system for some objects or 

patterns because they have continuously performed the 

learning/training process since childhood. That process 

was adopted by some researchers to build any kinds of 

recognition systems, such as recognition system based 

on geometrical analysis, statistical analysis, neural 

network, etc [1]. 

Simply, face recognition is a matching process 

between a query facial feature and target facial features 

using certain technique. It is difficult to do because 

face variations in a single face can be very large, while 

the variations between different faces are quite small.  

Furthermore, face image information depends on 

ethnicity and registration method (i.e., capture method, 

lighting condition, and device). For example, frontal 

face images contain better information than lateral 

images as well as the face acquired by digital than 

analog camera.  

Face recognition has been examined since more than 

20 years ago and up to now it is still one of the most 

active research areas because there are some potential 

application areas which range from human computer 

interaction to authentication, security, and surveillance. 

Researchers have proposed some approaches of face 

recognition systems, such as face recognition based on 

statistical analysis, texture analysis, frequency analysis, 

artificial intelligent (neural network, genetics 

algorithm, fuzzy logic), and combination of them[1]. 

PCA-based and LDA-based face recognition systems 

have been successfully implemented [2,3,4,5] and 

encouraging results has been achieved. However, both 

of them have their limitation: large computational costs 

and high memory space requirement. The main 

limitation is retraining problems which means that we 

have to retrain all face image class to get optimal 

projection when the new classless are added to the 

PCA-based and LDA-based face recognition systems. 

Moreover, PCA has poor discriminatory power and 

LDA has singularity problems.  

This paper proposes an alternative face recognition 

system which is based on holistic or global information 

of face image and minimum Mahalanobis classifier. 

The holistic information of face image is obtained by 

multiresolution wavelet analysis of entire image 

without geometrical normalization. The minimum 

Mahalanobis classifier is implemented to classify the 
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facial feature to person’s class. The main aims of this 

method are to decrease the memory space requirement 

and to improve the performance recognition of the 

PCA and LDA-based face recognition. The proposed 

method consists of three main processes: pre-

processing, facial feature extraction, and face 

classification. 

 

2. Previous Work 
 

The previous works related to our approach are face 

recognition based on holistic or global approach as 

described in Ref. [2,3,4,5,7,8]. Ref. [7] describes face 

recognition based on wavelet packet tree analysis for 

frontal view of human faces under roughly constant 

illumination. The facial feature was built by 

implementing wavelet packet tree analysis of bounding 

box face and then calculating the mean and variance of 

sixteen matrixes wavelet coefficient. That approach 

does not work for non-frontal faces view and needs 

constant illumination to make the face bounding box. 

Ref. [8] describes face recognition based on 

combination of DCT analysis and face localization 

technique for finding the global information of face 

image, but it requires eyes coordinate, which have to 

input manually, to perform geometrical normalization. 

The global face information was created by keeping 

small part of big magnitude value of DCT coefficients.  

PCA [2, 4] and LDA [3, 4] is a well-known scheme 

for feature extraction and dimensional reduction. Those 

scheme and their variations have been successfully 

applied in face recognition. It was reported that LDA 

was superior in face recognition to PCA, but both of 

them have their limitations: large computational cost, 

high memory space requirement, and retraining 

problems. Moreover, PCA has poor discriminatory 

power while LDA has singularity problems. The mostly 

related approach to our system are face recognition 

based on LDA and its variations as described in Ref. 

[3,4,5,6]. Ref. [3] proposed the combination D-LDA 

and F-LDA to cover the weakness of classical LDA. It 

only solves the poor discriminatory and singularity 

problem. However, it still needs high memory space 

and should be retrained when new face class is added. 

Ref. [4] implemented DCT to reduce data dimensional 

and only small part of DCT coefficients is analyzed by 

LDA. Ref. [5] implemented the wavelet transforms to 

reduce the dimension of face image and employ a 

regulation scheme for the within-scatter matrix and use 

optimization procedure. It was reported that the 

Daubechies (Db-6) was implemented to filter image to 

resolution 29 x 23. However, this resolution is still 

coarse and lack of frequency-resolution. 

In our method, we implement multiresolution 

wavelets analysis for reducing the original data 

dimension and minimum Mahalanobis classifier for 

classifying the face class without geometrical 

normalization and bounding box processing. It is 

difficult to compare our results with previous works 

because time consuming rarely reported and the test 

was carried out with different databases. Therefore, our 

approach results will be compared to classical PCA and 

LDA which has been tested with four face databases. 

 

3. Subspace Based Face Recognition 
 

3.1  Classical PCA  

The aim of PCA is to find a transformation data 

such that feature clusters are most separable after the 

transformation. The most popular PCA analysis that is 

implemented for face recognition is eigen-face 

algorithm developed in Ref. [2] as described below. 

 Suppose a set of face image then we can define a 

set of vector X=[x1, x2, x3, … , xN],  where N is  number 

of member set,  by converting each image to a vector xi 

of length m (m= image width x image height) and then 

placed xi into X. Next, from matrix X, we calculate the 

mean of X using ( )∑ =
=

n

k kxnX
1

/1 and the covariance 

using T

X XXXXC ))(( −−= . If the size of matrix X is 

large the calculation of covariance matrix will need 

high memory space and large computational cost. Turk 

et. all [2] proposed an strategy to overcome that 

limitations such as )()( XXXXC
T

X −−= . The 

PCA projections matrix U can be obtained by eigen 

analysis of the covariance matrix CX using the 

following equation: 

 iiiX uuC λ= ,   i = 1, 2, 3, … , m (1) 

Where ui is the i-th largest eigen-vector of CX. We 

select a small number of eigen-vectors (m) 

corresponding to the largest eigen-value (i.e. m<n) and 

then the selected eigen vectors are placed into U=[u1, 

u2, u3, … , um]
T
. The projection of face image features 

to eigenface is obtained by equations below: 

 ( )XXU
T −=Τ   (2)

Finally, the matching process is performed by 

calculating the score between the query (probe) facial 

features projection and the training facial feature 

projection set using L2 metric. The minimum score is 

selected as the best likeness. This system requires high 

memory space for training and matching process. 

In this research we modify the above PCA algorithm 

for large samples and each sample has some member. 
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As note that, the facial matrix is obtained by DWT 

analysis. The detail modified algorithm is described 

below: 

1. Let define a big matrix Q∈ℜ 
m x n x c

 which is 

collection of facial matrix class as denoted by 

Q=[C1, C2, C3,…, Cc], where Ci=[x1, x2, x3,…, xn]  
is vector collection of member class, xi is a column 

vector each image’s holistic information, c is 

number of classes, and n is number of member 

class Ci. 

2. The mean of each class is calculated by 

( ) ( )∑ =
== in

k kiii xnCE
1

/1µ and then placed its 

into the mean vector set i.e. 

[ ]Cµµµµ ,...,,, 321=Μ   

3. The global covariance is calculated 

using ( )( )T

kk

C

k kkQ CC
c

C µµ −−= ∑ =1

1
.  

4. The PCA projections matrix U can be obtained by 

eigen analysis of the covariance matrix CQ  using 

the equation (2) 

5. The projection of each class matrix is performed 

using equation ( ) ciCU ii

T

i ,...,3,2,1, =−=Τ µ  

6. Finally the similarity is determined by Euclidean 

distance (d) with the match criteria is the minimum 

of d and d is less then the threshold q.   

The main problem of the PCA method is lack of 

power discriminant and requires retraining of all 

samples to obtain the optimum projection matrix.    

 

3.2  Classical LDA  

Like PCA, the main purpose of LDA is to find a 

linear transformation such that feature clusters are most 

separable after the transformation. It can be achieved 

by scatter matrix analysis. Let a big matrix Q∈ℜ 
m x n x c

 

as defined previously. The between-class scatter matrix 

Sb and the within-class scatter matrix Sw are 

respectively defined as 

 ( )( )T

i

c

i

iib mmmmnS −−= ∑
=1

 (3) 

 ( )( )T
i

c

i Cx

iw mxmxS
ij

−−= ∑ ∑
= ∈1

 (4) 

Where ( )∑ =
= in

k kii xnm
1

/1 is the mean of class Ci 

(mean of i-th class) and ( )∑ =
=

c

k kmcm
1

/1 is the 

mean of all samples (global mean).  

The class separation can be measured by the ratio of 

determinant of between-class scatter matrix of 

projected samples to the within-class scatter matrix of 

the projected samples, as equation below.  

 

ESE

ESE
E

w

T

b

T

E
maxarg=  (5) 

Where E =[e1, e2, e3,…, em] is set of eigen-vectors 

corresponding to m largest eigen-values λi, which 

satisfy the equation (6).  The eigen-vector and eigen-

values can be obtained by computing the inverse of Sb 

and then solving the eigen problem of 
bW SS

1− matrix. 

 
iWiib eSeS λ= , i = 1, 2, 3, … , m (6) 

The projection of the linear discriminant functions is: 

 ( )ii

T

i mCECY −=)(   (7) 

The intrinsic problem of above algorithm is 

singularity problem in scatter matrix due to the high 

dimensional data and small number of training samples. 

Some methods have been proposed to solve the 

singularity problem as described in Ref. [3,4,5]. 

However, those methods can only solve the large 

computational load and can reduce memory 

requirement, but the retraining problem has not been 

covered yet. 

 

4. Proposed Method 
 

Face recognition algorithm discussed in this paper is 

shown in Fig. 1.  

 

Figure 1. Proposed face recognition diagram bock. 
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It involves creating the holistic information, training 

and recognition process. This system works on gray 

scale image. If the system receives the color image, it 

will automatically be converted to grayscale using the 

luminance model which is used by NTSC. In the pre-

processing block, each face image is normalized and 

equalized to remove non uniform lighting effect on face 

capturing. Next, the normalized and equalized face 

image is decomposed by multiresolution DWT 

algorithm as explained below. The multiresolution 

wavelet analysis can be performed by implementing 

repeatedly classical DWT which is called as filter bank 

decomposition, as shown in Fig. 2. 

 

Figure.  2. Filter-bank wavelet decomposition. 

Where A, H, V, and D is calculated by the classical 

DWT algorithm below: 

 

[ ]
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yx

fdgD

fghV

fhgH

fhhA

 (8) 

where, * denote convolution , ↓2 represent down 

sampling for x and y direction, g and h are high and 

low fast filter.  

In order to make simple and fast the decomposition 

process, we apply two different Daubachies wavelets 

basis, namely Db4 and Db1. First, Db4 basis 

decomposes face images until level 2 and it just return 

the approximation coefficients. Second, the db1 basis 

decomposes the approximation coefficient, which is 

outcome of the first step, until maximum level. The 

pseudo code of multiresolution wavelet analysis is 

written below.    
func dwtMultiDecompose(I:array[0 … r-1, 
0 .. c-1]) 

   //First step for DB 4 basis 
   for res = 1 to 2  do 
        [A, H, V, D]

res
=dwt (I,h,g) 

        I = A
res
; 

          end for 
         // Second step for DB1 basis 
          j = size(A,1) 

c ← A/2
j
 

g ← 2
j
 

while g ≥ 2 do 
  for row ←1 to g do 
      decStep(c[row, 1..g]) 

  end for 

  for col ← 1 to g do 
      decStep(c[1..g, col]) 
  end for 

  g ← g/2 
end while 

      return (c) 
end func 

The multiresolution of wavelet coefficients is denoted 

by c. The pseudo code above will return the wavelet 

decomposition coefficient as shown below. 

    
 (a)  (b)  (c) 

Figure  3. The output of multiresolution wavelet 

analysis psudocode: (a) original image, (b) the First 

step decomposition coefficients, (c) the second step 

decomposition coefficients. 

Each face images is represented using small part of 

the second step decomposition coefficients which is 

called as holistic information. The holistic information 

is a compact and meaningful facial feature created by 

three steps: firstly, convert the frequency domain 

matrix coefficients to vector using row ordering 

technique; secondly, sort the vector descending using 

quick sort algorithm, finally truncate a small part of 

vector (i.e., less then 100 elements). Those processes 

are performed on both training and query (probe) face 

images but in the training process those are done one 

times.   

In training process, the system calculates the mean 

of each facial feature class and global covariance using 

the mean and the covariance analysis and then save 

them as meaningful data for face classification as 

describe below. 

Suppose Q is collection of wavelet domain facial 

matrix class, which is defined as Q=[C1, C2, C3,…, Cc], 
where Ci=[x1, x2, x3,…, xn], xj is holistic facial feature 

vector of j-th member of class Ci,  c denote number of 

classes, and n denote number of member class Ci. It is 

easy to calculate the mean of each class and then 

placed it to matrix as Μ=[µ1, µ2, µ3,…, µc], where 

( )∑ =
=

N

k ki xN
1

/1µ . Next, we can determine the 

global covariant using equation below:  

( )( )T

ij

c

i Cx

ij xx
c

ij

µµ −−=Λ ∑ ∑
= ∈1

1
;  j = 1, 2, 3, … , 

n.  (9) 

If assumed that the global covariance is multivariate 

normal distribution and the covariance matrix is not 

…
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diagonal, the Bayesian classifies become minimum 

(Mahalanobis) distance classifier as written below. 

 [ ]cic ffffF ...,,,min ,32=   (10) 

Where fi is  

 ( ) ( )
i

T

ii xxf µµ −Λ−−= −1

2

1
 (11) 

The minimum score is decided as the best likeness. 

This algorithm has some advantages in classifying the 

face image class, such as:     

1. It is simple to classify face because it does not 

need to determine the eigen-values and vectors of 

covariance matrix as performed in the PCA and 

LDA. 

2. When the new class member is added to the set, 

the proposed system just calculate its mean and 

covariance only, then placed the new class’s mean 

into the matrix M and update the previous 

covariance matrix by adding with the new class’s 

covariance. 

3. The computation complexity is less than the 

computation complexity of PCA and LDA 

The weakness of the proposed method is the covariance 

matrix will be singular due to the high dimensional data 

and small number of training samples. To avoid the 

singular problem, we reduce the data dimensional of 

face image using multiresolution wavelets analysis. By 

keeping small part of transformed coefficients, the data 

dimensional can be reduced about 99.39% when the 

image size is 128 x128 pixels (i.e. we just keep less 

then 100 of 16384 coefficients).  

The parameters used to know the effectiveness of 

the proposed method are success rate, training time, 

querying time, and receiver operating characteristics 

(ROC) curve. The training and querying times should 

be considered when the real-time system recognition is 

built 

 

5. Experiments and Results 
 

The experiments were carried out in four face 

databases: ITS-Lab. Kumamoto University database, 

EE-UNRAM database, Indian database [11], and ORL 

database [9,12], Each database has special 

characteristics.  

ITS-Lab database consists of 48 persons and each 

person has 10 pose orientations as shown on Fig. 4(a). 

The face was taken by Konica Minolta camera series 

VIVID 900 under varying light condition. EE-UNRAM 

database consists of 40 persons and each person has 8 

pose orientations: looking front, looking left about 30
0
, 

looking right about 30
0
, looking up, looking down, and 

wearing accessory such as glasses. Indian database 

consists 61 persons (22 women and 39 men) and each 

person has eleven pose orientations: looking front, 

looking left, looking right, looking up, looking up 

towards left, looking up towards right, and looking 

down. Indian data base also included the emotions: 

neutral, smile, laughter, sad/disgust. ORL database is 

grayscale face database which was taken at different 

times, under varying the lighting, facial expressions 

(open/closed eyes, smiling/not smiling) and facial 

details (glasses/no glasses). All of the images were 

taken against a dark homogeneous background. Faces 

are subjects in an upright, frontal position (with 

tolerance for some side movement). ORL database is 

grayscale face database that consists of 40 person most 

of them are men. The face orientation of all databases 

is shown on Fig. 4. 
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(d) 

Figure 4. Example of face poses: (a) ITS-Lab., (b) 

INDIA, (c) UNRAM, and (d) ORL. face database 

The first experiment was performed to investigate 

the effect of facial vector size to the success rate. This 

was performed on ITS-Lab. database and 4 training 

face per person. The experiment was performed as 

follow. The first 4 images per person from the ITS-Lab 

database were selected to form a training face image set 

(total 192 face images). The rest of the face images 

(288 images) were used as query image (probe image). 

The test result is plotted on Fig. 4. Generally, the 

success rate slightly decreases when the size of facial 

feature goes to high size. The facial feature size, which 

is good enough to achieve high success rate (Fig. 5) 

and need short enough training and querying time (Fig 

7.a and  Fig. 7.b ), ranges from 45 until 80 elements. 

This result can be achieved because the face image of 

ITS-Lab was taken by good camera and the face pose 

variations are not very large as shown on Fig. 4(a). 

Also note that the proposed method also shows higher 

success rate and less training and time query than PCA 

and LDA method. 

The objective of the second experiment is to 

investigate the effect of number of face image training 

per person’s class to the recognition rate. It was perfor- 

 Figure 5.  The success rate as function of features size. 

med on ITS-Lab database, and 64 elements of facial 

features size. The result shows that the more face 

training per person’s class was given the better success 

rate was achieved as plotted in Fig. 6. It means that the 

more face image is trained the better mean and 

covariance projection is gotten. The proposed methods 

show the best result among the other methods when the 

training is more than 2. We did not perform the test 

from 1 training face per person’s class because the 

LDA and proposed-based face recognition will give the 

singular projection matrix when 1 face image per class 

is. 

The time consumption of the proposed method is 

shown on Fig. 7. This result was gotten when the test 

was performed on ITS-Lab database, 4 training image 

per person’s class, and the personal computer with Intel 

Pentium Celeron D 3.06 GHz, 1 GB RAM, and 160 

GB hard disk.  It shows that the proposed system needs 

less time in both training and querying process than 

other methods because it does not need eigen analysis. 

The fourth experiment was performed to know the 

robust of the proposed method on several face 

databases. The test was carried out on 64 elements 

facial feature size and 4 faces training for each class. 

The difference of success rate among four databases is 

not more than 3 %, as shown in Fig. 8, it means that the 

proposed method is robust for tested face databases. 

Furthermore, the proposed method is superior to 

classical PCA and LDA. 

There are two aspects which can be used to justify a 

good recognition system: first, how well the system can 

match image from the same people; second, how well 

the system distinguish images from different people the 

False Acceptance Rate (FAR). FAR is the success 

probability of unauthorized user to be falsely as 

accepted or recognized as legally user.  FRR is the 

success probability legally registered user to be falsely 

 
Figure 6.  The effect of number of face training per 

class to success rate in the ITS-Lab face database. 
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(a) 

 
(b) 

Figure  7. The time consumptions comparison: (a) the 

training time and (b) the querying time as function of 

features size in the ITS-Lab face database. 

 
Figure  8. The robustness of success rate in the four 

face- databases. 

[10].Based on this information we performed the last 

test for knowing the effectiveness of the proposed 

system. In this test, we will investigate two important 

parameters, namely the False Rejection Rate (FRR) and 

rejected by the system. If the value of FAR and EAR is 

equal then this point is called as Equal Error Rate 

(EER). The test was performed on four databases (i.e., 

ITS-Lab, INDIA, UNRAM, and ORL). Those of 

databases are subjected as predicted positive (known 

face) and the frontal face image of CVL database is 

subjected as predicted negative (unknown face). In this 

case, we add a threshold for the distance measure 

between features permit rejection of unknown face and 

verifications of those that are known. In other word, we 

sent an unknown face and a “claimed” identity to the 

system for verifications. If the distance between the 

face’s features to those of database image which it is 

being verified less than the given threshold, the claimed 

is accepted, otherwise, it is rejected. The system which 

performs perfect classification is denoted by 100% true 

positive rate and 0% false positive rate or the value of 

ERR is small or close to zero. The last experiment was 

performed on 36 elements facial feature size and 4 

faces training per person’s class.  

All of the experimental results show that the 

proposed method has good performance, robust to 

tested face databases, and need short training and 

querying times. This performance can be achieved 

because the holistic information of face image have 

good low-frequency resolution representation. In this 

case, the low frequency component is good enough for 

face image representation because most information of 

signal can be found in low frequency component. It can 

be described that if an image is transformed to 

frequency domain and removed the high frequency 

component, the reconstruction image will loss a little 

significant information. This phenomenon was 

successfully used for signal compression. Moreover, 

wavelet decomposition property gives advantage for 

features extraction, such as it has good capability to 

separate information signal to low frequency 

component and its coefficients is uncorrelated with 

other frequency indices.  

The multiresolution wavelet decomposition is an 

efficient way of reducing the original data dimensional. 

In this paper we shows that the original data size can be 

reduced about 99.61% of original size (i.e., 64 

elements of 16384 elements), while the success rate is 

high enough. Also note that holistic information of face 

image was obtained by fast wavelet transforms and the 

classifier just need mean of each face class and global 

covariance to classify an image to person’s class. 

Computational complexity of wavelet decomposition is 

linear with the number (N) of computed coefficients 

(O(N)), where N number of data. Therefore, our 

method needs short training and querying times. 
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Figure 9. ROC curve of proposed method compared to 

the other systems on: (a) ITS-Lab, (b) combination face 

database. 

. 

6. Conclusion 
 

The alternative approach of human face image 

recognition has been successfully implemented which 

based on holistic/global information obtained by 

multiresolutioon wavelet analysis and minimum 

Mahalanobis classifier. It is an efficient way of 

reducing space requirement and computational load of 

LDA and PCA. The proposed method gives good 

performance, robust to face databases, need little 

training and querying times, and performs better 

classification which is shown by the smallest EER of 

other methods. Moreover, the proposed methods could 

overcome the retraining problem. Based on these 

results, we think that our method can be adopted for 

real-time face recognition. This process needs some 

improvements such as applying cluster face analysis to 

make group of face based on skin color detection and 

implementing the moment to detect the angel of face 

capture. 
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Abstract—To measure the similarity between two high dimen-
sional vector data, correlation coefficient is often used instead
of Euclidean distance. For this purpose, the high dimensional
vectors are mapped into hyperspherical points by normalization
and the distance is measured as the length along geodesic on the
hypersphere. On the hypersphere, the Pythagorean theorem does
not hold and it makes difficult to apply data analysis methods
defined in Euclidean space, such as principal component analysis,
to hyperspherical data. In this paper, we propose spherical
principal component analysis to analyze hyperspherical data
on the criterion of spherical least squares. Spherical principal
component analysis is defined as lower dimensional great hy-
persphere fitting to higher dimensional hyperspherical data. We
also propose the approximation of spherical principal component
analysis because it is a kind of non-linear minimization.

I. INTRODUCTION

Recently, data analysis on hypersphere is getting of great
significance.

In computer vision, omnidirectional camera such as cata-
dioptric camera and fish-eye camera is widely used for robot
navigation, surveillance system and so on. To understand
and to unify omnidirectional cameras, spherical camera is
defined [2], [4], [8], [10], [13], [15], [17], [18]. On the
spherical camera, points and lines in 3-dimensional space are
projected to points and great circle on 2-dimensional sphere
(��), respectively. Then analysis of � � data is needed in
computer vision. Camera motions are also identified as a
sequence of spherical points which are corresponding to the
front directions of cameras. Since we do not need to consider
the horizontal directions of cameras and the distances from
cameras to an object by rotating and scaling of the size of
images appropriately. Therefore, smoothing the camera motion
is realized by fitting a small or great circle to an sequence of
spherical points[6], [7], [14].

In finance engineering, the correlation matrix, consists of
inner products of each of two hyperspherical data, plays an
important role in interest model[3]. To reduce the computa-
tional cost of simulating the model, dimension reduction of the
correlation matrix, which is the fitting of a great hypersphere to
the data on the unit hypersphere, is an important process[12].
In the fields of bioinformatics and data mining, when ana-
lyzing gene expression profile data and processing text data,
we can regard the data as hyperspherical points[16]. These
examples show that data analysis on hypersphere is getting of

great significance recently.
In this paper, we propose principal component analysis

(PCA) for spherical data, called spherical PCA (SPCA), to
analyze hyperspherical data on the criterion of least squares
(LS). SPCA is defined as low dimensional great hypersphere
fitting to the high dimensional hyperspherical data. We also
propose the approximation of SPCA, called Euclideanization,
because SPCA is a kind of non-linear minimization. We also
refer two methods to reduce the dimension of data space,
that is, extracting a low-dimensional small hyperspherical
structure embedded in high-dimensional hypersphere. The
former method is called SLS-ESG, abbreviation of spherical
LS (SLS) by Euclideanization for stereographic projection
(SGP) [9], and the latter method is called sequential dimen-
sion reduction (SDR)[9].

II. SPHERICAL PCA (SPCA)

One purpose of PCA is compressing data dimension to
remove the noise on the data. Therefore SPCA should be
defined as the data compression method for the hyperspherical
data. From this point of view, SPCA is the low dimensional
fitting to the high dimensional hyperspherical data.

A. Spherical Least Squares (SLS)

For the hyperspherical data, the fitting error should be based
on not the Euclidean distance but the distance along geodesic
(angle) between the data and fitting space.

The distance between the hyperspherical data � � and some
specific subset of hypersphere � is defined as dist���� �� �
������ ��������� ��. When the best fitting is defined as the
minimizer of the sum of square distance, the fitting error is
given by

��dist���� ����. We call the minimization of sum
of square of the distance along geodesic of hypersphere, SLS.

B. Spherical PCA (SPCA)

In spherical geometry, a line on the sphere is equivalent to
a great circle of the sphere. Then SPCA is defined as low
dimensional great hypersphere fitting to the hyperspherical
data. In the low dimensional great hypersphere fitting, we
should pay attention to the following fact.
Fact: Let �� and �� (� � �) be the best �-dimensional
great hypersphere fitting and �-dimensional great hypersphere
fitting, respectively. Generally, � � �� �� holds.
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Figure 1 is the example of SPCA, that is great hypersphere
fitting of the data and the blue circle is the result of � � fitting.
Red point is the result of �� fitting, that is, the center of
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Fig. 1. �� fitting (red) does not belongs to �� fitting (blue).

the data which minimizes the square distance along geodesic
between data. It is easy to find that the center is not on the
best �� fitting, that is �� �� ��.

On the ordinal PCA in the Euclidean space, the Pythagorean
theorem ensures the best �-dimensional hyperplane fitting is
always belongs to the best �-dimensional hyperplane fitting
when � � � by using the criterion of LS. However, the
Pythagorean theorem does not hold on the sphere by using
the distance along geodesic, then the fact holds.

III. HYPERSPHERE FITTING

For SPCA, it is enough to consider the great hypersphere
fitting, but also the small hypersphere fitting is also considered
in the paper. Of course the great hypersphere fitting is the
special case of the small hypersphere fitting.

Let ���� be an �	
-dimensional Euclidean space, and �
be its origin. The �-dimensional unit hypersphere is defined
as

�� � �� ��� � ��� � 
� � � ������ (1)

We consider a �-dimensional small hypersphere on the unit
hypersphere ��. Generally, hypersphere is represented as the
intersection between �� and a � 	 
-dimensional Euclidean
space ����.

Let 
 be the center of the small hypersphere,
��
�
 � � is

perpendicular to ���� (when � � ����, 
 � �).
Let one of the orthonormal basis of associated linear space

���� be 	��� � � � � ����
, and � � � �� � � � ���� � be the
�	
��	
 matrix arraying the orthonormal basis (Generally,
orthonormal coordinate matrix � is not unique to represent the
same Euclidean space), the �-dimensional small hypersphere
is parameterized as�

�
��� � 
	��� � � ����� ����� � 	

�
(2)

where 	 �
�

� ������, which is the radius of the small

hypersphere. The small hypersphere is described only by the


 and �, but radius 	 is also used to represent the small
hypersphere as 	���
� �� for convenience. When we consider
only its radius 	, we abbreviate the representation to 	� �.
Note that a great hypersphere 
� � � �� is described only by
the �.

The aim of the paper is dimension reduction of the data
distributed on the unit hypersphere � � on ����, and compress
the data to the data on the great and/or small hypersphere
	���
� ��. On small hypersphere fitting, 
 (,	) and � are
chosen so as to minimize the square distance along geodesic.
And on great hypersphere fitting, only � is chosen so as to
minimize the square distance along geodesic.

Let �� (���� �� � 
;
 � 
� � � � � � ) be data on ��, and �� �
dist��� � 	���
� ���, there holds

�� � ��������� �	 	������ ���� (3)

To estimate the best small and/or great hypersphere under
LS along geodesic is to minimize


 �



�

��
���

��� � (4)

which is a function of 
 (,	) and �. This is the hypersphere
fitting under SLS. However, it is not easy to solve the
hypersphere fitting under SLS because the differentiation of
������ �� with respect to � is needed to apply the Newton’s
method for minimizing the equation (4) or some other min-
imizing technique computing gradient of the cost function.
Therefore, we propose the approximations of SLS.

IV. EUCLIDEANIZATION

An approximation of SLS, called Euclideanization of hy-
persphere, is presented. Euclideanization is the adjustment of
the metric of projected space to keep the metric of the original
space as well as possible.

A. Example to understand Euclideanization

To understand the general case of Euclideanization, fitting
small circle to data on the sphere (� � �, � � 
) is discussed
for example. SGP is used to map �� to ��.

The characteristics of the data are as follows: we regard the
true small circle as latitude of the globe. We determine the
arc of the small circle by setting some longitude range (the
angle unit is radian) on the latitude. We generate 100-data
from uniform distribution on the arc of the small circle and
adding the Gauss noise of 0.01-rad. standard deviation along
meridional direction. We determine � � as rotating the 100-
data by 3-dimensional rotation matrix. We estimate the best
small circle from the 100-data under some criterion.

The results are shown as the true small circle as an latitude
for convenience. The green line represents the true small circle
and the red line represents the estimated small circle.
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B. Hyperplane fitting

The easiest way to estimate small hypersphere is as follows:
Fitting �	
-dimensional hyperplane to �� by LS criterion, and
the estimated small hypersphere is the intersection between the
hyperplane and the unit hypersphere (Gray et al.[11] uses this
estimation as the initial value of their algorithm).

−1−0.500.51

−1

−0.5

0

0.5

10

0.2

0.4

0.6

0.8

1

Fig. 2. Hyperplane fitting: latitude ���, longitude range ���.

Figure 2 shows the estimation of the small circle by plane
fitting. When a longitude range is small, the estimation tends
toward the tangent plane of the unit sphere because the sphere
itself is approximated by the tangent plane.

C. Estimation by SGP

To overcome the problem that an estimation tends toward a
tangent hyperplane, we try to estimate a small circle by SGP.
SGP has a property that the small circle on the unit sphere is
projected to the circle on the projective plane. Therefore, we
estimate the small circle by fitting the circle on the projective
plane under LS criterion and project the circle back to the unit
sphere by SGP. Figure 3 shows the estimation by SGP for the
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Fig. 3. Estimation by SGP: latitude ���, longitude range ���

same data as Fig.2. By SGP, the tendency toward a tangent
hyperplane is reduced.

The estimation method referred in this subsection is as
follows: first, fitting �-dimensional small hypersphere or �-

dimensional hyperplane on the �-dimensional projective hy-
perplane under LS criterion. Next, mapping the fitted �-
dimensional small hypersphere or �-dimensional hyperplane
onto the �-dimensional hypersphere � � by the inversion.

D. Euclideanization for SGP (ESG)

The estimation method referred in the previous subsection
sometimes gives a poor result. Then, we propose the weighted
least squares (wLS) where the weights are determined by
the changing of metric under SGP. Simply speaking, the
enlargement rate of some point on the hypersphere by SGP is
�, the weights are determined as ���. Like this, the geodesic
distances are approximately replaced with weighted Euclidean
distance. And the weights are determined by changing of
metric[1]. We call the weighting Euclideanization.

In this subsection, we propose a method to estimate the
approximation of SLS by Euclideanization for SGP (ESG).
We call the method the SLS-ESG.

First, Fig.4 shows the estimation by ESG for the same data
as Fig.2. For this dataset, the estimation by ESG gives almost
the same result as the LS without weighting (Fig.3).

−1−0.500.51

−1

−0.5

0

0.5

10

0.2

0.4

0.6

0.8

1

Fig. 4. Estimation by ESG: latitude ���, longitude range ���

However, Fig.5 (up) shows a very poor estimation by LS
without weights. The reason of such a poor estimation is that
the existence of data around the north pole. The enlargement
rate of the area by SGP is getting higher when the area is
getting closer to the north pole. When we apply ordinary LS to
the data on the projective plane (Fig5 (down)), the estimation
tends to fit the data far from the origin of the projective plane
(the image of the south pole).

To overcome this problem, we set weights to revise the
metric (enlargement by SGP). As shown in the next section,
the weight of the datum of the distance � from the origin on
the projective plane is calculated as �
 	 �������.

Figure 6 shows that the estimation by SLS-ESG is im-
proved. This is why we propose the Euclideanization.

V. EQUI-DIRECTIONAL PROJECTION (EDP)

Many of the projection from hypersphere surface to its
Euclidean tangent space are unified by equi-directional pro-
jection (EDP) of hypersphere.
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Fig. 5. Estimation by SGP and usula LS on sphere (up) and projective plane
(down), latitude �, longitude range ��

Let ��� be defined as ��� � ���� �

��, that is north and/or
south pole of ��, and let �� � ���� �����

�.
Let ��

� be the �-dimensional Euclidean tangent space at���.
The map from �� � ����� to ��

� is called EDP of
hypersphere iff the map is represented as

�� �� 
������� � ������� � �

����� (5)

where 
��� satisfies 
��
� � 
 and 
��� � �, and the
distance between south pole and the projection point ���� �

���

�

� �� satisfies ��

��
� �, which is the monotonous

increasing function of �.
To compute the weights of Euclideanization, we should pay

attention to the changing of volume element by the EDP of
the hypersphere. The ratio of volume element is equivalent to
the Jaccobian of the mapping as


 � �
��������
�

 ��������
� ������


������
� ����

�
� (6)

Then the length is expected to enlarged 

�
� times by the EDP.

This means the weight of Euclideanization for EDP is 
 � �
� .

For orthographic projection (OGP),


��� � 
� 
�
�
� � �
� ����

�
�� �

For stereographic projection (SGP),


��� �
�


� �
� 
�

�
� �

	
��

�
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�
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Fig. 6. Estimation by SLS-ESG on sphere (up) and projective plane (down),
latitude �, longitude range ��

For azimuthal equidistant projection (AEP),


��� �
� � ����� ��


� ��
� 
�

�
� �

	
��� �

�


���

�

�

For gnomic projection (GMP),


��� � ����� 
�
�
� � ��� 	 
��

���

�� �

For equisolidangle projection (ESP), the weights are con-
stant 
 (
 � 
) because ESP does not change the volume
element. The representation of ESP is


��� �
��� � ����� �

	
���� � ��� �

��

� ��

� (7)

The ESP is equivalent to the AEP for � � 
. The concrete
representation of the ESP for � � � is so complicated that
���� is difficult to represent by �, then the inverse mapping
from projected space to �� is difficult to compute.

VI. EUCLIDEANIZATION FOR EDP

In this subsection, we compare the estimation of SPCA with
Euclideanization to without Euclideanization. we discuss the
case � � � and � � 
, that is, fitting great circle to the data
on the sphere.

The characteristics of the data are as follows: we regard the
true great circle as equator of the globe. We generate 100-data
from the great circle as their longitudes are distributed from
Gauss distribution of its mean and standard deviation are 0
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and �-rad., respectively. We add the Gauss noise of �-rad.
standard deviation along �, � and �-axes, and normalize the
data as their norm are equal to 1. We determine � � as rotating
the 100-data by 3-dimensional rotation matrix. We estimate the
best great circle fitting (�� fitting) and the best point fitting
(�� fitting) from the 100-data under some criterion.

Figure 7�10 show the �� and �� fitting error for OGP,
OGP cut off at ��� (OGPc), SGP, AEP, GMP and ESP. Fitting
error is the average of 100-trial. The OGP cut off at ���, which
means using only each datum of its colatitude is less than ���,
that is, using only each datum of its latitude is greater than
���. Blue bar in the graphs represents error of estimation with
Euclideanization and red bar in the graphs represents error of
estimation without Euclideanization.

When the data are distributed short range of equator (Fig.
7 and 8), Euclideanization yields worse � � fitting than with-
out Euclideanization (Fig. 7). However, the � � fitting errors
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Fig. 7. �� fitting error; � � ����, � � ����(up) and � � ���(down).

are sufficiently small and we can say the estimation with
Euclideanization and without Euclideanization are almost the
same. Figure 8 shows that there is little difference between the
estimation with Euclideanization and without Euclideanization
in �� fitting.

When the data are distributed wide range of equator, (Fig. 9
and 10), Euclideanization yields better � � fitting than without
Euclideanization except OGP (Fig. 9).

Especially, Euclideanization for SGP and GMP yield good
performance. The feature of these two projection is the en-
largement rate 


�
� is getting to infinity when the point is

getting far from the south pole. This means a slight noise of
the points far from the south pole is enlarged to large noise and
it yields worse estimation without Euclideanization. In such a
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Fig. 8. �� fitting error; � � ����, � � ����(up) and � � ���(down).
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Fig. 9. �� fitting error; � � �, � � ����(up) and � � ���(down).

case, Euclideanization is very important for estimation.
For OGP, Euclideanization yields worse � � fitting than with-

out Euclideanization. The feature of the orthogonal projection
is the enlargement rate 


�
� is getting close to 0 when the

point is getting far from the south pole. This means the large
noise of the points far from the south pole is neglected and it
yields worse estimation with Euclideanization. In such a case,
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Euclideanization is not suitable for estimation.
Figure 10 shows that there is little difference between the

estimation with Euclideanization and without Euclideanization
in �� fitting except without Euclideanization for SGP. The
reason of the worse estimation is not sure, but Euclideanization
gives better performance for SGP.
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Fig. 10. �� fitting error; � � �, � � ����(up) and � � ���(down).

Figure 11�16 show the �� estimation and �� estimation of
the data when the data are distributed wide range of equator. In
these figures, red lines denote estimation of SLS by Newton’s
method, green lines denote estimation of EDP without Eu-
clideanization, and blue lines denote estimation of EDP with
Euclideanization. From these figures, Euclideanization derives
stable estimation for all EDP.
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Fig. 11. Orthographic; � � �, � � ���.
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Fig. 12. Orthographic with cutoff at ���; � � �, � � ���.
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Fig. 13. Stereographic; � � �, � � ���.

VII. EUCLIDEANIZATION FOR SGP (ESG)

In this section, we highlight to Euclideanization for SGP
(ESG) because SGP has a property that the small hypersphere
on the unit hypersphere is projected to the hypersphere on
the projective hyperplane. Euclidean space is regarded as
hypersphere of its radius is infinity, then many data analysis
method for Euclidean space is applicable for hypersphere
by applying these data analysis method to the projective
hyperplane. Then, the approximation of SPCA is realized by
applying Euclidean PCA to the projective hyperplane. we call
the method SPCA by ESG (SPCA-ESG).

A. The algorithm of SPCA-ESG

The algorithm of SPCA-ESG under the criterion of SLS
(SPCA-ESG-SLS) is as follows:

(1) Define the fitting dimension �.
(2) Map the data on the unit hypersphere � � onto the

data on the projective plane �� by SGP.
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Fig. 14. Azimuthal equidistant; � � �, � � ���.
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Fig. 15. Gnomic; � � �, � � ���.

(3) Fit � 	 
-dimensional Euclidean space � ��� to the
data on the projective plane �� by wLS.

(4) Project the data on �� onto ���� by OGP.
(5) Fit �-dimensional hypersphere for the data on � ���

by wLS.
(6) Map the �-dimensional hypersphere on �� onto ��

by SGP, which is the estimated small hypersphere
	��.

(7) Compute the estimation of �� by projecting onto
	��.

Note that the projection of �� onto 	�� is the mapping
from �� to �	 


������ ��
��	�� � 	�� which minimizes the

distance along geodesic between �� and the point on 	��.

VIII. SEQUENTIAL DIMENSION REDUCTION (SDR)

A. One-dimension reduction

The dimension of the orthogonal complement of � of ��
-
dimensional hypersphere 	�����
� �� on �� is one.
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Fig. 16. Equisolidangle; � � �, � � ���.

Let the normal basis of the orthogonal complement be 	

and define two angles �� � ��������� 	� and � � ����� �����,
there holds �� � �� � �. Then the cost function 
 can be
minimized by Newton’s method.

We consider the minimization of non-negative function 

parameterized by 
 under the constraint � � �.

Let the values of 
 , � and 
 at the �-th iteration be 
�, ��
and 
� respectively.

By using the second order Taylor expansion of 
 around

�, and the first order Taylor expansion of � around ��, the
parameter 
 is updated by


��� � 
� ����
�

�
�� 	

�� � �
�
��

��
� ��

����
��
� ��

��



(8)

where ��, �� and �� are the quantities of �

�
 , ��


�
�
� and
��

�
 at 
 � 
�, respectively.
We minimize eq.(4) by Newton’s method with constraint

� � 	�	� 
 in the parameter space �	 � �	�� ���.
The updates of parameters are computed by the following

values: (Gray et al.[11] gave the case � � � and � � 
)
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� (9)

B. Sequential Dimension Reduction (SDR)

We consider the sequence of small hyperspheres as

�� � 	��
��� � 	��

��� � � � � � 	����
�� (10)
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and SDR estimates from 	��
��� to 	����

� sequentially. In
each estimation, initial value of Newton’s method is given by
SLS-ESG[7]. To avoid the cumulative errors by a sequential
procedure, �� ’s are directly projected onto 	��

��� to estimate
	����

�����.

IX. EXPERIMENT FOR SMALL HYPERSPHERE FITTING

We generated 100 data from 5-dimensional hypersphere on
���. The data are sampled from uniform distribution on the 5-
dimensional hypersphere. We add the 0-mean Gauss noise of
its variance 0.01 for each axis and normalize data by divided
by its norm. The hyperspherical data � � which we use in
experiments are the rotation of the normalized data by some
20-dimensional rotation matrix.

Figure 17 shows the dimension of estimated small hyper-
sphere against the mean square error along geodesic. The solid
line denotes the mean square error for SDR, and dotted line
denotes the mean square error for SLS-ESG.

From 20-dimension to 5-dimension which is the true di-
mension, both methods give good performance. However,
below the true dimension, which is over-compression of the
data, the error raised rapidly. In this case, SLS-ESG gives a
better estimation than SDR. We can compute the mean square
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Fig. 17. Training error against dimension reduction: solid line is for SDR
and dotted line is for SLS-ESG

error only by the observed data, we can estimate the “true”
dimension of data only by the observed data.

Figure 18 shows the mean square error of 
�
-test data for
100 trials. Both methods give good performance for test data.

X. FUTURE

From the proposed methods, following points are suggested:
(1) LS along geodesic for �-dimensional metric man-

ifold is resolved to the wLS in Euclidean space
when we can define the continuous and differentiable
bijection from the manifold to Euclidean space. That
is, Euclideanization is applicable.

(2) The clustering on �� is resolved to the clustering on
�� by Euclideanization.

(3) Euclideanization is putting weights for data points.
However, we should consider the weights not only
for data points but also the geodesic from the data
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Fig. 18. Test error against dimension reduction: solid line is for SDR and
dotted line is for SLS-ESG

points to the low dimensional structure for fitting.
From this point of view, the proposed Euclideaniza-
tion should be called 0-th order, and we should
investigate it to the 1-st order.
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Abstract

In this paper, two extensions of the memory-based sub-

space classifier called local manifold matching (LMM) are

proposed for image classification. One is a kernel LMM

method for incorporating transform-invariance of images

such as shifts into LMM via kernel mappings. Other is a

learning LMM method for reducing memory and compu-

tational costs of the original LMM algorithm. It is veri-

fied with experiments on a handwritten digit dataset that my

methods can outperform other classifiers such as a support

vector machine.

1. Introduction

For improving the performance of the nearest neighbor

(NN) rule, Liu et al. proposed a classifier called local man-

ifold matching (LMM) [1]. In LMM, a training sample is

represented with a manifold (alias affine subspace) that is

spanned by its k-closest training samples from the same

class. In test phase, the projection distance between an in-

put sample and each manifold is measured, and an input

sample is classified into the class to which the nearest man-

ifold belongs. By this representation, LMM can expand the

representation capacity of available prototypes, thus LMM

tends to outperform the NN rule.

The LMM classifier can be regarded as a combination

method of subspace and nearest neighbor classifiers. In fact,

the classification rule of LMM is same as that of projection

distance method (PDM) [2] which is a kind of subspace

methods [3, 4, 5]. The different point between LMM and

PDM is the way to construct a manifold: In LMM, a man-

ifold is formed per training sample. In contrast, a manifold

is formed per class in PDM. On the other hand, when the

Euclidean distance between an input sample and the origi-

nal point of a manifold is used for classification instead of a

projection distance, LMM will be equivalent to the NN rule.

As might be expected from the above relation, LMM

would share the difficulties of both subspace and NN clas-

sifier. In fact, since the distance between a sample and a

manifold is defined by a projection distance, it is hard to

incorporate transform-invariance of images into LMM even

if they are available. In contrast, such invariance can be in-

corporated easily into the NN rule by using some adequate

distance measures such as a tangent distance [6, 7]. More-

over, memory a nd computational costs of LMM would be

large because LMM is a kind of memory-based classifiers.

To overcome these difficulties, a kernel LMM (KLMM)

classifier and a learning LMM (LLMM) classifier are pro-

posed in this paper. First, KLMM is formulated with the

same manner of kernel nonlinear subspace methods [8, 9].

In KLMM, first each training sample is represented as a

manifold with its k-nearest neighbors after nonlinear ker-

nel mapping. Next, the projection distance between an

input sample and each manifold is computed by using a

kernel trick so that a mapping function is never computed

explicitly. In a test phase, an input sample is classified

into the class to which the nearest manifold belongs. Fur-

thermore, a combination of LMM and learning subspace

method (LSM) is proposed for reducing the number of man-

ifolds. In practice, LSM based on generalized learning vec-

tor quantization (henceforth denoted as GLSM) [10] is ap-

plied to LMM. GLSM is designed on the basis of gener-

alized learning vector quantization (GLVQ) [11], so stable

convergence of algorithms and improvement of the accu-

racy would be achieved by this method. In the proposed

method, a learning rule is the same as that of the origi-

nal GLSM algorithm, but learning is run not on individual

classes but on each training manifold. The performance of

my methods are verified with the experiments on handwrit-

ten digit image dataset USPS [12].

2. Local Manifold Matching

Let us begin with a brief review of local manifold match-

ing (LMM) [1] before presenting the proposed methods.

2.1 Local Manifold Matching (LMM)

In [1], the LMM technique was presented for improv-

ing the performance of the NN classifier by expanding the
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Figure 1. The concept of LMM in the ith da-

tum with k = 3. The input sample q is classi-

fied according to the residual length from the
input sample q to the linear manifoldMi.

representation capacity of available prototypes. In LMM, a

training sample is selected from dataset and its k-closest

training samples are searched from the same class of it.

Next, the selected training sample is replaced with a linear

manifold spanned by its k-nearest training samples. This

process is computed on each training sample. The classifi-

cation is then based on the shortest distance from an input

sample to each manifold. The simple concept of LMM in

the ith datum with k = 3 is shown in Fig. 1.

2.2 Algorithm of LMM

Now a procedural formulation of the LMM algorithm is

shown. Let xi = (xi1 · · ·xid)⊤ ∈ Rd (i = 1, ..., N) be the

d-dimensional ith training sample, where N is the number

of training samples. In addition, let yi and C be the class to

which xi belongs and the number of classes, respectively.

Step1 Select a training sample xi, and find its k-closest

training samples from the same class of xi with some met-

rics d(xi, xj) (e.g., the Euclidean distance d(xi, xj) =
‖xi − xj‖). Here, the selected k-nearest neighbors are de-

noted as x1 (= xi), x2, ..., xk. Note again that these k-

nearest neighbors should be selected from the class of xi.

Step2 Compute the mean of the selected neighbors by

mi =
1

k

k∑
l=1

xl, (1)

where xl is the lth nearest neighbor of xi. Next, form a d×k

matrix ((x1−mi) · · · (xk−mi)) and orthonormalize it by

using the Gram-Schmidt process or eigenvalue decomposi-

tion. Resulting orthonormal basis Ui and the mean vector

mi span the local linear manifold of the training sample xi.

Henceforth, we denote the local manifold constructed with

Ui and mi asMi. By this means, local manifolds for each

training sample are constructed before a test phase.

Step3 When an input sample q = (q1 · · · qd)
⊤ is given,

it is classified into the class to which the nearest manifold

belongs. Hence, we have to measure the distance between

q and each manifoldMi. In LMM, the distance between

q and Mi is measured by projecting the difference vector

q−mi intoMi. For that purpose, calculate the residual of

q relative toMi (cf. Fig. 1) by the following equation:

qi = yi − zi = (I−UiU
⊤

i )(q −mi), (2)

where the projection of q −mi on the manifold is given as

zi = UiU
⊤

i (q −mi). (3)

According to the Pythagorean theorem, the norm of qi (i.e.,

projection distance) can be computed as follows:

di = ‖qi‖
2 = ‖q −mi‖

2 − ‖U⊤

i (q −mi)‖
2. (4)

By this distance, the class of q (denoted as ω) is determined

as that of the nearest manifold: ω = yi∗ , where i∗ is

i∗ = arg min
i=1,...,N

di. (5)

The LMM classifier is a very general one because it in-

cludes various classifiers. In fact, when k = 1, LMM is

equivalent to the NN rule. On the other hand, if each man-

ifold is constructed with not neighbor samples but all sam-

ples in individual classes, LMM is equivalent to PDM [2].

In addition, when the distance between q and mi is used

instead of Eq. (4) for classification, LMM is equivalent to

the bootstrap sample method [13]. Furthermore, when the

k-closed training samples are selected for an input sample,

the LMM algorithm is equivalent to local subspace classi-

fier (LSC) [14, 15]. Nobody has pointed out the relation of

these algorithms in the past.

2.3 Kernel LMM (proposal)

In LMM, the distance between an input sample and a

manifold is defined by a projection distance, so it is hard

to incorporate transform-invariance into LMM even if it is

available. Hence, we derive a kernel LMM (KLMM) clas-

sifier for incorporating such invariance into LMM via ker-

nel mappings [16]. Extension from LMM to KLMM can

be achieved by a kernel trick Φ(x)⊤Φ(y) = K(x, y) for

mapping samples from an input space to a feature space

Rd 7→ F . In addition, we make use of the results of kernel

PCA [17] for computing the residual length from an input

sample to linear manifolds in F . In brief, the algorithm of

KLMM is given as follows:

Step1 Find the k-closest training samples to a selected

training sample Φ(xi) in F and denote them as Φ(x1)
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(= Φ(xi)),...,Φ(xk). Note that they are selected from the

same class of Φ(xi), and the Euclidean distance between

Φ(xi) and Φ(xj) in F is given by the following equation:

D2(Φ(xi), Φ(xj)) = ‖Φ(xi)− Φ(xj)‖
2

= K(xi, xi)− 2K(xi, xj) + K(xj , xj). (6)

Step 2 Let Xi be the basis of vectors in F , i.e., Xi =
[(Φ(x1)− Φ(mi)) · · · (Φ(xk)− Φ(mi))], where

Φ(mi) =
1

k

k∑
l=1

Φ(xl). (7)

Next, form a k × k matrix Ni by

Ni = X⊤

i Xi = Ki −
1

k
(K

(m)
i + K

(n)
i ) +

1

k2
K

(1)
i , (8)

where Ki is a Gram (kernel) matrix of which the (m, n)
element is defined as Ki(m, n) = K(xm, xn) (m, n =

1, ..., k). In addition, the matrices K
(m)
i , K

(n)
i and K

(1)
i

are k × k matrices, where the mth row of K
(m)
i is de-

fined as
∑k

l=1 K(xm, xl)，the nth column of K
(n)
i is de-

fined as
∑k

l=1 K(xn, xl) and all elements of K
(1)
i are de-

fined as
∑k

l=1

∑k

m=1 K(xl, xm), respectively. Finally, de-

compose Ni by using eigenvalue decomposition and form

a k × (k − 1) orthonormal matrix using the eigenvectors

u1, ..., uk−1 normalized with the corresponding eigenval-

ues (λ1, ..., λk−1) such as

Ui =
[
(u1/

√
λ1) · · · (uk−1/

√
λk−1)

]
. (9)

By this orthonormal matrix, we can represent the orthonor-

mal basis in feature space F as Vi = XiUi. However, we

cannot represent Vi as a matrix explicitly due to its high-

dimensionality.

Step 3 The input sample Φ(q) is classified according to

the minimal residual length to the linear manifolds in F ,

i.e., the class of the input sample ω is determined as ω =
yi∗ , where i∗ is given by

i∗ =

arg min
i=1,...,N

{‖Φ(q)− Φ(mi)‖
2 − ‖V⊤

i (Φ(q)− Φ(mi))‖
2}

= arg min
i=1,...,N

{D2(Φ(q), Φ(mi))− ‖U
⊤

i Qi‖
2}, (10)

where Qi is a k×1 vector of which the jth element is given

by the following equation:

Qij = (Φ(xj)− Φ(mi))
⊤(Φ(q)− Φ(mi))

= K(xj , q)−
1

k

k∑
l=1

(K(xj , xl) + K(xl, q)) (11)

+
1

k2

k∑
l=1

k∑
m=1

K(xl, xm).

If necessary, it is possible to reduce the dimensionality of

a linear manifold on the basis of a criterion such as a cu-

mulative proportion, however, the accuracy of KLMM is

sensitive against not the dimensionality of a linear manifold

but the number of k-nearest neighbors.

2.4 Learning LMM (proposal)

Memory and computational costs of memory-based clas-

sifiers such as the NN rule tend to be large. For reduc-

ing them without deterioration of accuracy, several methods

such as learning vector quantization [18, 11] were proposed

in the past. However, they were designed for vector sam-

ples, so it is hard to apply them to LMM directly. In this

paper, we apply learning subspace method (LSM) [5, 10] to

LMM for reducing the number of manifolds without deteri-

oration of accuracy. In practice, we adopt GLSM proposed

by Sato and Yamada [10] to LMM. The experimental re-

sults reported in [10] show that recognition performance of

PDM was improved by this learning method. The learning

rule shown in this paper is the same as that of the origi-

nal algorithm proposed in [10], but learning is run not on

individual classes but on each manifold constructing with

codebook vectors. For convenience, we call the proposed

method learning local manifold matching (LLMM). Note

that we can not apply the same learning rule to LSC [14, 15]

directly because local manifolds in LSC are computed with

neighbor training samples of an input sample.

Now the algorithm of LLMM is summarized as follows:

Let m1 and U1 be the mean vector and the orthogonal basis

matrix of the nearest manifoldM1 that belongs to the same

class of an input sample x. In contrast, let m2 and U2

be the mean vector and the orthogonal basis matrix of the

nearest manifoldM2 that belongs to a different class from

x. Let us consider the relative distance difference µ(x) de-

fined as follows:

µ(x) =
d1 − d2

d1 + d2
, (12)

where d1 and d2 are the distance values of x fromM1 and

M2, respectively (cf. Eq (4)). The above µ(x) satisfies

−1 < µ(x) < 1. If µ(x) is negative, x is classified cor-

rectly; otherwise, x is misclassified. For improving accu-

racy, we should minimize the following cost function:

S =

N∑
i=1

f(µ(xi)), (13)

where N is the number of samples for training, and f(µ)
is a monotonically increasing function. To minimize S, the

steepest descent method with a small positive constant α
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(0 < α < 1) is adopted to Eq. (13) [10, 11]:

mi ←mi − α
∂S

∂mi

,Ui ← Ui − α
∂S

∂Ui

, (i = 1, 2).

(14)

Now ∂S/∂mi and ∂S/∂Ui can be derived as

∂S

∂mi

=
∂S

∂µ

∂µ

∂di

∂di

∂mi

= ∓
∂f

∂µ

4d3−i

(d1 + d2)2
(yi −UiU

⊤

i yi),

(15)

∂S

∂Ui

=
∂S

∂µ

∂µ

∂di

∂di

∂Ui

= ∓
∂f

∂µ

4d3−i

(d1 + d2)2
(yiy

⊤

i Ui),

(16)

where yi = x − mi. Consequently, the update rule for

LLMM can be written as follows:

mi ←mi + αi

∂f

∂µ

d3−i

(d1 + d2)
(yi −UiU

⊤

i yi), (17)

Ui ← Ui + αi

∂f

∂µ

d3−i

(d1 + d2)
(yiy

⊤

i Ui), (18)

where α2 = −α1. In addition, correction di/(d1 + d2)
dose not affect the convergence condition [11]. In practice,

the updated Ui is not an orthogonal matrix, so the Gram-

Schmidt process is applied to Ui for orthogonalization in

each step. In [10] and [11], f(µ, t){1− f(µ, t)} is used for

∂f/∂µ, where t is learning time and f(µ, t) is a sigmoid

function 1/(1 − e−µt). In this case, ∂f/∂µ has a single

peak at µ = 0, and the peak width becomes narrower as t

increases. After the above training, an input sample is clas-

sified by the same rule of LMM with each trained manifold.

3. Experiments

The experimental results on the handwritten digit im-

age dataset USPS [12] are shown. The USPS dataset con-

sists of 7,291 training and 2,007 test images. The size

of images is 16 × 16 pixels. In experiments, the intensi-

ties of images were directly used as feature vectors. First,

the effectiveness of KLMM was verified with comparing to

other classifiers: k-nearest neighbor rule (kNN), PDM, ker-

nel PDM (KPDM) [9] and support vector machine (SVM).

Next, the effectiveness of LLMM was verified with compar-

ing to other classifiers: kNN, LMM, GLVQ and averaged

learning subspace method (ALSM) [5]. Note that all the

parameters of these classifiers were determined at the min-

imum validation errors. However, the dimensionalities of

linear manifolds in my method and LMM were always set

as a full rank (i.e., less than or equal to k− 1) in every k for

convenience. All methods were implemented with MAT-

LAB on a standard PC that has Pentium 1.86GHz CPU and

2GB RAM.

���������� !� "��������� !� #$�� �% &!��� !� '( �)*+!�,�� !� - �%!���)*+!�,�� !� ./ $0�*��)*+!�,�� !�
Figure 2. Seven tangent vectors: x and y

translation, scaling, rotation, axis, diagonal

and thickness deformation, respectively.

Table 1. Test error rates on USPS.
method error rate [%]

1-NN (Euclidean Distance) 5.5
1-NN (one sided TD) 4.1

PDM 5.2
KPDM (one sided TDK) 3.9

SVM (RBF kernel) 4.6 [19]

SVM (one sided TDK) 4.1 [19]

LMM (k = 16) 4.1
KLMM (RBF, k = 10) 4.0

KLMM (TDK, k = 11) this work 3.1

3.1 Experimental results of KLMM

First, we investigated the error rates of LMM and

KLMM with respect to the number of k-nearest neigh-

bors. In kernel machines, we used a tangent distance kernel

(TDK) proposed by Haasdonk et al. [19] because of the rea-

sonable performance that can be obtained in spite of their

extreme simplicity. TDK is defined by replacing the Eu-

clidean distance with a tangent distance (TD) [6] in arbi-

trary distance-based kernels. For example, if we modify the

following radial basis function (RBF) kernel

K(x, y) = exp(−β‖x− y‖2) (19)

by replacing the Euclidean distance with a one sided TD,

we then obtain the kernel called one sided TD kernel:

K(x, y) = exp(−β × d2
1S(x, y)), (20)

where d2
1S(x, y) is

d2
1S(x, y) = min

α
‖x− (y + αT)‖2. (21)

In the above equation, T is a d×r matrix of which columns

are tangent vectors corresponding to r image transforma-

tion (cf. [7] for details), and α is a r × 1 parameter vector

for each tangent vector. Minimization of Eq. (21) is sim-

ple since the squared distance is a quadratic function of α.

Thus, the solution of α can be derived as follows:

α = (T⊤T)−1T⊤(x− y). (22)

In this paper, seven tangent vectors as shown in Fig. 2 were

used for experiments. We can achieve higher accuracy by
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Table 2. Error rates [%] and standard deviations on USPS.
nj 1-NN GLVQ LMM LLMM (this work) ALSM SVM

10 22.7± 1.5 7.1± 0.4 17.0± 0.9 5.8± 0.4 7.7± 0.5 22.1± 1.3
50 12± 0.8 7.4± 0.3 8.2± 0.5 5.4± 0.2 6.3± 0.4 11.6± 0.9
100 9.4± 0.6 6.8± 0.3 6.5± 0.4 5.2± 0.2 6.0± 0.3 8.6± 0.5
150 8.1± 0.5 6.5± 0.4 5.7± 0.2 4.8± 0.3 5.8± 0.3 8.1± 0.4
200 7.5± 0.4 6.1± 0.3 5.2± 0.2 4.6± 0.3 5.7± 0.2 7± 0.4
250 6.9± 0.3 5.9± 0.2 4.9± 0.2 4.5± 0.2 5.6± 0.2 6.6± 0.3

complete set 5.5 4.1 Learning PDM [10] 5.0 4.6 [19]

122322451678
9:;<=> ?@ AB9=C>=DE 9=FGH<?>D

IJJKIJJLMM

N O PN PO QNRSO
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Figure 3. Error rates WRT k on USPS.

this simple modification than the use of the original RBF

kernel [19]. In addition, the above modification is adequate

for kernel setting because of its natural definition. Hence,

we used the one sided TDK on our experiments.

Figure 3 shows the relationship between the number of

neighbors k and the error rates of each classifier: kNN,

LMM, and KLMM. As shown in this figure, the error rates

of LMM and KLMM against test samples decreased as the

k increased. Note that the error rate on KLMM is lower

than those on kNN and LMM in every k.

Table 1 lists the lowest error rates with the parameter val-

ues of each classifier. The number of neighbors k in LMM

and KLMM were tuned on a separate validation set (6291

training samples, 1000 validation samples). The results on

SVM is referred to [19]. Table 1 shows that KLMM with

TDK outperformed the other classifiers. However, the error

rate of KLMM with RBF was the almost same as that of

LMM because LMM is already effective for nonlinearity of

data. Thus, nonlinear mappings via RBF kernel were not

effective for improving accuracy of LMM.

3.2 Experimental results of LLMM

Next, we evaluated LLMM on the USPS digit dataset.

For experiments, the set of training images was randomly

WXYZ[\ ]^ _̀ [\a`_]W
bccdccefbghi

j kj lj mj nj ojjjp
ojop

Figure 4. Training error WRT the number of

iteration.

split into two sets of equal size (i.e., about 3600 images in

each set). One of them was used in initializing manifolds

and the other was used as training samples. This random

splitting was performed independently for ten repetitations

of the training and testing. In addition, the number of the

codebook vectors (manifolds in LMM and KLMM) of the

class j (denoted as nj) was varied from 10 to 250 (the total

number of the images of ‘8’ is 542, so the maximum size

of initial manifolds per class is almost 270). For GLVQ, the

fixed learning rate α = 0.03 and 100 learning time were

introduced. On the other hand, the fixed learning rate α =
10−6 and 100 learning time were introduced for LLMM.

For SVM, 1-NN and PDM, the initial training vectors were

directly used for a test phase.

Figure 4 shows the relationship between the number of

iteration and mean training error rate with nj = 10 and

k = 4. As shown in this figure, the error rate was almost

equal to 0 at around 20 iterations. The error rates with dif-

ferent manifold sizes are shown in Table 2. The mean val-

ues and standard deviations were estimated from ten inde-

pendent outcomes. For SVM, we used the RBF kernel for

a nonlinear mapping. As shown in Table 2, the proposed
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learning rule LLMM outperformed the other methods such

as ALSM in all cases. Furthermore, the error rate of LLMM

with nj = 250 was lower than those of the original learning

PDM (5.0%) and SVM with a complete set (4.6%).

4. Conclusions

In this paper, two extensions of the memory-based sub-

space classifier called local manifold matching (LMM)

were proposed. One is a kernel LMM method (KLMM)

for incorporating transform-invariance into LMM via kernel

mappings. Other is a learning LMM method (LLMM) for

reducing memory and computational costs of the original

LMM classifier. It was verified with experiments on hand-

written digit image dataset USPS that my methods achieved

lower error rates than other classifiers such as SVM with

low memory costs.

In this paper, two extensions of LMM called KLMM

and LLMM were discussed separately. However, it can be

expected that accuracy would be improved by combining

them. In fact, kernel GLVQ [20] was proposed, and the

experimental results reported in [20] showed that kernel-

ized GLVQ can improve accuracy of the original GLVQ.

Hence, future work will be dedicated to combine KLMM

and LLMM for improving accuracy with low memory re-

quirements.
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Abstract

Shape descriptors are very important in many image
classification and retrieval applications. Among vari-
ous shape descriptors, Fourier Descriptor (FD) has been
proved to be the most efficient and stable one with low com-
putational cost and few parameter tuning. In this study,
a new Principal Component Analysis (PCA)-based FD for
shape representation and retrieval is presented. Instead
of using a few of Fourier coefficients directly in the stan-
dard FD, we describe a shape by applying PCA to FD
with a large number of Fourier coefficients. A compara-
tive study on its performance in complete and incomplete
contour representations using large shape database is also
given. The experimental results show that PCA-FD is better
in complete contour representation, however, is worse in in-
complete contour representation than the classical standard
FD.

1 Introduction

Efficient and effective methods for retrieving images
from large image databases is an interesting research topic
in recent years. Shape is considered to be a much more ef-
fective feature than other image features such as color and
texture [21, 5, 3] for characterizing the content of an image.
How to represent the shape by using shape descriptors so as
to do efficient and effective retrieval is an essential problem
in this field. A number of approaches and solutions have
been developed to characterize the shapes.

We usually divide shape descriptors into two cate-
gories: region-based and contour-based techniques [32].
The former group usually uses moment descriptors [13,
25, 20] to describe shapes while the latter group uses only
shape contour information. In this study, we concentrate
on the contour-based ones. Conventional contour-based

shape descriptors include Curvature Scale Space Descrip-
tor (CSSD) [22] which has been selected for MPEG-7 stan-
dardization, Wavelet Descriptor (WD) [26], Fourier De-
scriptor (FD) [9] and its variations [30, 3, 17], and some
other descriptors [8, 15, 7, 18, 24, 4, 12]. Three basic re-
quirements [3]:

• compactness and simplicity for saving storage and
computational cost,

• robustness to noise and invariance to transformations
for effective retrieving,

• indexability for searching in a large image database

are necessary for effective and efficient retrieval of images
based on their shapes. FD and CSSD are thought to be
the available candidates for obtaining good effectiveness
along with efficiency retrieval for large image databases ac-
cording to the above requirements. Moreover, as reported
in [28, 31, 17], FD descriptors outperformed CSSD in terms
of retrieval accuracy and efficiency, it is considered as the
best choice for shape representation and retrieval.

Comparative studies on FD has been given in [31, 33]
and the authors indicated that the retrieval performance
does not improve significantly nor degrade with the num-
ber changes of Fourier coefficients used in FD in a small
range from 10 to 90. We find this phenomenon is true in
small ranges, however, is not tenable when the number in-
creases to thousands. We will discuss this issue in more
detail later. FD with large number of Fourier coefficients
can improve the retrieval performance much, but it will be
computational expensive for retrieving in a large database.
Accordingly, a natural idea is for solving this problem is to
reduce the dimension of FD with information lost as few as
possible.

Principal Component Analysis (PCA) [14] is such a
method enabling us to linearly-project high-dimensional
samples onto a low-dimensional feature space. It is not only
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important theory for solving many pattern recognition prob-
lems in computer vision, but also it has been widely used as
a practical methodology for a wide variety of real applica-
tions such as feature selection [10], face recognition [27],
object recognition [23] and image matching [16]. In this
study, PCA is used to reduce the dimension of the standard
FD.

We give a study on PCA-FD in shape retrieval in the
experiment. Both complete and incomplete contour repre-
sentations [11] are examined in the experiment using large
shape data set. The experiments demonstrate that the pro-
posed PCA-FD is a more compact and effective shape de-
scriptor than the standard FD in complete contour repre-
sentation but is not as good as FD in incomplete contour
representations.

The rest of paper are organized as follows. In Section
2, we review the proposed PCA-FD in detail. Section 3 is
about different experimental designs and achieved results.
Finally, we conclude this study in the last section.

2 PCA-based FD descriptors

2.1 Fourier Descriptor

FD for shapes can be obtained by applying a Fourier
transform on a shape signature such as complex coordi-
nates, the curvature, the cumulative angle or the centroid
distance. Since it has been shown that FD based on cen-
troid distance is more effective than FDs based on other
signatures [29], we will present our work on the centroid
distance-based FD through this study.

If the contour coordinates of a shape in 2D space are
(x(t), y(t)), t = 0, 1, 2, ..., N −1 where N is the number of
points on the contour. First we calculate their centroid point
(xc, yc) as

xc =
1

N

N−1∑
t=0

x(t), yc =
1

N

N−1∑
t=0

y(t). (1)

The centroid distance function is expressed by the distances
of contour points to the centroid point defined as

r(t) =
√

(x(t) − xc)2 + (y(t) − yc)2. (2)

It is easy to understand this shift makes the shape represen-
tation invariant to translation. The discrete Fourier trans-
form of the centroid distance series is given by

F (n) =
1

N

N−1∑
t=0

r(t)e−j2πnt/N , (3)

where F (n) are the transform coefficients of r(t). Fur-
thermore, the coefficients have to be normalized to achieve

Figure 1. The outline of calculating FD de-
scriptor.

invariance to rotation and scaling. The descriptors can be
made invariant to rotation by using only the magnitudes of
the transformation coefficients and invariant to scaling by
dividing the magnitudes of the coefficients by the magni-
tude of the DC components (the first component). Because
all distances are real valued for centroid distance signature,
only half of the coefficient feature vector is needed to index
the shape. A simple outline of calculating FD is presented
in Fig. 1.

As mentioned previously, although authors indicated that
the retrieval performance does not improve significantly nor
degrade with the number changes of FD features in a small
range from 10 to 90 in [31, 33], we found this phenomenon
is not tenable when the number increases to hundreds or
thousands. Fig. 2 shows an illustration of the overall re-
trieval rate changes with the increasing dimension of FD
using centroid distance as the shape signature on MPEG-
7 data set [2]. We can observe that the overall retrieval
rate (bulls-eye test) increases from 21.15% to 38.56% when
the dimension of FD increases from 10 to 1200. Consid-
ering the number of shape signature is always much less
than thousands, using high-dimensional FD can be viewed
as a dimension-increase process in this study. The overall
retrieval rate is comparatively low here, however, we only
care about the improvement by increasing the dimension of
FD in this case, not the overall retrieval rate itself.

2.2 PCA-FD

Using PCA to reduce the dimension of FD is not novel.
The major contribution of this study is vividly demonstrat-
ing that the dimension increase-reduction process is useful
and PCA is well-suited to representing FD. The retrieving
performance of standard FD is significantly improved by
this presentation.

Our PCA-FD for shape description has the same input as
the standard FD: the coefficients obtained by Fourier trans-
form on the signature of a shape. In this study, we com-
pute 1200 normalized coefficients for each shape for train-
ing eigenspace. PCA-FD can be obtained in the following
steps:
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Figure 2. Overall retrieval precision changes
with increasing dimension of FD on MPEG-7
data set.

1. pre-compute eigenspace to express the high-
dimensional FD;

2. given a shape, compute its standard high-dimensional
FD;

3. project the standard high-dimensional FD onto a com-
pact feature vector using the pre-computed eigenspace.

As mentioned above, the input vector is created by com-
puting a 1200–element FD for each shape and all elements
have been normalized to obtain the invariance to scaling.

We collect a large number of different shapes and calcu-
late their FDs to build our eigenspace. Each was processed
as the steps described previously to create a 1200-element
vectors. Pre-compute eigenspace process is described as
follows. Suppose we have a large FD vector population x
where

X = (x1,x2, ...,xn)T (4)

from n training shapes. The mean of that population is de-
noted by

μx = E{x} (5)

and the covariance matrix of the same data set is

Cx = E{(X − μx)(X − μx)T }. (6)

First an eigen-decomposition of Cx is performed to produce
a matrix

W = (w1,w2, ...,wn)T (7)

where wi are the eigenvectors arranged by their eigenval-
ues in decreasing order. This space can be reduced to Wk,
where k indicates only k (k << n) eigenvectors with the

largest eigenvalues are needed, and a linear combination of
them

x̃i =
k∑

j=1

aj(x)wj = WkWT
k xi (8)

can represent xi to a sufficient degree of accuracy where
x̃i is the approximation to xi and aj denotes the coeffi-
cients obtained by projecting original data onto the PCA
eigenspace. The matrix of the coefficients is referred to as
the feature matrix. The matrix consisting of the top n eigen-
vectors was stored on disk and used as the projection matrix
for PCA-FD.

To construct the feature vector for a given shape in test-
ing data, we first simply create its 1200-element FD descrip-
tor and then simply project it into the PCA feature space us-
ing the stored eigenspace. The most top n = 30 values are
selected empirically in this study which results in significant
space benefits and time saving.

3 Experimental Results

We set up two retrieval experiments in this section:
an experiment for complete contour representation and an
other one for incomplete one compared with the standard
FD.

3.1 Complete Contour Representation

This experiment is setup for comparing the retrieval per-
formance of the proposed PCA-FD and standard FD in com-
plete contour representation. The experimental setup are as
follows:

Shape database The original shape database for testing is
MPEG-7 data set B [2] including 1400 shapes of 70
classes. All these shapes are normalized to 128 × 128
pixels and the contours of them are extracted by using
Canny Edge Detector [6]. Some contours of the testing
shapes are shown in Fig. 3. For comparing the perfor-
mances of different descriptors fairly, the shapes used
for constructing eigenspace should not be used in the
retrieving experiment. Thus, we divide the MPEG-7
data set B into two equivalent groups, each group con-
tains 700 shapes from 10 shapes in each class. One
group is used for training eigenspace and the other is
for testing.

Evaluation criterion Recall-Precision is used for evaluat-
ing the retrieval results in this experiment:

recall =
�correct positives

�positives
(9)

and

precision =
�correct positives

�matches(correct and false)
. (10)
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Figure 3. Contours of typical shapes in MPEG-7 data set B, one shape from each class.

A correct positive is a correct match between a query
shape and one of its retrieved shape in the shape
database.

We test all 700 shapes as query shapes and each has 10 cor-
rect matches (including itself). The Recall-Precision graph
is computed on the above test by varying different thresh-
old for retrieved shape number. The retrieved results of the
standard FD with 30 Fourier coefficients and 30-element
PCA-FD are shown in Fig. 4. From the figure, it is easy
to see that the proposed PCA-FD outperforms the standard
FD with the same number of dimension significantly. The
retrieval precision improves from 0.2 to 0.4 near 0.2 recall
level.

Fig. 5 also gives two examples of the retrieved shapes by
standard FD (Row 1 and 3) and our PCA-FD (Row 2 and 4).
Ten most similar retrieved shapes including the query them-
selves (the shapes in first column in the figure) are given.
From them, we also can observe that the retrieved shapes
by PCA-FD are more similar to the query than those by the
standard FD.

3.2 Incomplete Contour Representation

This experiment is setup for comparing the retrieval per-
formance of the proposed PCA-FD and standard FD in in-
complete contour representation. Incomplete contours of-
ten occur in shape extraction from images because of noise,
complex background or other factors. Fig. 6 show some typ-
ical incomplete contour representation examples including
depletion, occlusion and segment-wise deletion [11]. The
experimental setup for this experiment are as follows:

Shape database Shapes used in this experiment includes
two parts: one is for training and the other is for test-
ing. The original incomplete shape database for testing
and training is from ICR shape database [1] including
two shape data sets: COIL data set containing 20 ob-
ject classes and modified MPEG-7 data set containing
70 object classes. All these shapes are normalized to
128 × 128 pixels. Some contours of the COIL data
set are shown in Fig. 7. The percentage of remained
pixels in contours are chosen from 15 to 90 in steps
of 5 percentage, which results in 16 incomplete con-
tours for each object class. Four types of incomplete
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Figure 5. Examples of retrieved results by standard FD (Row 1 and 3) and our PCA-FD (Row 2 and 4).
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Figure 4. Recall-Precision results of experi-
ment in complete contour representation.

contour including depletion, occlusion (left and right)
and segment-wise deletion are used here. We also use
two training data sets for training eigenspace in this
experiment: one is as the same in complete contour
representation including 700 shapes and the other one
is the modified incomplete MPEG-7 data set from ICR
shape database [1] including 4480 shapes. For more
details about the incomplete shape data sets, please re-
fer to [11].

Evaluation criterion Overall Retrieval Rate (ORR) and
Recall-Precision are both popular metrics for evaluat-
ing the retrieval results. Since ORR can be computed
without threshold tuning while Recall-Precision needs
to vary thresholds for obtaining the recall-precision

graphs, we choose ORR as the evaluation criterion for
convenience in this experiment. The retrieval rate is
measured by counting the number of shapes from the
same class which are found in the first 32 most simi-
lar matches (bullseye test). The maximum number of
objects from the same class is 16 including itself. The
total number of possible correct matches when all 320
shapes are used in turn as queries is thus 5120. ORR is
computed as the ratio of the total number of actual cor-
rect matches and the total number of possible correct
matches

r =
�correct matches

�possilbe correct matches
. (11)

The results of this experiment are shown in Table 1.
From the table, we can find that PCA-FD is worse than FD
for retrieving incomplete contours and there is no signif-
icant differences between the results by using eigenspace
trained by complete or incomplete shapes for PCA-FD. The
possible reason for this phenomenon is that: the incomplete
contour representation changes the Fourier coefficients of
low frequencies much, which is used in PCA, that the final
descriptors may become very different.

4 Conclusions

In this study, we have presented a new shape descriptor
for shape representation and retrieval, called PCA-FD. Two
experiments for evaluating its performance in both com-
plete and incomplete contour representations are also given.
The experiments show that the propose PCA-FD was sig-
nificantly more compact and effective than the standard FD
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Depletion Left Occlusion Right Occlusion Segment-wise Deletion
PCA-FD(trained by complete shapes) 0.2337 0.3521 0.3663 0.2498

PCA-FD(trained by incomplete shapes) 0.2427 0.3439 0.3457 0.2623
FD 0.2775 0.3657 0.5462 0.3234

Table 1. Results in incomplete contour retrieval.

(a) Original complete contour.

(b) Depletion.

(c) Occlusion.

(d) Segment-wise deletion.

Figure 6. Examples of incomplete contour
representation.

shape descriptor in complete contour representation but is
worse than FD in incomplete contour representation.

More suitable shape signatures for incomplete contour
representation should be considered in future work and
other subspace methods such as Non-negative Matrix Fac-
torization (NMF) [19] which is proved to be valid for partial
representation for face recognition should also be tested.
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Abstract

In this paper, we present an ICA-based analysis for the
temporal image sequence captured by a moving camera.
We apply ICA to the optical flow field computed from the
sequence of images. ICA-based separation of optical flow
derives a obstacle region and a ground plane region in a
space. For these applications, we also introduce an or-
dering criterion of independent components using its vari-
ances. The algorithm can be extended to the method for
separating multiple planes in the image. We show that the
segmented planes have a hierarchical structure in the im-
age. Furthermore, the pyramid transform of an image se-
quence is used for computing the optical flow field. The
pyramidal optical flow fields drive a global and local mo-
tion in the image sequence.

1 Introduction

Independent component analysis(ICA) [8] extracts sta-
tistically independent features from signals and still images.
In this paper, we apply ICA to a temporal image sequence.
The temporal image sequence drive the optical flow field
[1, 6, 10]. The optical flow is the apparent motion of suc-
cessive images and is independent of the features in images,
unlike edges or corner points in images. Furthermore, op-
tical flow is considered to be fundamental information for
navigation and obstacle avoidance in the context of biolog-
ical data processing [18]. We attempt to apply ICA to the
optical flow fields.

Statistical approaches to the optical-flow analysis have
also been examined [5, 16, 12]. Fermüller et al. analyzed
noise parameters of optical flow using the maximum likeli-
hood [5]. Roth and Black developed a method for learning
the spatial statistics of optical flow fields using a Markov
random field model [16]. Therefore, it is appropriate to
use the statistical properties of optical flow for mobile robot
navigation in a real environment.

In neuroscience, it is known that the medial superior tem-
poral (MST) area performs visual motion processing. For
motion cognition at the MST area in the brain [19, 9, 15],
it is shown that independent components of optical flow are
used. Furthermore, since the optical flow field on an image
can be represented as a linear combination of independent
components of optical flow, we can use ICA for the detec-
tion of the dominant plane by separating obstacles and the
dominant part in an image. Our application of ICA sepa-
rates the planes from image sequences.

The planar-area detection and segmentation methods us-
ing optical flow are also proposed [4, 17, 20]. Enkelmann
[4] proposed the plane-detection method using the model
vectors from motion parameters. Santos-Victor and Sandini
[17] also proposed a plane-detection algorithm for a mo-
bile robot using the inverse projection of optical flow to a
ground floor, assuming that the motion of the camera sys-
tem mounted on a robot is pure translation with a uniform
velocity. However, even if a camera is mounted on a wheel-
driven robot, the vision system does not move with a uni-
form velocity due to mechanical errors of the robot and un-
evenness of the floor. Therefore, we use ICA for separating
the optical flow fields.

For the concurrent detection of local and global motion,
we use independent components of optical flow fields on
pyramidal layers. It is known that animals, insects, and hu-
man beings use the independent component of optical flow
fields for visual behavior [9, 15, 18]. In human object recog-
nition, the hierarchical model is proposed [3]. Furthermore,
for the computation of optical flow, the pyramid transform
of an image sequence is used for the analysis of global mo-
tion and local motion [2, 11]. The pyramid transform gen-
erates multiple-resolution images as layered images. These
layered images are used for computation of optical flow in
its original images from the image in the lowest layer. This
idea based on the assertion that global motion is described
as the collection of local motion. We introduce the applica-
tion of hierarchical image expression for motion analysis.
That is, we develop an algorithm for the detection layered
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optical flows from a multi resolution image sequence.

2 ICA of optical flow field

In this section, we introduce an algorithm for applying
ICA to optical flow fields.

The optical flow is apparent motion of each points com-
puted from successive two images [1]. SettingI(x, y, t)
to be time-varying image, the optical flow is computed by
solving the equation

Ixẋ + Iy ẏ + It = 0, (1)

where(ẋ, ẏ)⊤ is the optical flow vector. To solve this singu-
lar equation, we adopt the Lucas and Kanade method with
the pyramid transform [1, 2, 13].

SettingI0(x, y, t) = I(x, y, t) as the original image and
I l(x, y, t) as the pyramid transformation of imageI(x, y, t)
at the layerl, the pyramid representation is expressed as

I l+1(x, y, t) =
∑

α,β∈Nl

aαβI l(2x − α, 2y − β, t), (2)

whereNl is the neighborhood of point(x, y)⊤ at the layerl
andaαβ is the weight parameter of the neighborhood pixel.
We setNl as a3 × 3 neighborhood and

aαβ =




1
4 , (α = 0, β = 0)
1
8 , (α = ±1, β = 0), (α = 0, β = ±1)
1
16 , (α = ±1, β = ±1)

. (3)

We use the Lucas-Kanade method with pyramids [2].
Therefore, Eq. (1) can be solved by assuming that the opti-
cal flow vectors of pixels are constant in the neighborhood
of each pixel. We set the window size to be5× 5. Equation
(1) is expressed as a system of linear equations,

Iαxẋ + Iβy ẏ + It = 0, |α| ≤ 2, |β| ≤ 2 (4)

Iαβ(x, y, t) = I(x + α, y + β, t + 1), (5)

whereIαβ(x, y) is the spatial neighborhood of a pixel. Op-
tical flow (ẋ, ẏ)⊤ is solved by the Lucas-Kanade method
[10]. Setting this phase as the estimation of optical flow at
the layer 0 of the pyramid representation of the image, we
estimate optical flow at layers from0 to L.

The optical flow is obtained by warping the optical flows
of each layer of the pyramid representation. The procedure
is illustrated in Fig. 1, which is taken from to Bouguet [2].
We callu(x, y, t), which is a set of optical flow(ẋ, ẏ) com-
puted for all pixels in an image, the optical flow field at
time t. Furthermore, we setul(x, y, t) to be the optical
flow field at thel-th layer in the pyramid transform, where
u0(x, y, t) = u(x, y, t). The traditional optical flow anal-
ysis computesu0(x, y, t). We, however in this paper, use

Image I  (u,v,t)0 Image I  (u,v,t+1)0

Image I  (u,v,t+1)l

Image I     (u,v,t+1)l+1

Image I  (u,v,t)l

Image I     (u,v,t)l+1

Warp

Warp

. . .

Optical flow u l+i

Optical flow u l

Optical flow u0

Layer l+1

Layer l

Layer 0

. . .

Figure 1. Procedure for computing optical
flow in Lucas-Kanade method with pyramids.
Optical flow is computed by warping of opti-
cal flows of each pyramid layer.

Camera motion

dominant plane obstacles

= +a1 a2

Figure 2. Linear combination of optical flow
field in the scene. a1 and a2 are mixture coef-
ficients.

optical flow vectors in all layers in multi-resolution images.
This method allow us to extract hierarchical information
from optical flows.

Similar to ICA separating mixture signals into indepen-
dent components, the MST area in the brain separates the
motion fields from visual perception into independent com-
ponents [9, 15]. As previously introduced, we accept the
assumption that optical flow fields observed by the moving
camera are linear combinations of optical flow fields of the
dominant plane and the obstacles. That is, settingu̇dominant

and u̇obstacle to be optical flow fields of the dominant plane
and the obstacles, respectively, the observed optical flow
field u̇ is approximately expressed by a linear combination
of u̇dominant andu̇obstacleas

u̇ = a1u̇dominant+ a2u̇obstacle, (6)

wherea1 anda2 are the mixture coefficients, as shown in
Fig. 2. This assumption is numerically and geometrically
acceptable if motion displacement is small compared with
the size of obstacles, as shown in a numerical experiment.
Therefore, ICA is suitable for the separation of optical flow
into the independent flow components. For each image in a
sequence, we consider that optical flow vectors in the dom-
inant plane correspond to independent components.
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(b) Sorting norml for determina-
tion of output order

Figure 3. Ordering of independent compo-
nents of optical flow fields.

For ICA of optical flow fields, we align the matrix of
two-dimensional vectors to a one-dimensional array as

u̇ → ((u̇, v̇)1 · · · (u̇, v̇)k · · · (u̇, v̇)n)
⊤

→ (u̇1 · · · u̇n v̇1 · · · v̇n)
⊤

= vecu̇. (7)

Since the relationẇ = αu̇ + βv̇ leads to the relation
vecẇ = αvecu̇+βvecv̇. These steps are invertible. There-
fore, it is possible to extract regions corresponding tou̇ and
v̇ if the observationẇ is decomposed into two independent
componentsu̇ and v̇. We use this vector, derived from a
vector-valued image, as input to ICA.

3 Experimental Results

3.1 Dominant-plane detection by ICA

For the detection of the dominant plane, ICA requires
at least two input signals for separation into two inde-
pendent components. Then, we use optical flow field
u̇ = {(u̇, v̇)⊤ij}

h,w
i=1,j=1 and planar flow fieldû =

{(û, v̂)⊤ij}
h,w
i=1,j=1 as the input vectors of ICA, wherew and

h are the width and the height of an image. Since planar
flow is the motion of the dominant plane relative to the robot
motion, the use of planar flow is suitable for separation into
the dominant plane and obstacles.

Settingvα andvβ to be the output vectors,vα andvβ

have ambiguities in those order and length of each compo-
nent. We are required to determine whether components
have optical flow of the dominant plane or of obstacle ar-
eas. We solve this problem using the difference between
the variances of the norms ofvα andvβ .

Settinglα,β = {lij}h,w
i=1,j=1 to be the norm ofvα,β =

{(u̇, v̇)ij}h,w
i=1,j=1, that is,lij = |(u̇, v̇)ij | and the variance

σ2 is computed as

σ2 =
1

hw

h,w∑
i=1,j=1

(lij − l̄)2, wherel̄ =
1

hw

h,w∑
i=1,j=1

lij . (8)

The motions of the dominant plane and obstacles in the im-
ages are different, and the dominant-plane motion is smooth
on the images compared with obstacle motion, as shown in
Fig. 3. Consequently, the output signal of obstacle motion
has larger variance than the output signal of dominant-plane
motion. Therefore, ifσ2

α > σ2
β , we use the normlα of out-

put flow fieldvα for dominant-plane detection; else we use
the normlβ of output flow fieldvβ .

Since the planar flow field is subtracted from the opti-
cal flow field including obstacle motion,l is constant on
the dominant plane. However, the length ofl is ambigu-
ous. Then, we use the median value ofl for the detection
of the dominant plane. Since the dominant plane occupies
the largest domain in the image, we compute the distance
betweenl and the median ofl, as shown in Fig. 3(b). The
area which has the median value of the component is de-
tected as the dominant plane. Settingm to be the median
value of the elements inl, the distanced = {dij}h,w

i=1,j=1 is

dij = |lij − m|. (9)

We detect the area in whichdij ≈ 0 as the dominant plane.
Figure 4 shows the procedure of dominant-plane detec-

tion from the image sequence using ICA. The procedure for
dominant-plane detection by ICA is summarized as follows.
1. Input optical flow fieldu̇ and planar flow field̂u to ICA,
and output the optical flow fieldsvα andvβ .
2. Compute the normslα andlβ from vα andvβ , respec-
tively.
3. Compute the variancesσ2

α andσ2
β from lα and lβ , re-

spectively.
4. If σ2

α > σ2
β , thenl = lα, elsel = lβ .

5. Compute the distanced betweenl and the median ofl.
6. Detect the area in whichdij ≈ 0 as the dominant plane.

For the processing of ICA, we use the Fast ICA package
for MATLAB [7]. Figures 5 - 9 are experimental results
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Camera
Camera motion

Ground plane with obstacles

Supervisor signalImage sequence Optical !ow with obstacles

Separation by ICA

Dominant-plane detection

Determination of order

Estimation 

by random selection

Figure 4. Procedure for dominant-plane de-
tection.

(a)I(x, y, t) (b) u̇ (c) û

Figure 5. Optical flow fields input to our ICA-
based algorithm for translational motion in
an environment with one obstacle. (a) Syn-
thetic image. (b) Computed optical flow field
u̇ for the first input signal. (c) Estimated pla-
nar flow field û for the second input signal.

for translational and the rotational motions. Figures 10 - 14
are experimental results in the environment with two obsta-
cles. Figures 15 - 17 are experimental results for optical
flow fields with noises. Figures 18 and 19 and Figs. 20 and
21 are experimental results for the marbled block sequence
and the flower garden sequence, respectively.

(a) vα (b) vβ (c) dij

Figure 6. Output optical flow fields and de-
tected dominant plane for Fig. 5. (a) Variance
σ2

α = 1.60. (b) Variance σ2
β = 0.51. (c) Detected

dominant plane.

(a)I(x, y, t) (b) u̇ (c) û

Figure 7. Optical flow fields input to our ICA-
based algorithm for rotational motion in an
environment with one obstacle. Labels of (a),
(b), and (c) are same as Fig. 5.

(a) vα (b) vβ (c) dij

Figure 8. Output optical flow fields and de-
tected dominant plane for Fig. 7. (a) Variance
σ2

α = 1.54. (b) Variance σ2
β = 0.17. (c) Detected

dominant plane.
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Figure 9. Sorted norm l of output vα. The
area where norm l is large corresponds to an
obstacle, and the area where lij ≈ m corre-
sponds to the dominant plane. (a)For transla-
tional motion. The median value is m = 0.09.
(b)For rotational motion. The median value is
m = 0.15.
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(a)I(x, y, t) (b) u̇ (c) û

Figure 10. Optical flow fields input to our ICA-
based algorithm for translational motion in
an environment with two obstacles. Labels
of (a), (b), and (c) are same as Fig. 5.

(a) vα (b) vβ (c) dij

Figure 11. Output optical flow fields and de-
tected dominant plane for Fig. 12. (a) Vari-
ance σ2

α = 1.60. (b) Variance σ2
β = 0.55. (c)

Detected dominant plane.

(a)I(x, y, t) (b) u̇ (c) û

Figure 12. Optical flow fields input to our ICA-
based algorithm for rotational motion in an
environment with two obstacles. Labels of
(a), (b), and (c) are same as Fig. 5.

(a) vα (b) vβ (c) dij

Figure 13. Output optical flow fields and de-
tected dominant plane for Fig. 12. (a) vari-
ance σ2

α = 1.40. (b) variance σ2
β = 0.12. (c)

Detected dominant plane.
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Figure 14. Sorted norm l of output vα. The
area where norm l is large corresponds to an
obstacle, and the area where lij ≈ m corre-
sponds to the dominant plane. (a)For transla-
tional motion. The median value is m = 0.14.
(b)For rotational motion. The median value is
m = 0.25.

(a) (b) (c) (d)

Figure 15. Results obtained using optical
flows with error. (a) Translational motion in
an environment with one obstacle. (b) Ro-
tational motion in an environment with one
obstacle. (c) Translational motion in an en-
vironment with two obstacles. (d) Rotational
motion in an environment with two obstacles.

 0

 2

 4

 6

 8

 10

 12

 14

N
or

m

Descending order of the norm

(a)

 0

 2

 4

 6

 8

 10

 12

 14

N
or

m

Descending order of the norm

(b)

 0

 2

 4

 6

 8

 10

 12

 14

N
or

m

Descending order of the norm

(c)

 0

 2

 4

 6

 8

 10

 12

 14

N
or

m

Descending order of the norm

(d)

Figure 16. Sorted norm l of output vα. (a) - (d)
correspond to Figs. 15(a) - (d), respectively.
(a) Median value m = 0.60. (b) Median value
m = 0.68. (c) Median value m = 0.45. (d) Me-
dian value m = 0.60.
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(a) (b) (c) (d)

Figure 17. Obstacle area of the experimen-
tal results overlapped with the images. (a)
Translational motion in an environment with
one obstacle. (b) Rotational motion in an
environment with one obstacle. (c) Transla-
tional motion in an environment with two ob-
stacles. (d) Rotational motion in an environ-
ment with two obstacles.

3.2 Iterative multiple plane segmentation

Using the dominant-plane-detection algorithm itera-
tively, we develop an algorithm for multiple-plane segmen-
tation in an image. After removing the region correspond-
ing to the dominant plane from an image, we can extract the
second dominant planar region from the image. Then, it is
possible to extract the the third dominant plane by removing
the second dominant planar area. This process is expressed
as

Dk =

{
A(R \ Dk−1), k ≥ 2,
A(R), k = 1,

(10)

whereA, R, Dk stand for the dominant-plane-extraction
algorithm, the region of interest observed by a camera, and
thek-th dominant planar area, respectively. The algorithm
is stopped after iterated to a pre-determined iteration time or
the size ofk-th dominant plane is smaller th pre-determined
size.

SettingR to be the root of the tree, this process derives a
binary tree such that

R⟨D1, R \ D1⟨D2, R2 \ D2⟨· · · , ⟩⟩ (11)

Assuming thatD1 is the ground plane on which the robot
moves,Dk for k ≥ 2 is the planar areas on the obstacles.
Therefore, this tree expresses the hierarchical structure of
planar areas on the obstacles. We call this tree the binary
tree of planes. Using this tree constructed by the dominant-
plane detection algorithm, we obtain geometrical properties
of planes in a scene. For example, even if an object exists
in a scene and it lies onDk k ≥ 2, the robot can navi-
gate ignoring this object, using the tree of planes. Figure
22 and 23 are experimental results for the simulated image
sequence. Figures 24 and 25 are experimental results on de-
tecting multiple planes for the marbled-block sequence and
the flower garden sequence, respectively.

Figure 18. Input optical flow fields to our ICA-
based algorithm for the Marbled-Block se-
quence. The first, second, and third rows
show the image sequence for translational
motion, computed optical flow u̇ for the first
input signal, and estimated planar flow û for
the second input signal, respectively.

3.3 Obstacle detection using ICA on pyra-
mid layers

Our algorithm is processed at layersl = 0, · · · , L in the
pyramid transform. Using the optical flow fieldul(x, y, t)
at layerl, we detect obstacles in a image sequence.

Figure 26 shows that, settingOl to be the obstacle region
on the l-th layer, the hierarchical expression of obstacles
satisfies the relations

O0 ⊂ O1 ⊂ · · · ⊂ OL and DL ⊂ DL−1 ⊂ · · · ⊂ D0 (12)

for the dominant planeDK = R0
k. These relations imply

that a pairCl = (Dl, Ol) shows global and local configura-
tion in the work space for a larger and a smallerl, respec-
tively. This hierarchical relation is automatically detected
from a pyramid-based hierarchical expression of images for
optical flow computation. The system uses selectivelyCl

for navigation and spatial perception.
We show experimental results on the detection of obsta-

cles in an image sequence at each layer. For the computa-
tion of optical flow, we use the Lucas-Kanade method with
pyramids [2]. We set the maximum layerL = 3. For the
visual representation of the results of obstacle detection, the
value ofdij in Eq. (9) is normalized in the range from 0 to
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Figure 19. Output optical flow fields and de-
tected dominant plane for Fig. 18. The first,
second, third, and fourth rows show output
signal vα, output signal vβ , images of the
dominant plane, and sorted norm l of output
vα, respectively.

255. The image of the detected obstacleDl(u, v) at thel-th
layer is defined as

Dl(i, j) =
dij × 255

max(dl
ij)

, (13)

wheredl
ij is dij at thel-th layer.

The Marbled-Block image sequence and captured im-
ages in a real environment are used for the experiment. Fig.
26 shows the Marbled-Block images at each layer, the com-
puted optical flow fields at each layer from each image, and
the detected obstacle at each layer. In this figure, the black
and white region indicate the obstacle and dominant plane,
respectively.

Figure 27 shows the captured images in a real environ-
ment using a mobile robot which moves toward the obstacle
in front of the robot, the computed optical flow fields at each
layer from each image, and detected obstacles at each layer.

Another experimental results are shown in Fig. 28.
These examples show that in each layer the obstacle-

Figure 20. Input optical flow fields to our ICA-
based algorithm for the Flower Garden se-
quence. The first, second, and third rows
show image sequence for translational mo-
tion, computed optical flow u̇ for the first in-
put signal, and estimated planar flow û for
the second input signal, respectively.

regions are detected. Therefore, the algorithm detects the
global configuration of obstacles from higher layer images,
though the lower layer images allows us to detect the de-
tailed configuration of obstacles. The hierarchical descrip-
tion of the layered obstacle-region [14] and the extraction
of the navigation-direction from this hierarchical expression
are future problems.

4 Conclusions

We present an algorithm for detecting the hierarchy of
planar areas in an image sequence using independent com-
ponents of optical flow fields. The optical flow fields are
observed through a moving camera. The use of the ICA
for the optical flow enables the robot to detect a feasible re-
gion in which robot can move without any preknowledge.
The presented experimental results support the application
of our method to the navigation and path planning of a mo-
bile robot with a vision system.
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Figure 26. Experimental results for the
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Figure 27. Experimental results for the real
image sequence. Left column: pyramidal
representations of the image Ii. Middle col-
umn: optical flow fields ui at each layer.
Right column: detected obstacle Di at each
layer.

ACCV 2007 Workshop Subspace 2007

90
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Figure 28. Experimental results for the marbled block sequence, the real image sequence, and the
flower garden sequence. (a) Original image. (b) (c) (d) and (e) are detected obstacles at the layers 3,
2, 1, and 0, respectively.
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Abstract—The discovery of the manifolds has long been a
hot topic in computer vision. In many practical problems, high-
dimensional data poses a great obstacle to the researchers. But
these data points are often sampled from several low-dimensional
sub-manifolds. Therefore, charting the sub-manifolds in one coor-
dinate system will help visualize them simultaneously. However,
algorithms developed so far all have their own limitations in
solving this problem. In this paper, we propose a new supervised
method to capture multiple sub-manifolds.

I. INTRODUCTION

Dimensionality Reduction is an interesting topic in the com-
puter vision community. One of the main reasons is that real-
world problems are often confronted with high-dimensional
data points. In most cases, there exist low-dimensional struc-
tures, i.e. sub-manifolds, underlying these high dimensional
data points. It is beneficial to design efficient dimensionality
reduction algorithms to find these intrinsic manifolds. The
main goal of our paper is to design such an algorithm. Unlike
the classification task, whose main goal is to classify unlabeled
data points accurately, we focus on how to arrange the labeled
data in a space, whose dimension does not exceed three, to
help the user visualize these sub-manifolds conveniently.

Most of the dimensionality reduction algorithms can be
categorized into two groups: unsupervised and supervised. As
for the unsupervised group, some of the previous works, such
as Principle Component Analysis (PCA) [1], Locally Linear
Embedding (LLE) [9], Isomap [10], Locality Preserving Pro-
jections(LPP) [7] and Laplacian Eigenmaps (LE) [6] have been
developed to discover the intrinsic data structures, regardless
of the labels of these data points. For the supervised ones,
Linear Discriminant Analysis (LDA) [1], and its variants, such
as Kernel LDA [3], null space LDA [4] and uncorrelated LDA
[5], utilize the available discriminant information of the data
points, and have shown a great success.

From another point of view, these dimensionality reduction
algorithms can also be divided into linear and nonlinear
ones. PCA, LPP and LDA, seeking linear maps from high-
dimensional feature space to a lower one, are among the linear
ones, while Kernel PCA, Kernel LDA, Laplacian Eigenmaps
do not restrict this map to be linear, and therefore are catego-
rized into the nonlinear group.

The authors in [14] present a nonlinear algorithm. However,
they presume that all the data points lie on the same manifold,

The work was supported by the National Science Foundation of China
(60475001, 60605002)

and do not take into account the discriminant information.
Authors in [15] propose Supervised LLE, and can handle the
situation when multiple-manifolds exist. But their main focus
is on classification, rather than charting the sub-manifolds. As
illustrated by the authors, their algorithm tends to lose the
within-class structure, and is not suitable to treat the charting
task. The same problem also exists in Kernel LDA. In [11],
the authors propose a Supervised Isomap to perform this task.
In their paper, the discriminant information is used to redefine
the distances between data points. They aim to reduce the
distances between data points sharing the same labels, as well
as enlarge the distances between data points with different
labels. Their motivation is quite reasonable. However, the
redefinition of the distance function is too empirical.

In most cases, supervised algorithms can utilize more infor-
mation than unsupervised methods and nonlinear algorithms
have fewer mapping restrictions than the linear ones. There-
fore, charting the manifolds through supervised nonlinear
dimensionality reduction is a good choice. In this paper, we
propose a new Supervised Nonlinear Dimensionality Reduc-
tion (SNDR) algorithm to discover the sub-manifolds for each
category. SNDR is a nonlinear method, and does not restrict
the mapping be linear. Unlike the unsupervised algorithms,
SNDR utilizes the class labels of the input data points to guide
the dimensionality reduction work.

The rest of the paper is organized as follows: In Section II,
we will formulate the multiple mainfolds charting problem. A
related method will be given in Section III. We will elaborate
our proposed algorithm in Section IV. In Section V, the
experimental results are presented. In the end, conclusions will
be drawn in Section VI.

II. PROBLEM STATEMENT

We are given a set of n data points {xi, i = 1, 2, ....n},
which are sampled from k categories, as well as their corre-
sponding labels l(xi) ∈ {1, 2, ...., k}. In most cases, for each
category, a sub-manifold exists. The goal is to help chart,
in a coordinate system, these sub-manifolds as faithfully as
possible. In the context, we will use the term ’observed set’
to denote the set of these data points and hence the ’observed
data points’ refers to the data points in the ’observed set’. The
feature space after dimensionality reduction will be referred
to as ’reduced feature space’.
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III. LINEAR TRANSFORMATION

Exploring data structures from a global way, such as PCA,
often gives undesirable results. So, some recent algorithms,
such as [13], [12] and [8], have considered solving it from a
local way.

For each data point xi, we first find its K nearest neighbors.
Then these K nearest neighbors are split into two sets: the data
points with the same label as l(xi) (l(xi) denotes the label of
xi), i.e. Nw(xi) and the data points with labels different from
l(xi), i.e. Nb(xi). Specifically,

Nw(xi) = {xm
i |l(xm

i ) = l(xi), 1 ≤ m ≤ K}
Nb(xi) = {xm

i |l(xm
i ) 6= l(xi), 1 ≤ m ≤ K}

Then, two graphs, the within-class graph Gw and the
between-class graph Gb, are constructed, with each node
representing a data point and the adjacency relationship be-
tween two data points representing an edge. The corresponding
adjacency matrices, Ww and Wb, are determined as follows:

Ww,mn =
{

1, if xm ∈ Nw(xn) or xn ∈ Nw(xm)
0, otherwise

Wb,mn =
{

1, if xm ∈ Nb(xn) or xn ∈ Nb(xm)
0, otherwise

Let y = (y1, y2, ..., yn)T be a one-dimensional represen-
tation for the data points in the observed set. Suppose a is a
projection vector. i.e. yT = aT X, where X = (x1,x2, ...,xn).
Then, the objective is to seek a projection vector a to minimize∑

ij (yi − yj)2Ww,ij and maximize
∑

ij (yi − yj)2Wb,ij , si-
multaneously. In this way, the local margins between different
categories can be maximized. We find that,

1
2

∑
ij

(yi − yj)2Ww,ij

= 1
2

∑
ij

(aT xi − aT xj)2Ww,ij

= aT XDwXT a− aT XWwXT a

(1)

1
2

∑
ij

(yi − yj)2Wb,ij

= 1
2

∑
ij

(aT xi − aT xj)2Wb,ij

= aT X(Db −Wb)XT a
= aT XLbXT a

(2)

Dw and Db are diagonal matrices, with entries Dw,ii =∑
j Ww,ij and Db,ii =

∑
j Wb,ij . The Laplacian matrix for

the between-class graph Gb is Lb = Db−Wb. By restricting
aTXDwXTa = 1, Eq. (1) turns to 1− aTXWwXTa. Also
taking Eq. (2) into account, maximizing the local margins is
equivalent to solving the following optimization problem:

arg max
a

aTXDwXTa=1

aTX(ηLb + (1− η)Ww)XTa (3)

η is a trade-off parameter (0 ≤ η ≤ 1). This optimization
problem can be solved efficiently by the generalized eigen-
value problem.

The objective function Eq. (3) explores the geometry of the
data manifolds, characterizes both the geometrical and dis-
criminant structures by utilizing the within-class and between-
class graph. Experiments on face recognition give us an
impressive result [8]. However, this algorithm restricts that
the map should be linear and may sacrifice some manifold
information when the dimension of the reduced feature space
is very low. Therefore, this is not suitable for the visualization.

In this paper, we seek for a nonlinear map to visualize the
sub-manifolds underlying the high dimensionality data points.

IV. THE PROPOSED ALGORITHM

A. The Construction of The Adjacency Matrix

In SNDR, two graphs are constructed, i.e. the within-class
graph G

′
w and between-class graph G

′
b. However, the method

how we construct these two graphs is different. For each data
point xi (1 ≤ i ≤ n), kw nearest neighbors with labels l(xi),
as well as kb nearest neighbors with labels different from l(xi)
are selected. kw and kb are two parameters that are determined
beforehand. Then, the adjacency matrices W

′
w and W

′
b for

G
′
w and G

′
b can be formulated as follows:

W
′
w,mn =

{
1, if xm ∈ N

′
w(xn) or xn ∈ N

′
w(xm)

0, otherwise
(4)

W
′
b,mn =

{
1, if xm ∈ N

′
b(xn) or xn ∈ N

′
b(xm)

0, otherwise
(5)

Here, N
′
w(xi) denotes the kw nearest neighbors with the

same label as l(xi), while N
′
b(xi) refers to the kb nearest

neighbors with labels different from l(xi). The between-class
Laplacian matrix for the graph G

′
b can be defined as L

′
b =

D
′
b−W

′
b. D

′
b and D

′
w are diagonal matrices, with diagonal

entries D
′
b,ii =

∑
j W

′
b,ij , D

′
w,ii =

∑
j W

′
w,ij . Remind that in

Section III, for xi, Nw(xi) and Nb(xi) are partitioned within
its K nearest neighbors. By finding for each xi the kw nearest
neighbors with labels l(xi), D

′
w,ii will always be nonzero, and

D
′
w can be nonsingular. This modification is reasonable, since

it still reflects the local margin information between different
categories, but from a different perspective. The reason why
we require D

′
w to be nonsingular will be elaborated in the

section IV-B.

B. Charting The Sub-manifolds on The Observed Data Set

Still assume that y = (y1, y2, ..., yn)T is a one-dimensional
representation for the observed data points. Our aim is to find
a nonlinear projection that can faithfully preserve the pairwise
relationship in the low dimensional space by minimizing the
within-class scatter

∑
ij

(yi − yj)2W
′
w,ij and maximizing the

between-class scatter
∑
ij

(yi − yj)2W
′
b,ij , simultaneously. In-

spired by Eq. (3), the optimization problem can be formulated
as:

arg max
y

yD
′
wyT=1

y(ηL
′
b + (1− η)W

′
w)yT (6)
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Here, we do not restrict y be a linear transformation
y = aT X. Conversely, we directly estimate it from the
optimization problem, which results in a non-linear feature
space. This amounts to solving the generalized eigenvalue
problem:

(ηL
′
b + (1− η)W

′
w)yT = λD

′
wyT (7)

η is the trade-off parameter, 0 ≤ η ≤ 1. Still note that
why we require D

′
w to be nonsingular in Section 4.1. That’s

because if D
′
w is singular, it would deteriorate the solution

of Eq. (7). Let the column vector y1,y2, ...,yd denote the
solutions of equation (7), ordered according to eigenvalues
λ1 > ... > λd. the embedding will be given by:

Y = (y1,y2, ...yd)T (8)

C. The Whole Algorithm

For the observed set, the visualization procedure can be
shown in Table I.

V. EXPERIMENTS

In this section, we present experimental results on the
MNIST handwritten digit test set 1. This data set contains
10,000 28 × 28 pixels images, with 1000 for each category
and 10 categories in total.

In our experiment, for each category, 100 images are ran-
domly selected as the observed set to chart the manifolds. kb

and kw are both set to 10, and the trade-off η is set to 0.1.
The result of SNDR is shown in Fig. 1. As for comparison,
the charting results of some representative algorithms such
as LDA, Kernel LDA, Local Sensitive Discriminative Analy-
sis(LSDA) [8] and Laplacian Eigenmaps are shown in Fig. 2.
It can be seen that SNDR can separate different manifolds very
well. From the several magnified manifolds, we can see that
the multiple manifolds for these categories are well retained.
For example, the lean degrees of the digit 1 and 7 increase
with the x-coordinate.

LDA (Fig. 2(a))doesn’t provide a good charting result
because its underlying assumption is that the data distribution
of each category is gaussian and LDA is itself a linear method.
Although Kernel LDA provides a nonlinear supervised map, it
maps the data points with the same labels onto the same point
in the reduced feature space, as can be shown in Fig. 2(b),
and therefore loses the inner sub-manifold struture for each
category. LSDA(Fig. 2(c)) restricts the map to be linear and
may lose some manifold information in such low dimensions.
Therefore, it can not give a good charting result. Laplacian
Eigenmaps (Fig. 2(d))is an unsupervised method and can not
utilize the discriminative information, so it can not separate
the manifold of each category well.

We provide a comparison result with Supervised Isomap
[11] in Fig. 2(e). The observed set in this figure is the same as
that in Fig. 1. But it is hard to distinguish the inner structure
for each category. This is because, in Supervised Iso-map,
the between-class distances for some categorie pairs are much

1http://yann.lecun.com/exdb/mnist/

longer than the within-class distances and therefore the within-
class structures are concealed. However, the long distance
between several categories doesn’t mean a good separation for
each category pairs, either. In fact, in Fig. 1, digit 2 overlaps
digit 5 a little. But in Fig. 2(e), digit 1 and 3, digit 5 and 6 are
strongly overlapped. This is because, in Supervised Isomap,
the redefinition of the distance between two data points is too
empirical, and may contradict the real distribution.

VI. CONCLUSIONS

In this paper, by utilizing the local information, we propose
a new algorithm-SNDR to chart the sub-manifolds of different
categories under one coordinate system. Experimental results
on Minist have shown its superior performance over several
state-of-art algorithms. In the future, we will consider how to
use this supervised nonlinear map to help improve the accuracy
of classification tasks and how to depict the low-dimensional
coordinates of the out-of-sample data points.
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Input: data points x1,x2, ....,xn, as well as their labels, where n denotes the number of all the observed
data points. The desired dimension of the reduced feature space is d (d ≤ 3); kb, kw , and the trade-off
parameter η.
1. Construct the within-class matrix W

′
w and the between-class matrix W

′
b, using (4) and (5), respectively.

2. Calculate the Laplacian matrix L
′
b = D

′
b −W

′
b

3. Solving the optimization problem (6). The optimal embedding is given by Eq. (8)
Ouput: Eq. (8) gives the optimal embedding for the observed set.

TABLE I
THE PROCEDURE TO FIND THE OPTIMAL EMBEDDING FOR THE OBSERVED DATA POINTS

Fig. 1. The charting for the manifolds of all the categories. Each color represents a different category, and the sub-manifolds of several digits are magnified.
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(b) Kernel LDA
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(d) Laplacian Eigenmaps
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(e) Supervised Isomap

Fig. 2. The comparison charting result of LDA, Kernel LDA, LSDA, Laplacian Eigenmaps and Supervised Isomap
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Abstract

We propose a new face recognition method that sepa-
rates subspaces representing individuals based on the math-
ematical analysis of angles between multiple subspaces. A
low-dimensional subspace representation by principal com-
ponent analysis is known to be an effective approach for de-
scribing variation of facial patterns. A similarity between
individuals is defined by an angle between their subspaces.
Since all facial patterns have the same structure of facial
parts, it is significant to extract individual characteristics
from each subspace by considering the cross-relationship
between categories. Our method applies “whitening trans-
formation of distribution of subspaces”, which can uni-
formize the distribution according to eigenvalues of the au-
tocorrelation matrix of the subspaces. We derive the equa-
tion relating angles between subspaces to uniformity of the
distribution of these subspaces. From this equation, the
whitening transformation is effective for separation of the
subspaces. Under the ideal condition, the whitening trans-
formation orthogonalizes all subspaces. In other words, all
similarities between each other are equal to 0. We show
the proposed method works well even in a practical case
through evaluation experiments on the FRGC 1.0 and the
FERET databases and outperforms other methods.

1 Introduction

Many face identification methods have been proposed,

which represent variation of patterns for an individual as a

low-dimensional subspace generated from a set of patterns

by principal component analysis (PCA) [2, 7, 11]. Since

these methods are able to cope with variation in appearance,

a robust face identification application can be built.

Yamaguchi et al. have proposed face recognition using

the Mutual Subspace Method (MSM)[11]. They represent

not only reference patterns as a reference subspace but also

input patterns as an input subspace. To compare an input

subspace with the reference subspace representing an indi-

vidual, a similarity of MSM is defined by an angle between

the input subspace and the reference subspace. MSM has a

problem in that reference subspaces crowd since all facial

patterns have the same structure of facial parts and MSM

does not have a function that separates the subspaces of in-

dividuals.

To improve the recognition accuracy by separating sub-

spaces, Fukui et al. have extended MSM to the Constrained
Mutual Subspace Method (CMSM)[2]. In CMSM, refer-

ence subspaces are projected onto a constraint subspace,

which is designed to emphasize the difference between in-

dividuals. Fukui et al. confirmed empirically that the pro-

jection to the constraint subspace creates a larger angle be-

tween multiple reference subspaces and explained that sub-

spaces are separated because the common components of

subspaces are removed.

We propose a new method, the Whitened Mutual Sub-
space Method (WMSM), based on a more mathemati-

cal analysis of angles between subspaces, which uses the

whitening transformation of the distribution of subspaces

for separation of subspaces. Whitening is a process to make

a distribution uniform. First, we derive the equation that

relates angles between multiple subspaces to a standard de-

viation of eigenvalues of an autocorrelation matrix of these

subspaces. This equation describes that uniformizing a dis-

tribution of multiple subspaces makes angles between these

subspaces larger. In other words, the whitening transfor-

mation emphasize the difference between individuals. In

particular, the whitening transformation of a distribution

of subspaces orthogonalizes reference subspaces when the

number of reference subspaces is small. We show the pro-

posed method works well even in a practical case through

evaluation experiments on the FRGC 1.0 and the FERET

databases and outperforms other methods.

The remainder of this paper is organized as follows.

First, to explain the reason for using the whitening trans-

formation of a distribution of subspaces mathematically,
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we analyze angles between multiple subspaces in section

2. Next, we describe the proposed method of face recogni-

tion in section 3. We demonstrate the effectiveness of our

method by face recognition experiments in section 4.

2 Mathematical analysis of angles between
subspaces

In this section, we explain the mathematical reason for

using the whitening transformation of a distribution of sub-

spaces for separation of these subspaces. For the purpose

of the explanation, two mathematical objects that are cal-

culated from multiple subspaces are prepared and the equa-

tion describing the relationship between these mathemati-

cal objects are derived. One of the mathematical objects is

a measure of separability of multiple subspaces, that con-

sists of canonical angles between these subspaces [1]. The

other is an autocorrelation matrix of multiple subspaces[2].

We derived the equation that consists of a measure of sep-

arability of multiple subspaces and a standard deviation

of eigenvalues of an autocorrelation matrix of these sub-

spaces. This equation describes that a measure of separabil-

ity of subspaces becomes large when a standard deviation

of eigenvalues of this matrix becomes small. In other word,

uniformizing distribution of subspaces separates these sub-

spaces. Based on this mathematical analysis of angles be-

tween subspaces, we propose the method using whitening

transformation for separation of multiple subspaces.

In MSM, a similarity between two subspaces is defined

by an angle between these subspace. In this paper, there-

fore, we represent that subspaces separate when angles be-

tween these subspaces are large.

2.1 A measure of separability of subspaces

In this section, we define a measure of separability of two

subspaces based on canonical angles between these sub-

spaces and extend it to multiple subspaces.

To prepare the definition of a measure of separability of

subspaces, we explain canonical angles between two sub-

spaces, which are described in [1]. d canonical angles

θ(1), . . . θ(d) between the d-dimensional subspaces V1 and

V2 in a vector space are defined as follows;

• V
(1)
1 = V1 and V

(1)
2 = V2.

• θ(i) is the angle between v
(i)
1 and v

(i)
2 , where v

(i)
1 ∈

V
(i)
1 and v

(i)
2 ∈ V

(i)
2 are the nearest vectors under the

condition |v(i)
1 | = |v(i)

2 | = 1.

• V
(i+1)
1 = {v ∈ V

(i)
1 |v ⊥ v

(i)
1 } and V

(i+1)
2 = {v ∈

V
(i)
2 |v ⊥ v

(i)
2 }.

where i = 1, . . . d and | · | denotes the norm. The subspaces

V
(1)
j , . . . ,V

(d)
j have the following relation;

V
(1)
j ⊃ V

(2)
j ⊃ . . . ⊃ V

(d)
j (1)

where j = 1, 2. In particular, θ(1) is equal to the angle

between V1 and V2. Therefore, we use canonical angles

instead of a single angle because more detailed analysis of

separability is possible. When two subspaces are identical

and orthogonal, all canonical angles are equal to 0 and π/2,

respectively. From the definition of canonical angles, we

obtain the inequation θ(1) ≤ . . . ≤ θ(d).

The canonical angles between these subspaces become

large when two subspaces separate. Therefore, we define

a measure of separability of two subspaces V1 and V2 as

follows:

Sep(V1,V2) = 1 − 1

d

d∑
i=1

cos2 θ(i), (2)

where θ(1), . . . θ(d) are canonical angles between V1 and

V2. If two subspaces are identical and orthogonal, mea-

sures of separability of these subspaces are equal to 0 and 1,

respectively. When this measure of two subspaces is large,

these two subspaces separate.

For calculation of the measure of two subspaces (2) us-

ing orthonormal bases of these subspaces, we derive the

equation between a measure of separability of two sub-

spaces and projection matrices of these subspaces. The pro-

jection matrix P of subspace V is defined by equation (3)

[8].

P =
d∑

i=1

ψiψ
T
i , (3)

where {ψ1, . . . ψd} is an orthonormal basis of V. Generally,

a projection matrix is defined by d×D matrix (ψ1, . . . ψd)
T

where D is dimension of the vector space. However, we use

the former definition since the latter definition does not have

the information of position of the subspace on the vector

subspace. Let Pj be the projection matrix of Vj , where

j = 1, 2. By calculation of the trace of P1P2, the equation

(4) is obtained.

Sep(V1,V2) = 1 − 1

d
tr(P1P2), (4)

where tr(·) is a trace of a matrix, which is a sum of diagonal

components of the matrix. (See Appendix for a detailed

calculation of (4)).

We extend a measure of two subspaces (2) to a measure

of separability of multiple subspaces. Let V1, . . . ,VN be

d-dimensional subspaces in a D-dimensional vector space.

A measure of separability of subspaces V1, . . . ,VN is de-

fined as an average of measures of Vk and Vl (1 ≤ k <
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l ≤ N)

Sep(V1, . . . ,VN ) =
2

N(N − 1)

∑
1≤k<l≤N

Sep(Vk,Vl).

(5)

When all subspaces are identical and orthogonal, measures

of separability of these subspaces are equal to 0 and 1, re-

spectively. The more this measure of multiple subspaces is,

the more these subspaces separate. We obtain the equation

(6) from (5) and (4).

Sep(V1, . . . ,VN ) = 1− 2

N(N − 1)

∑
1≤k<l≤N

1

d
tr(PkPl),

(6)

where Pk is the projection matrix of Vk defined by (3).

Therefore, we calculate a measure of separability of multi-

ple subspaces using orthonormal bases of these subspaces.

2.2 An autocorrelation matrix of sub-
spaces

To prepare calculation of a measure of multiple sub-

spaces (5) we explain an autocorrelation matrix of distri-

bution of subspaces, which is described in [2], and calcu-

late an average and a standard deviation of its eigenvalues.

An autocorrelation matrix of distribution of subspaces A

is defined as an average of all projection matrices, like an

autocorrelation matrix of distribution of vectors [8], and its

eigenvalue problem is solved as follows,

A =
1

N

N∑
k=1

Pk = BΛBT , (7)

where B is the matrix whose columns are the orthonormal

eigenvectors of A and Λ is the diagonal matrix of the cor-

responding eigenvalues λ1 ≥ . . . ≥ λD.

We calculate an average and a standard deviation of

eigenvalues of an autocorrelation matrix. Let mλ and

σλ be an average and a standard deviation of eigenvalues

λ1, . . . , λD, respectively. In the first step, we calculate an

average of eigenvalues of an autocorrelation matrix. An

average of eigenvalues of the autocorrelation matrix mλ is

equal to the constant value d/D regardless of arrangement

of subspaces V1, . . . ,VN from the following calculation,

mλ =
1

D

D∑
l=1

λl =
1

D
trA =

1

D
tr(

1

N

N∑
k=1

Pk),

=
1

DN

N∑
k=1

tr(Pk) =
1

DN

N∑
k=1

d =
d

D
. (8)

Next, we calculate a standard deviation of eigenvalues of an

autocorrelation matrix using (8) as follows,

σλ =
1

D

D∑
l=1

(λl − mλ)2,

=
1

D

D∑
l=1

λ2
l − m2

λ =
1

D
trA2 − (

d

D
)2. (9)

2.3 Equation between a measure of sepa-
rability and an autocorrelation matrix

In this section, we show that a separability of multi-

ple subspaces is decided from only a standard deviation of

eigenvalues of an autocorrelation matrix from the equation

that consists of a measure of separability of multiple sub-

spaces, a standard deviation of eigenvalues of an autocorre-

lation matrix and a constant term.

Using (6), (8) and (9), a measure of separability of mul-

tiple subspaces S = Sep (V1, . . .VN ) is calculated as fol-

lows,

S = 1 − 2

N(N − 1)

∑
1≤k<l≤N

1

d
tr(PkPl),

= 1 − 1

dN(N − 1)

∑
1≤k �=l≤N

tr(PkPl),

= 1 − 1

dN(N − 1)
tr(

N∑
k,l=1

PkPl −
N∑

k=1

Pk),

= 1 − 1

dN(N − 1)
tr(N2A2 − NA),

= − DN

d(N − 1)
σ2

λ +
N(D − d)

(N − 1)D
. (10)

From the equation (10), a transformation that decreases

the standard deviation of eigenvalues σλ separates the sub-

spaces V1, . . .VN . In particular, all subspaces are sepa-

rated most when all eigenvalues λ1, . . . λD are the same

values.

2.4 Whitening transformation of distribu-
tion of subspaces

We propose whitening transformation of distribution of

subspaces for separation of multiple subspaces based on the

analysis in the previous section. From the analysis in sec-

tion 2.3, a transformation that decreases standard deviation

of eigenvalues of autocorrelation matrix of subspaces sep-

arates these subspaces. In other words, whitening transfor-

mation of distribution of subspaces is effective to separate

these subspaces (Fig. 1). “Whitening” is a process to make

all eigenvalues of an autocorrelation matrix the same. The
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Figure 1. The ellipse and the circle in the cen-
ter of the figure represent the distribution of
subspaces. “Whitening” makes the distribu-
tion uniform.

matrix W that represents whitening transformation of dis-

tribution of subspaces V1, . . . ,VN is defined and makes an

autocorrelation matrix the identity matrix I as follows:

W = Λ−1/2BT , (11)

WAWT = (Λ−1/2BT )BΛBT (BΛ−1/2) = I,(12)

where B and Λ are defined in (7).

Another method, named the Orthogonal Subspace
Method (OSM), in which whitening orthogonalizes sub-

spaces, has been proposed by Fukunaga et al.[3] and

Kittler[4]. In OSM, an autocorrelation matrix of each class

is transformed by the whitening of the autocorrelation ma-

trix generated from all samples in all classes before a sub-

space of each class is generated from the eigenvectors of

the autocorrelation matrix of this class, the eigenvalues of

which are large. In other words, a set of samples in each

class is represented as a low-dimensional subspace after the

distribution of all samples in all classes is made uniform.

In this method, the eigenvector of an autocorrelation matrix

of a class, the eigenvalue of which is 1, is orthogonal to all

samples in other classes since all eigenvalues of the auto-

correlation matrix generated from all samples in all classes

are equal to 1.

In our method and OSM, subspaces are orthogonalized

using whitening. The difference between our method and

OSM is the order of the linearization and the transforma-

tion. In other words, an input subspace and a reference sub-

space are generated from a set of patterns before whitening

in our method, but after whitening in OSM. Therefore, our

method does not use eigenvectors of the autocorrelation ma-

trix whose eigenvalues are small. Furthermore, when the

number of subspaces is small, these subspaces are always

orthogonalized in our method but not always orthogonal-

ized in OSM (section 2.5).

2.5 Transformation under the ideal condi-
tion

We show that subspaces can be orthogonalized by the

whitening transformation of distribution of these subspaces

Figure 2. Similarity matrix: angles between
ten reference subspaces in MSM, CMSM and
WMSM in the case that the condition (14) is
satisfied. The darker a pixel is, the larger the
angle between subspaces is.

in the ideal case that the number of these subspaces is small.

In the first step, we prove the following proposi-

tion. Let u1, . . . , uN be bases of 1-dimensional sub-

spaces in D-dimensional vector space. A matrix U denotes

(u1, . . . , uN ) and Λ,Λ−1/2,B,W are defined as in (7) and

(11). Let u′
i be Wui for all i.

Proposition 1 if u1, . . . , uN is linearly independent,
u′

1, . . . , u
′
N is orthonormal.

Proof Let U′ be WU. Since UUT = A = BΛBT in the
equation (7) and u1, . . . , uN is linearly independent,

U′U′T = WUUT WT = Λ−1/2BT BΛBT BΛ−1/2 = ĨN ,
(13)

where ĨN is a diagonal matrix in which the number of 1
on the diagonal is N and others are 0. The symmetric ma-
trix U′T U′ is an identity matrix because all eigenvalues of
U′T U′ are the same as those of U′U′T without 0 and the
rank of U′T U′ is N . Therefore, u′

1, . . . , u
′
N is orthonormal

because a component of U′T U′ is an inner product of u′
k

and u′
l. �

Generally, we can orthogonalize all subspaces using the

whitening transformation of the distribution of these sub-

spaces if the following inequation is satisfied;

dN ≤ D, (14)

where D is the dimension of the vector space including

these subspaces, because we apply Proposition 1 to bases

of these subspaces. The equation (14) requires the dimen-

sion or the number of these subspaces to be small. In the

case that the condition (14) is satisfied, the measure of sep-

arability of subspaces transformed by the whitening trans-

formation is equal to 1 since the autocorrelation matrix of

these subspaces is ĨdN from the same calculation (13).

Fig. 2 shows similarity matrix images whose pixel val-

ues represent an angle between pairs of subspaces in MSM,
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Figure 3. The flow chart of WMSM.

CMSM, and our method in the case that the condition (14)

is satisfied. This figure shows that our method orthogonal-

izes all these subspaces.

3 Face Recognition using the whitening
transformation of the distribution of sub-
spaces

In this section, we describe the procedure of WMSM

(Fig. 3).

3.1 Algorithm for face recognition

First, we located the face pattern from the positions of

the feature points and cropped to 32 × 32 pixels using 3D

normalization[5] and preprocessing[6]. In order to adapt

localization error of feature points, we represent variation

of face patterns due to the localization error as a subspace in

the feature space by perturbation of the feature points and

obtaining multiple face patterns from a single face image.

We apply PCA to the vectors to generate an input subspace.

Let {xi}i=1,...n be a set of vectors. The basis of the input

subspace is the eigenvectors of the autocorrelation matrix

Z = 1/n
∑n

i=1 xix
T
i [8].

The whitening transformation (11) is generated from an

autocorrelation matrix of reference subspaces. To allow for

the variation in appearance for each individual, it is effective

to increase the dimension of the reference subspace by ad-

dition of other bases that are generated from reference pat-

terns and not used for comparison with an input subspace.

To compare the input subspace with the reference sub-

space registered in a database for each individual, we calcu-

late their similarities after transforming the input subspace

and the reference subspaces by the whitening transforma-

tion of a distribution of reference subspaces. The person in

the image is identified as the person who corresponds to the

reference subspace with the highest similarity.

3.2 Transformation of a subspace and cal-
culation of a similarity

In our proposed method, to transform the input subspace

Vinput and the reference subspace Vref by whitening of

distribution of reference subspaces, we carry out the fol-

lowing steps:

1. Transform a basis of a subspace by the whitening

transformation W.

2. Apply Gram-Schmidt orthogonalization to them.

The orthonormal basis is a basis of the transformed sub-

space.

We define a similarity s between the d-dimensional sub-

spaces Vinput and Vref as s = cos2 θ, where θ is the angle

between Vinput and Vref. The angle θ is equal to the 1-th

canonical angle θ(1) between Vinput and Vref. If Vinput
and Vref are identical, the angle θ is equal to 0. The angle

is calculated using the MSM[11]. The similarity s equals

the largest eigenvalue λmax of X = (xmn) using

xmn =

d∑
l=1

(ψm, φl)(φl, ψn) (m,n = 1 . . . d) , (15)

where {ψi}i=1,...,d and {φj}j=1,...,d are the orthonormal

bases of Vinput and Vref, respectively; (ψm, φl) is the in-

ner product of ψm and φl.

4 Evaluation with the FRGC 1.0 and FERET
databases

We show the proposed method works well even in a prac-

tical case. We performed experiments using the controlled

still images (exp1) in the FRGC 1.0 database [9] and the fa
and the fb data sets in the FERET database[10]. The con-

trolled still images in FRGC 1.0 consisted of 152 gallery

images and 608 probe images. The fa and the fb in FERET

consisted of images of 1196 people with one image per per-

son and 1195 people with one image per person, respec-

tively.

We compare five methods, namely, MSM, CMSM,

Multiple CMSM (MCMSM) [7], WMSM and Multiple
WMSM (MWMSM). MCMSM and MWMSM apply en-

semble learning with bagging to CMSM and WMSM, re-

spectively. In MCMSM, multiple constraint subspaces are

generated from reference subspaces selected randomly in

the same way of bagging. The input subspace and the ref-

erence subspaces are projected onto each constraint sub-

space and a similarity is determined with the similarities

ACCV 2007 Workshop Subspace 2007

101



Table 1. The methods and their parameters. d
is the dimension of input and reference sub-
spaces. L is the number of constraint sub-
spaces and whitening transformations. d′ is
the dimension of reference subspaces that
generate constraint subspaces and whiten-
ing transformations. C is the dimension of
constraint subspaces.

d L d′ C
MSM 7 – – –

CMSM 7 1 15 210

MCMSM 7 10 15 210

WMSM 7 1 15 –

MWMSM 7 10 15 –

Table 2. Experimental results using FRGC 1.0
in terms of Correct Match Rate (CMR) and
Equal Error Rate (EER).

CMR (%) EER (%)

MSM 96.4 3.45

CMSM 96.5 2.47

MCMSM 97.2 2.28

WMSM 97.0 1.81

MWMSM 97.2 1.81

calculated on each constraint subspace. In MWMSM, mul-

tiple whitening transformations are generated from refer-

ence subspaces selected randomly and the similarity is de-

termined with an average of the similarities calculated after

transformation by each whitening transformation. Their pa-

rameters in the experiments are listed in Table 1.

Table 2 shows the evaluation results in FRGC 1.0 for

each method in terms of Correct Match Rate (CMR) and

Equal Error Rate (EER). Correct Match Rate is the proba-

bility that an input of the right person is correctly accepted.

Equal Error Rate is the probability that false acceptance rate

(FAR) equals the false rejection rate (FRR). It can be seen

that the proposed method and the proposed method with en-

semble learning are equivalent to MCMSM with regard to

Correct Match Rate and superior to the other methods with

regard to Equal Error Rate on FRGC 1.0.

To evaluate the generalization ability of our method, we

performed experiments using another database. Fig. 4

shows the evaluation results for each method and the best

result (UMD97) of the partially automatic algorithms re-

ported in FERET’97 [10] in terms of Cumulative Match

Rate. It can be seen that the proposed method and the pro-

posed method with ensemble learning are superior to the

other methods.

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 5  10  15  20  25  30  35  40  45  50

C
um

ul
at

iv
e 

M
at

ch
 R

at
e

Rank

MOMSM
OMSM

MCMSM
CMSM

MSM
UMD97

Figure 4. Experimental results using FERET
database in terms of Cumulative Match Rate.

5 Conclusions

This paper presented a face recognition method based

on mathematical analysis of angles between subspaces in

which we apply whitening of a distribution of subspaces to

emphasize the difference between individuals. We derived

the equation (10) that relates angles between subspaces to

a distribution of these subspace. This equation describes

that the whitening transformation is effective for separation

of these subspaces. In the experiment, we obtained high

performance compared with other methods on the FRGC

1.0 and the FERET database .
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A Calculation of a measure of separability of
subspaces

To obtain equation (4), we prove the following equation,

1

d
tr(P1P2) = Sep(V1,V2). (16)

To calculate the trace of the product of projection matri-

ces, we describe several facts about vectors v
(1)
1 , . . . , v

(d)
1

and v
(1)
2 , . . . , v

(d)
2 in section 2.1. A set of vectors

{v(1)
j , . . . , v

(d)
j } is an orthonormal basis of Vj since v

(i)
j

is orthogonal to V
(i+1)
j , where j = 1, 2. Furthermore, v

(k)
1

is orthogonal to v
(l)
2 (k �= l) since the equations (17) and

(18) are derived from the definition of v
(i)
1 and v

(i)
2 ,

P
(i)
2 v

(i)
1 = cos θ(i)v

(i)
2 , (17)

P
(i)
1 v

(i)
2 = cos θ(i)v

(i)
1 , (18)

where P
(i)
j is projection matrix of V

(i)
j (j = 1, 2). From

these facts, the following equations (19) and (20) is ac-

quired.

(v
(k)
1 , v

(l)
1 ) = (v

(k)
2 , v

(l)
2 ) =

{
1 (k = l),
0 (k �= l),

(19)

(v
(k)
1 , v

(l)
2 ) =

{
cos θ(k) (k = l),
0 (k �= l),

(20)

where (·, ·) is the inner product of vectors.

We calculate the trace of the product of projection ma-

trices in the equation (16). The projection matrix Pj of Vj

is defined by
∑d

i=1 v
(i)
j v

(i)T
j since {v(1)

j , . . . v
(d)
j } is an or-

thonormal basis, where j = 1, 2. By calculation of trace

of P1P2 using the equations (19) and (20) as follows, the

equation (16) is obtained.

1

d
tr(P1P2) =

1

d
tr((

d∑
k=1

v
(k)
1 v

(k)T
1 )(

d∑
l=1

v
(l)
2 v

(l)T
2 )),

=
1

d
tr(

d∑
k,l=1

v
(l)T
2 v

(k)
1 v

(k)T
1 v

(l)
2 ),

=
1

d

d∑
k=1

cos2 θ(k) = Sep(V1,V2).
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Abstract

In this paper, we propose a novel method for select-
ing personal favorite scenes using eigenspace method
based approach from broadcast soccer videos. In our
method, we use physical parameters extracted from
videos, such as image space frequency and time space
frequency. We use these physical parameters as feature
vectors, make an eigenspace of these vectors extracted
from image slices of broadcasted soccer videos, and se-
lect the image slices that the distance from prior se-
lected image slices as a personal favorite scene in the
eigenspace is small. Personal favorite scenes are char-
acterized as the feature vectors which are selected from
physical parameters extracted from videos. The experi-
mental results show the ability of our proposed method.

1. Introduction

In recent years, the spread of cable TV, DVD
recorders, etc, enabled individuals to record a lot of TV
programs easily. But, it needs immense time and efforts
to search scenes wanting to watch in large amount of
videos. Then, the technology which gives an effective
index automatically will be more indispensable from
now on.

However, it is difficult to create a general technique
of indexing for all kinds of video. So there are many
challenging researches about scene estimation, event
estimation, and indexing. Leonardi at al. [1] estimate
major soccer scenes using cameraworks peculiar to soc-
cer videos, for example it pans and zooms rapidly on
shoot scenes and corner kick scenes. Xinghua et al. [2]
estimate goal events using textures and score boards
peculiar to soccer videos. Moreover, it takes into con-
sideration that a video is generally multiple streams of

media information, such as audios, texts, and images, it
will be thought that the performance of indexing can
be raised more by unifying multiple media informa-
tion. Uegaki et al. [3] proposed multimodal indexing
from broadcast soccer video using Dynamic Bayesian
networks which input cameraworks, players and ball
trajectories, and audio power spectrum.

These advanced researches show good performance
on automatic indexing of broadcast soccer video, but
these indexes are quite general explanations of scene
features, such as shoot scene, free-kick scene, throw-in
scene, etc. On the other hand, when these methods are
implemented on the personal used equipments, such as
DVD recorders, users’ demands are more personal. For
example, one person likes aggressive passing scenes of
offensive side, another likes placement kicks, etc. But
sometimes the general explanation of index extracted
from above methods isn’t appropriate to these personal
favorite demands, because the personal demands are
wide-ranged various.

From these considerations, we try to establish the
method of personal favorite scene selection from broad-
cast soccer video in this paper. We think personal
demands are so various that physical parameters of
each frame in video sequence, such as image space fre-
quency and time space frequency, tend to be unique,
then we propose the method of selecting personal fa-
vorite scenes using image space frequency and time
space frequency. The second section explains our ap-
proach, and the third section discusses feature vectors
and these eigenspace, the forth section performs our
proposed method of personal favorite scene selection,
and the fifth section gives the conclusions.

2. Our approach overview

In the case of sports video retrieval, it is an im-
portant issue how to represent the trend of personal
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favorite scenes. For example, some persons are prefer
shooting scenes and placement kick scenes in broad-
cast soccer video, the others like skillful passing scenes
or powerful defense scenes. Recent researches of au-
tomatic retrieval for sports videos are mainly focused
on the search of scenes which are generally demanded
by many people. But there are few researches which
treat the way of searching personal favorite scenes.
In this paper, we introduce the method of automatic
retrieval for searching personal favorite scenes from
broadcast soccer video using principal component anal-
ysis (PCA). Firstly, we extract physical parameters
such as image space frequency and time space fre-
quency as a feature vector from each frame of video se-
quence. Secondly, we construct the eigenspace of these
feature vectors as the feature subspace. Then we cal-
culate the distance from points that are projected by
the feature vectors of previously selected as the per-
sonal favorite scenes. After extracting frames which
distance is below the threshold as the personal favorite
candidate frames, next we extract shots which include
certain percentage of frames extracted as the personal
favorite candidate frames. Here, a ’shot’ means time-
sequential frames which are shot by the same camera.
Finally we select these shots as the results for searching
personal favorite scenes.

3. Feature vector

Feature vectors should include not only the feature
of each frame, such as color histograms and image space
frequency which represent the feature of instant at the
time of each frame. But also the feature vectors should
include the feature of time sequential change between
the time of each frame and the time of several frames
later. In this research, we use space frequency of pixel
intensities for the representation of the features at the
time of each frame, and time space frequency of pixel
intensities on x-t and y-t planes of time sequential im-
ages for the representation of the features between the
time of each frame and several frames later. Feature
vector vvv(t) is defined as follows,

vvv(t) = (vvvT
xy, vvv

T
xt, vvv

T
yt)

T (1)

vvvxy = (vvvT
00, vvv

T
01, vvv

T
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T
03, vvv

T
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T
11, vvv

T
12, vvv

T
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T
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T
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T
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T
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T
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T
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T
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T
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T
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T
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T
43)

T (2)
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01yt, vvv
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02yt, vvv

T
03yt, vvv
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T
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T
13yt,

vvvT
20yt, vvv

T
21yt, vvv

T
22yt, vvv

T
23yt)
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T means transposition, and x-y space frequency vvvij

is 2-dimensional DCT values of 64 × 64 pixel rect-
angle which is positioned at i × 64 of x-coordinate
of each frame and j × 64 of y-coordinate of each
frame (which means the left-top coordinates of the
rectangle is (i × 64, j × 64).) The number of 2-
dimensional DCT values of 64× 64 pixel rectangle are
64 × 64 = 256. 256 is quite large, so we use three
means of low-frequency, middle-frequency, and high-
frequency. The mean value of low-frequency is the
mean of the values at (0, 1), (1, 0), and (1, 1). The mean
value of middle-frequency is the mean of the values at
(32, i) and (j, 32) (i = 0, 1, 2, ..., 63; j = 0, 1, 2, ..., 63.)
The mean value of high-frequency is the mean of the
values at (63, i) and (j, 63) (i = 0, 1, 2, ..., 63; j =
0, 1, 2, ..., 63.) The x-y space frequency is calculated
from each 64×64 pixels region of 5×4 regions pictured
on Fig.1. The x-t space frequency vvvijxt is three means
of low-frequency, middle-frequency, and high-frequency
as the same manner mentioned above of 2-dimensional
DCT values of 64 × 64 rectangle at the position of
((i+1)×80, j×64)−((i+1)×80, (j+1)×64−1). The
x-t space frequency is calculated from three x-t planes
pictured on Fig.2.

x

y

Figure 1. x-y planes.

In this figure, x0, x1, x2 are the positions on the
x coordinates, and we use three combinations of x0,
x1, x2. One is x0 = 1

4 × xwidth, x1 = 1
2 × xwidth,

x2 = 3
4 × xwidth, where xwidth is the horizontal length

of the image plane. Second is x0 = 1
6 × xwidth, x1 =

5
12 ×xwidth, x2 = 2

3 ×xwidth. Third is x0 = 1
3 ×xwidth,

x1 = 7
12 ×xwidth, x2 = 5

6 ×xwidth. These combinations
are selected, because the positions of planes of which
time space frequency is calculated are the key values
to examine the similarities of time sequential frames.
For example, time frequency of the first combination
of three planes from the typical shooting scene is very
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Figure 2. x-t planes.
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Figure 3. y-t planes.

similar to time frequency of the second combination
of three planes from the other similar scene. So we
use all combination of these positions to examine the
similarity of scenes. In Eq.3, vvvnmxt, (n = 0, 1, 2), (m =
0, 1, 2, 3, 4) means m-th DCT values of x-t plane xn.

The y-t space frequency vvvijyt is three means of low-
frequency, middle-frequency, and high-frequency of 2-
dimensional DCT values of 64 × 64 rectangle at the
position of (j × 64, (i + 1)× 60)− ((j+ 1)× 64− 1, (i +
1)×60). Also the y-t space frequency is calculated from
three combinations of y-t planes in the same manner of
x-t planes. The y-t space frequency is calculated from
three y-t planes pictured on Fig.3.

We use time-sequential frames of 320 × 240 pixels
captured from broadcast soccer videos. After all, the
number of elements of each feature vector is 141, and
we extract nine set (three combinations of x-t planes
× three combinations of y-t planes) of feature vectors
from each frame.

4. Eigenspace of feature vectors

For selecting personal favorite scenes, we apply
the eigenspace of collected feature vectors from learn-
ing samples of frames captured from broadcast soccer
video. All feature vectors are regularized before follow-
ing calculation. mmm is the mean of all feature vectors.
You can make the eigenspace of all learning feature
vectors as following manner.

ΣΣΣ = E{(vvv −mmm)(vvv −mmm)T } (5)

If 1 ≤ j ≤ d = 141, then the solution of the following
eigen problem (6) can make the subspace of κ eigen-
vectors corresponded by κ largest eigenvalues (κ < d.)

ΣΣΣuuuj = λjuuuj (6)

Each feature vector can be projected to the position
in the subspace above as the vector yyy.

yyy = (uuu0,uuu1, ...,uuuκ−1)Tvvv (7)

Each user can select the favorite scenes as the group
of frames that the user points out by hand. For ex-
ample, user A has selected aggressive shooting scene
as the frame number N1 to N2, Corresponding feature
vectors of the frame number N1 to N2 are projected
in the subspace calculated above as the vectors from
yyyN1 to yyyN2. These vectors yyyN1 to yyyN2 are the repre-
sentation of user A’s favorite scenes in the subspace.

After these learning process, you can select the user
A’s favorite candidate frames as the collection of frames
which subspace vectors yyyA′sfavorite satisfied by the fol-
lowing equation.

distance(yyy,yyyA) ≤ disthres (8)

for any A = N1 to N2, where distance(y1y1y1, y2y2y2) is the
distance between y1y1y1 and y2y2y2. In this paper, we use
the square root of inner product of subtractions of two
vectors. disthres is the threshold value of the distance.

Each frame has nine set of feature vectors mentioned
in the previous section, so there are a lot of chances
that many not similar frames can be selected as the A’s
favorite scenes. Then we apply the following selection
rule to select candidate frames.

1. Select the frame if the number of satisfied Equa-
tion 8 from nine feature vectors of each frame is
above the threshold number num1thres.

2. Select the shot (means time series of frames which
are captured by the same camera) if the ratio of
the number of selected frames in the shot is above
the threshold num2thres.
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We assume that shot boundary detection is done
previously.

5. Experiments and discussions

We applied the proposal method to a broadcast soc-
cer video which resolution is 320× 240, the frame rate
is 30/sec. The subspace has been made by the feature
vectors of learning video which includes five shooting
scene and one goal scene ( the length of video is about
20 minutes = 36000 frames. And there are 163 shots.)
User A has selected 108 frames (one shot) as the exam-
ple of his favorite scene (these frames are the shooing
and goal scene.) The distance threshold disthreshold

is 0.3, num1thres is 4, and num2thres is 50From the
learning video, the number of selected shots as user A’s
favorite scene is 7 shots which include similar shoot-
ing shots (3 shots), similar but non-shooting shots (3
shots), and not-similar scene (1 shot). The learning
video includes five shooting scene (one of them is a goal
scene which is selected by user A as the favorite scene),
and two of five (not include one goal scene) are quite
aggressive shooting scene similar to the goal scene, but
the rest two shooting scenes are not similar to the goal
scene (one is the scene of the long kick shoot, and the
other is the scene that the length is very short.) Then
ground truth of user A’s favorite scene is these three
shooting scene, one is the goal scene, 108 frames, the
second is the shooting scene, 139 frames which include
90 frames collected by our proposed method, and the
third is the shooting scene, 109 frames which include 60
frames selected by our method. Other selected 3 shots
are not shooting scenes but very similar scene to A’s
selected shooting scene. The rest 1 shot is not shoot-
ing scene and not similar scene to A’s favorite scene.
The summary of this result is represented by the two
indices, recall and precision as follows.

recall = 6/6 = 100%.
precision = 6/7 = 85.7%.
We use 2-dimensional DCT of x-y plane and x-t,

y-t planes of frames, so the difference of the angle of
the camera seems a little sensitive. But we use three
combinations of x-t and y-t planes, then our method
can be robust the little difference of the angle of the
camera.

6. Conclusions

In this paper, we present a novel framework to se-
lecting personal favorite scenes using principle compo-
nent analysis. This time, we implemented this frame-
work only with image space DCT and time space DCT,

and estimated moderately for the training data only
from these two of information. If color histograms or
audio power spectrum are extracted, our framework
can be easily extended by adding them to the feature
vectors, and we expect more effective results of scene
selection of personal favorite scenes. Our future works
are to introduce color histograms and audio informa-
tion, and to prepare more training and testing data.
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Abstract

Subspace methods such as CLAFIC use rank reduction,
and rank selection is a sensitive problem because useful fea-
tures can be lost as a result of truncation. This problem
can be avoided by using Tikhonov regularization instead of
rank reduction. This paper therefore describes a quadratic
classifier using Tikhonov regularization, compares it with
other quadratic classifiers, and shows experimental results
demonstrating its advantages.

1. Introduction

Subspace methods such as CLAFIC (Class feature in-

formation compression) [18] have long been used in many

kinds of pattern classification problems [11]. These meth-

ods use similarity functions to measure the similarity be-

tween classes and input patterns. The independence of these

functions makes it easy to increase or reduce the number

of classes and reject of the classification. This is an im-

portant advantage in problems where the number of classes

is large. Subspace methods can also be applied to multi-

template problems or problems such that samples belong

plural classes.

Subspace methods are quadratic classifiers of the form

f(x) = 〈x, Ax〉 + 〈b,x〉 + c, (1)

where 〈·, ·〉 denotes the inner product. The rank of A is

constrained below a fixed value, but the reason for this con-

straint is not clear. Even though, the features of a class may

be concentrated in a lower dimensional subspace, choosing

rank of the classifier is a sensitive problem of in subspace

methods. Too much truncation erases valuable features, and

too little truncation can make it impossible to separate dif-

ferent classes. Furthermore, since a rank is a natural num-

ber, not complete and not differentiable, it is difficult to find

the optimal rank, especially, when the input patterns are low

dimensional ones.

From the viewpoint of inverse problems, rank reduction

is only one way to make ill-conditioned inverse problems

more amenable to computation, however, and another is

Tikhonov regularization. This paper shows how Tikhonov

regularization can be applied to a quadratic classifier to pro-

duce a regularized quadratic classifier (RQC). Since the pa-

rameter of Tikhonov regularization is real, complete, and

differentiable, the optimal parameter can be obtained eas-

ily.

Section 4 of this paper presents experimental results

demonstrating that in the classification of handwritten dig-

its, in face recognition and in open benchmark classification

problems, a RQC is more accurate than CLAFIC.

The notations used in the paper are listed in Table 1.

Table 1. Notations
Rn n-dimensional Euclidean space.

Rn×m set of all of n × m real matrices.

d dimension of input vector

x ∈ Rd input pattern vector

Rj correlation matrix of samples of jth class

〈·, ·〉 inner product

‖ · ‖ l2 norm

·� transpose of vector and matrix

‖ · ‖F Frobenius norm

A† Moore-Penrose pseudo inverse of A
In identity matrix of size n

fi(x) similarity function of class i
Ey[·] ensemble mean with respect to y
R(A) range of A
N (A) null space of A

diag(y) diagonal matrix whose diagonal elements are y
Tr[A] trace of A

2. CLAFIC

This section reviews CLAFIC and redefines it as an op-

timization problem. In subspace methods, the similarity be-

tween class j and input pattern vector x is measured by a

function given as

fj(x) = ‖Pjx‖2 = 〈x, Pjx〉 (2)

=
r∑

i=1

〈uj
i , x〉

2, (3)

ACCV 2007 Workshop Subspace 2007

108



where Pj is an orthogonal projection matrix, {uj
i}r

i=1 is a

set of orthonormal bases of the subspace, and r is the rank

of Pj as well as the dimension of the subspace. In CLAFIC,

Pj =
∑r

i=1 uj
iu

j
i

�
is an orthogonal projection matrix onto

a Kerhunen-Loève (KL) subspace of the class j [10]. The

value of uj
i is usually not specified uniquely but is deter-

mined by eigen vectors of the correlation matrix of class j.

CLAFIC has been used in learning subspace methods

[12], parametric eigen space method [9], relative KL trans-

forms [19], and kernel subspace methods [16, 7, 17].

Definition 1 (KL subspace [10]). The Karhunen-Loève
(KL) subspace with rank r is the subspace spanned by vec-
tors {ũi}r

i=1 that are the solution of the following optimiza-
tion problem;

max
u1,...,ur

E
x

[ r∑
i=1

〈ui, x〉2
]

subject to ‖ui‖ = 1 ∀i.

(4)

Proposition 1 (KL subspace). The solution of the following
optimization problem is a projector onto the KL subspace of
x;

min
X

: E
x
‖x − Xx‖2

subject to: rank(X) ≤ r.
(5)

Proofs are in [10, 11].

The optimization problem (4) finds a set of r vectors that

extract features of a random vector x. The set of vectors

extracts more features of x when r is larger, but if r is too

large the subspace overlap too much and it is difficult to de-

termine the class. For accurate classification, we therefore

have to choose the optimal rank r from a set of integers in

1 ≤ r < d.

The optimization problem (5) finds the matrix that mini-

mizes the Euclidean distance between x and Xx under the

constraint rank(X) ≤ r. As in the optimization problem

(4), a larger r extracts more features of x, however too large

an r extracts too many features to determine a class. The op-

timization problem (5) is essentiality not one of rank reduc-

tion but one of approximating of x under certain constraints

for the matrix X . The rank reduction is one of the imple-

mentation of the constraint but not a necessary one. The

weakness of CLAFIC that is described in the Introduction

can be avoided by using a different constraint.

3. Regularized Quadratic classifiers

3.1. Linear inverse problem and regulariza-
tion

Inverse problems are described here only briefly. See [4]

for details about them. Although linear inverse problems

are usually discussed in an infinite dimensional space, here

they are described in a real finite dimensional space.

Let us consider following linear equation, for example, a

case that observation signal y is transformed from original

signal x by a matrix A;

y = Ax, (6)

where A ∈ Rm×n, y ∈ Rm and x ∈ Rn. If A is square and

non-singular, the solution is x = A−1y. If A is not square

or A is singular, generalized inverses (g-inverse) such as

the minimum norm g-inverse, least squares g-inverse, or

Moore Penrose (MP) g-inverse are often used [5]. The MP

g-inverse is both minimum norm and least squares, and it is

determined uniquely.

Let the singular value decomposition (SVD) of A be

A =
r∑

i=1

λiuiv
�
i = UΛV �, (7)

where r is the rank of A, U = [u1 . . . ur] ∈ Rm×r, V =
[v1 . . . vr] ∈ Rn×r and Λ = diag([λ1, . . . , λr]). Suppose

that the singular values are sorted in descending order. The

MP g-inverse of A is

A† =
r∑

i=1

1

λi
viu

�
i = V Λ−1U�, (8)

and the MP solution of the linear equation (6) is

A†y =
r∑

i=1

1

λi
〈ui, y〉vi. (9)

Consider the case that y = Ax + n, where n is additive

noise. Then the MP g-inverse is

A†y =
r∑

i=1

1

λi
〈ui, y〉vi +

r∑
i=1

1

λi
〈ui,n〉vi. (10)

The singular values of a matrix usually decrease exponen-

tially. If A has very small singular values λj , then the

inverses λj are very large. Thus even if n is negligible,

the second term of eq. (10) becomes large and the solu-

tion is very far from x. In this case, the problem is ill-

conditioned and the matrix is ill-posed. There are several

ways make ill-conditioned problems relaxed, and two that

are often used are truncated singular value decomposition

(TSVD) and Tikhonov regularization.

3.1.1 TSVD

TSVD uses instead of A a matrix A′
r′ whose rank is trun-

cated to r′;

A′
r′ =

r′∑
i=1

λiuiv
�
i . (11)
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The MP g-inverse of A′
r′ is

(A′
r′)† =

r′∑
i=1

1

λi
viu

�
i . (12)

We call (A′)† a truncated MP g-inverse of A. When TSVD

is used, very small singular values are neglected and the

effect of noise becomes smaller.

Proposition 2 (TSVD). Let A be a given m × n matrix,
w ∈ Rn be a white random vector whose correlation matrix
is In (Ew[ww�] = In), and x = Aw. Then the truncated
MP g-inverse of A is one of the solutions of the following
optimization problem:

min
X

: Ex‖x − AXx‖2

subject to: rank(X) ≤ r′.
(13)

The proof is shown in the Appendix.

In classification problems , x is considered an input pat-

tern and its correlation matrix R can be interpreted as a

transformed correlation matrix of a white random vector w:

x = R1/2w (14)

E
x
[xx�] = E

w
[(R1/2w)(R1/2w)�]

= R1/2Ew[ww�]R1/2 = R. (15)

Hence, by letting A = R1/2, P = A(A′
r′)† is a projector

onto KL subspace of the class that is the matrix of CLAFIC.

TSVD can thus be interpreted as CLAFIC in classification

problems.

3.1.2 Tikhonov regularization

Tikhonov regularization (or Tikhonov-Phillips regulariza-

tion) [15, 13] uses instead of A† following regularized MP

g-inverse matrix:

A†
μ = (A�A + μ2In)−1A� (16)

= A�(AA� + μ2Im)−1, (17)

where μ is a regularization parameter. If μ �= 0, the inverse

in eqs. (16) and (17) is not singular. If A is symmetric,

A†
μ = (A + μ2In)−1. (18)

The SVD of A†
μ is

A†
μ =

r∑
i=1

λi

λ2
i + μ2

viu
�
i . (19)

If λi � μ, λi

λ2
i +μ2 	 1/λi; and if λi 
 μ, λi

λ2
i +μ2 	 λi/μ2.

Figure 2 shows singular values of A† and A†
μ when μ = 0.5

A

A

R
m

R
n

X

w
x

Xx AXx

Figure 1. Illustration of TSVD: w is white ran-
dom vector. The objective is to obtain X that
minimizes the distance between x and AXx.
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Figure 2. Singular values of A† and A†
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100 × 100 matrix of which elements are uni-
form distribution in [0, 1].

and elements of A are random values from the uniform dis-

tribution in [0, 1]. The horizontal axis is the order of sorted

singular values. If singular values of A are sufficiently large

(i.e., if its inverse is small), the singular values A† and A†
μ

are almost the same. The singular values of A† get very

large at the end while those of A†
μ do not.

Proposition 3 (Tikhonov regularization). Let A be a given
m × n matrix, w ∈ Rn be a white random vector whose
correlation matrix is In (Ew[ww�] = In), and x = Aw.
Then the regularized MP g-inverse of A is one of the solu-
tions of the following optimization problem:

min
X

: E
x
‖x − AXx‖2 + μ2‖AX‖2

F . (20)

The proof is shown in the Appendix.

3.2. Regularized quadratic classifier

In the previous section showed that CLAFIC is equiva-

lent to TSVD when A = R1/2. This section derives the

regularized quadratic classifier (RQC) from the Tikhonov

regularization optimization problem.

Definition 2 (Regularized quadratic classifier). Let xj be a
labeled input pattern vector of the class j, and let Bj be a
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solution of the following optimization problem:

min
X

: E
xj
‖xj − Xxj‖2 + μ2‖X‖2

F . (21)

The regularized quadratic classifier is the classifier whose
similarity function is fj(x) = −‖x − Bjx‖2, and μ is the
regularization parameter.

Theorem 1 (Solution of RQC). If μ �= 0, the optimization
problem (21) is minimized by

X = Rj(Rj + μ2Id)
−1, (22)

where Rj is the correlation matrix of class j.

This is easily proved from the proof of Proposition 3.

In CLAFIC, the similarity functions fj(x) = ‖Pjx‖ and

fi(x) = −‖x − Pjx‖ are equivalent because Pj is an or-

thogonal projector. In RQC, however, they are not equiva-

lent. Since the transform by the matrix means approxima-

tion of input patterns, the latter function is suitable and nat-

ural. In our simulations, it yielded results better than those

yielded by the former function.

3.3. Hybrid quadratic classifier

The hybrid quadratic classifier (HQC) is obtained by

combining TSVD and Tikhonov regularization.

Definition 3 (Hybrid quadratic classifier). Let xj be a la-
beled input pattern vector of the class j, and let Cj be a
solution of the following optimization problem;

min
X

: E
xj
‖xj − Xxj‖2 + μ2‖X‖2

F

subject to: rank(X) ≤ r.
(23)

The hybrid quadratic classifier is the classifier whose simi-
larity function is fj(x) = −‖x − Cjx‖2.

Theorem 2 (Solution of HQC). Let the eigenvalue decom-
position (EVD) of the correlation matrix of class j be

Rj =
d∑

i=1

λj
iu

j
iu

j
i

�
, (24)

where eigenvalues are sorted in descending order. Then the
solution of the optimization problem (23) is

X =
r∑

i=1

λj
i

λj
i + μ2

uj
iu

j
i

�
. (25)

This is easily proved from the proofs of propositions 2

and 3.

4. Experiments

The advantages of the proposed method were evaluated

in three kinds of classification experiments.

4.1. Classification of Handwritten digits

The performances of the RQC and CLAFIC were com-

pared by using the MNIST database of handwritten digits,

which has 70,000 28x28-pixel samples (60,000 for training

and 10,000 for testing). Each of the vectors in this experi-

ment was normalized to the unit norm.

Optimal parameters (rank r of CLAFIC, and regulariza-

tion parameter μ of RQC) were obtained in the following

validation procedure.

• randomly extract from the training set 1,000 validation

samples for each class

• from the remaining samples in the training set, con-

struct classifiers with several different parameters

• obtain error rate of validation samples

This procedure was followed 100 times, each with a differ-

ent selection of validation samples. The results are shown in

Fig. 3, where mean values and standard deviations for 100

times trials are plotted.

The minimum error rates of validation were 4.48 ±
0.17% for CLAFIC, and 4.00 ± 0.18% for RQC. The dif-

ference between these rates is significant at the 1% label

(one side student t-test). One sees in Fig. (3) that RQC is

not sensitive to its regularization parameter but CLAFIC is

sensitive to its rank. Furthermore, since rank is an inte-

ger smaller than the number of input dimensions, finding

optimal rank is not easy. If the plot of error rates against

regularization parameter is a convex-downward curve, the

optimal parameter can be found in the following way:

1. select any three points for initial points.

2. obtain the validation error rates from those three

points.

3. find a quadratic function goes through there three

points, and obtain its minimum point

4. remove the worst of point from three points and add

the minimum point of the quadratic function

5. go (2)

The test set error rates were 4.08% for CLAFIC and

3.76% for RQC. Thus the proposed method was more ac-

curate than CLAFIC.

4.2. Face recognition

Experimental results were obtained using the Yale face

database [1]. This database consists of 165 320x243-pixel

face images, 11 images for each of 15 people. Since each

image is very large, for this experiment they were reduced to
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Figure 4. Results of face recognition; error rates and standard deviation

six dimensional vectors by KL transformation using whole

dataset and then normalized. Six dimensional space might

be too small for most face recognition problems, because of

the small number of samples, we used it for fair comparison.

The procedure of the experiment was as follows

• randomly extract five samples from each individual set

for testing randomly

• construct classifiers using the remaining samples

• obtain error rate using test samples

This procedure was repeated 100 times, and the results are

shown in Fig. (4). Since this problem was a 15-class classi-

fication problem, random classification would have yielded

an error rate of 93.3%.

The best results were 96.00 ± 1.92% for CLAFIC and

78.01 ± 4.92% for RQC. RQC thus performed better than

CLAFIC.

4.3. Open benchmark test

The datasets for the open benchmark

used in [14, 8] were downloaded from

(http://ida.first.fraunhofer.de/

projects/bench/benchmarks.htm). They con-

sisted of 13 binary classification problems, each having 100

or 20 sets of paired training and testing set.

After each vector was normalized to the unit norm, pa-

rameters of classifiers were obtained in the following vali-

dation procedure:

• extract 10% of the samples in the training set for vali-

dation

• construct classifiers using the remaining training sam-

ples

• obtain error rates of validation set

This procedure was repeated 100 times with different se-

lections of test set samples. Parameter sets we used

were [1, 2, . . . ,(input dimension -1 )] for CLAFIC and

[10−8, 10−7.5, 10−7, . . . , 105] for RQC, and in each set the

one giving the lowest error rate was designated the optimal

parameter.

The error rates, standard deviations and t-test p-values

are listed in Table (2). The RQC error rates were lower

ones in all classification problems, and 11 of 13 p-values

were less than 1%.
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Table 2. Comparison of error rates, standard
deviations and p-values of t-test between
RQC and CLAFIC

Dataset d RQC CLAFIC p

banana 2 34.73 ± 2.40 35.47 ± 2.40 1.4

b-cancer 9 27.87 ± 2.26 30.80 ± 3.17 0.0

diabetis 8 33.22 ± 2.00 35.82 ± 2.02 0.0

f-solar 9 32.78 ± 1.09 32.98 ± 1.13 10.0

german 20 23.20 ± 1.64 29.07 ± 2.06 0.0

heart 13 16.38 ± 2.32 19.54 ± 2.70 0.0

image 18 11.41 ± 0.57 16.18 ± 0.64 0.0

ringnorm 20 23.01 ± 1.93 33.16 ± 6.22 0.0

splice 60 20.00 ± 6.37 29.20 ± 10.00 0.0

thyroid 5 12.97 ± 1.74 21.59 ± 2.78 0.0

titanic 3 22.14 ± 4.11 24.05 ± 6.70 0.8

twonorm 20 24.99 ± 2.90 33.07 ± 6.87 0.0

waveform 21 23.05 ± 5.22 37.92 ± 4.71 0.0

5. Discussion

5.1. Theoretical comparison with quadratic
classifiers

The RQC, HQC, CLAFIC, and pseudo Bayes classifier

[6]. are compared here without taking into account the class

index.

Let R be the correlation matrix of a class and let its EVD

be

R =
d∑

i=1

λiuiu
�
i = UΛU�, (26)

where U = [u1 . . . ud] and Λ = diag([λ1, . . . , λd]).

Suppose the following similarity function: f1(x) =
‖Px‖2 for CLAFIC, f2(x) = −‖x − Bx‖2 for RQC,

f3(x) = −‖x − Cx‖2 for HQC, and f4(x) for the pseudo

Bayes classifier. Then we have

P = UΛ1U
� (27)

B = UΛ2U
� (28)

C = UΛ3U
� (29)

Hess(f3) = UΛ4U
� (30)

where Hess(·) denotes the Hessian matrix and

Λ1 = diag([1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
d−r

]) (31)

Λ2 = diag([
λ1

λ1 + μ2
, . . . ,

λd

λd + μ2
]) (32)

Λ3 = diag([
λ1

λ1 + μ2
, . . . ,

λr

λr + μ2
, 0, . . . , 0︸ ︷︷ ︸

d−r

) (33)

Λ4 = diag(
1

λ1
, . . . ,

1

λr
,
1

δ
, . . . ,

1

δ︸ ︷︷ ︸
d−r

). (34)

Since in CLAFIC a rank of P is truncated to r, features

included in the complementary space of P cannot be ex-

tracted. CLAFIC performance is therefore sensitive to the

selection of rank and is bad if inappropriate rank is used.

When the input dimension d is very low, the optimal rank

might not be found.

In RQC, on the other hand, the matrix B does not trun-

cate rank. Thus all features in the input vector can therefore

be extracted according to their eigenvalues. Thus even if

the input dimension is very low, we can find the optimal

parameter, and RQC is expected to be less sensitive to the

parameter than CLAFIC is.

Figure (5) is an illustration of RQC and CLAFIC in two

dimensional space. The input vectors are random vectors

from a Gaussian distribution whose covariance matrix is[
1 0.7

0.7 1

]
. In CLAFIC, vectors are projected onto one di-

mensional space and features in the complementary space

vanished. In RQC, on the other hand, vectors are shrunk

to the origin, and the degree of shrinking of the first prin-

cipal component is less than that of the second principal

component. Thus, features are extracted according to their

eigenvalues.

If the correlation matrix R has very small eigenvalues,

they might not be features. Then rank reduction helps re-

duce calculation cost. In this case, HQC works well. Cal-

culation cost is discussed in the next section.

The pseudo Bayes classifier is also a quadratic classifier.

It too uses rank reduction technique, and the reason of re-

placing eigenvalues to δ is not clear.

5.2. Calculation cost

In the construction stage, most of the CLAFIC, Pseudo

Bayes and HQC calculations are EVD and most of the RQC

calculations are for an inverse operation of a matrix. The

calculation cost of an inverse operation is generally lower

than that of EVD. The calculation times for an inverse op-

eration and EVD for a 1000x1000 real symmetric matrix

are compared in Table (3), where the values listed are the

medians for five trials using the TSUBAME super com-

puter (which has AMD Opteron 880 2.4GHz processors),

and GNU Octave software [2] with the Goto BLAS library

[3]. One sees from these values that in this system the cal-

culation cost for RQC construction is ten times less than

the calculation costs for CLAFIC, Pseudo Bayes, and HQC
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construction. Moreover, Gaussian elimination can be used

for RQC.

# of CPUs 1 2 4

Inverse 0.70 0.45 0.43

EVD 8.55 7.82 11.36

EVD for first 50 eigenvalues 3.74 – –

Table 3. Comparison of calculation time

In the recognition stage, the only calculation required is

multiplication and addition. The numbers of multiplications

for one class are as follows;
CLAFIC: (d + 1) × r

RQC: (d + 1) × d
HQC: (d + 1) × r.

Since r < d, the calculation costs of CLAFIC and HQC are

lower than the calculation cost of RQC.

5.3. Further extensions

CLAFIC has been extended in various ways (e.g., ker-

nel method, learning subspace method, relative KLT or mu-

tual subspace methods). RQC can also be extended in these

ways.

6. Conclusion

A quadratic classifier with regularization has been devel-

oped, and experimental results show that it is more accurate

than CLAFIC and has a lower construction cost.

This work was supported by No. 19700153, Grant-in-

Aid for Young Scientists (B).
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Appendix

Proof of Proposition 2

The objective function of the problem (13) yields

E
x
‖x − AXx‖2

= E
x

Tr[xx� − AXxx� − xx�X�A� + AXxx�X�A�].

Since Ex[xx�] = Ew[Aww�A�] = AA�,

E
x
‖x − AXx‖2

= Tr[AA� − AXAA� − AA�X�A� + AXAA�X�A�]

= Tr[(AXA − A)(AXA − A)�]

= ‖AXA − A‖2
F . (35)

Let SVD of A be

A =

r∑
i=1

λiuiv
�
i .

Since rank(AXA) ≤ r′, R(AXA) ⊂ R(A) and

N (AXA) ⊃ N (A) clearly, eq. (35) is minimized if and

only if

AXA =
r′∑

i=1

λiuiv
�
i .

Form the operator equation theorem [5], we have

X = A†
r′∑

i=1

λiuiv
�
i A† + Y − A†AY AA† (36)

=
∑
i=1

1

λi
viu

�
i + Y − A†AY AA†, (37)

where Y is an arbitrary matrix in Rn×m. If Y = 0, the

solution equals to the truncated MP g-inverse.

Lemma 1. Let A be any matrix, then

A�(AA� + μ2I)−1 = (AA�A + μ2I)−1A�. (38)

Proof Let us consider an equation;

A�(AA� + μ2I) = (A�A + μ2I)A�.

By multiplying (AA� + μ2I)−1 from right hand, and

(A�A + μ2I)−1 from left hand, we have eq. (38).

Proof of Proposition 3

The objective function of the problem (20) yields

E
x
‖x − AXx‖2 + μ2‖X‖2

= E
x
Tr[xx� − AXxx� − xx�X�A� + AXxx�X�A�

+ μ2AXX�A]

Since Ex[xx�] = Ew[Aww�A�] = AA�,

E
x
‖x − AXx‖2 + μ2‖X‖2 = Tr[AA� − AXAA�

− AA�X�A� + AX(AA� + μ2I)X�A�].

Let J(X) be the objective function. Then Gateaux differ-

ential of J at X with increment Y is

δJ(X; Y )

= lim
δ→0

1

δ
Tr[J(X + δY ) − J(X)]

= 2 lim
δ→0

1

δ
Tr[(δY )�(A�AX(AA� + μ2I) − AA�A)].

For arbitrary matrix Y , δJ is zero if and only if

A�AX(AA� + μ2I) − AA�A = 0

A�AX = A�AA�(AA� + μ2I)−1. (39)

Form the operator equation theorem [5], X that satisfies

eq. (39) is

X = (A�A)†A�AA�(AA� + μ2I)−1

+(I − (A�A)†(A�A))Y,

where Y is an arbitrary matrix.

Since R(A�A) = R(A�), ((A�A)†A�A) is a projec-

tor onto R(A�). Hence, we have

X = A�(AA� + μ2I)−1 + (I − (A�A)†(A�A))Y.

If Y = 0, from Lemma 1, X is a regularized MP g-inverse

matrix of A.
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Abstract 

 
This paper proposes a new face recognition method 

using mutual projection of feature distributions. The 
proposed method introduces a new robust 
measurement between two feature distributions. This 
measurement is computed by a harmonic mean of  two 
distance values obtained by projection of each mean 
value into the opposite feature distribution. The 
proposed method does not require eigenvalue analysis 
of the two subspaces. This method was applied to face 
recognition task of temporal image sequence. 
Experimental results demonstrate that the 
computational cost was improved by about 50% 
without degradation of identification performance in 
comparison with the conventional method. 
 
1. Introduction 
 

Person identification by face recognition has an 
advantage of lower psychological stress for uses than 
other biometrics technologies because it does not use a 
contact sensor. Therefore, face recognition 
technologies[1] have gained attention in several 
applications such as an entrance control system, human 
machine interfaces and personal robots. However, 
face recognition technologies in general have a 
problem of robustness under environment with 
illumination and pose variations. In recent years, 
recognition methods by using a temporal image 
sequence instead of a single image have been 
suggested to cope with the problem and improve 
identification performance [2][3][4][5]. 

In the field of face recognition by using temporal 
image sequence, Mutual Subspace Method 
(MSM)[2][3] has been proposed, and it is reported a 
better recognition performance in illuminant varying 
environment in comparison with a single image 
recognition[3]. In MSM, the minimum angle (square of 
cosine) between two subspaces uses as a similarity 
measurement between query and enrollment feature 

distributions. In [4], it has proposed that Kernel 
function was applied to MSM, and expected to 
improve in the case of non linear distributions. MSM 
and the expansion method have better characteristics 
for robust identification because they only use a few 
eigen vectors and decrease noise influences. However, 
they require eigenvalue analysis to compute the 
minimum angle between the two subspaces. Namely, 
MSM requires maximizing of the following matrix X 
for each test. 

VUX T=                                                         (1) 
where, U is formed by the eigen vectors for query 
feature subspace, and V is for enrollment feature 
subspace. 

Recently, Inter-subspace distance (ISD) was 
proposed for face recognition [5]. This method uses 
the minimum distance between two subspaces. The 
method has reported a similar identification 
performance to MSM, and it also needs an eigenvalue 
analysis to find the distance. In aspect of practical 
application, a processing time is an important issue and 
some applications like robot systems need lower 
computational cost. However, these conventional face 
recognition methods[2][3][4][5] for image sequences 
require eigenvalue analysis of the two subspaces, and 
this causes an increase of computational cost. 

This paper presents a new face recognition method 
using mutual projection of feature distributions. This 
method is referred to as, Mutual Projection Method 
(MPM) in this paper. The proposed method introduces 
a new robust measurement between two feature 
distributions. This measurement is computed by a 
harmonic mean of  two distance values gotten by using 
projection each mean vector into the opposite feature 
distribution.  

In section 2, we describe the algorithm of our 
proposed method. Experimental results to evaluate 
performances are demonstrated in section 3. 
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2. Mutual Projection Method 
 

A new face recognition method, Mutual Projection 
Method (MPM) is described in this section. Processing 
flow of MPM is represented by following steps.  
(1) Query facial image sequences are entered. 
(2) Distance between a query and an enrollment 
feature distribution is obtained for each person. The 
inter-distribution distance is referred to as Mutual 
Projection Distance (MPD). MPD is calculated using 
two distance values gotten by projecting each mean 
vector into the opposite feature distribution.  
(3) The face recognition is done by choosing the 
person obtaining smallest MPD. 
 
2.1 Definition of Mutual Projection Distance 
 

Recognition of image sequence is considered to 
evaluate distance between a query and an enrollment 
feature distribution formed by the image sequence.  

We consider an input feature distribution 1C  and an 
enrolment feature distribution 2C .It is assumed that 
the distances between a feature vector x  and the 
distribution 1C , 2C  are defined as )(1 xd , )(2 xd  
respectively. If 1m  and 2m  represent the centers of 
each distribution, the distance between 1m  and 2C  is 
shown as )( 12 md . The distance between 2m  and 1C  is 
also shown as )( 21 md .  

Here, we define a new measurement for inter 
distribution which is referred to as Mutual Projection 
Distance (MPD). Desired distance value D  between 
distributions is considered to be represented as the 
function )()( 21 xdxd +  for a certain vector x , as 
shown in Fig.1. The vector x  is defined on the line 
between 1m  and 2m . )(1 xd  and )(2 xd  have the 

minimum value 0 when 21,mmx = , and these are 
monotonic increasing functions according to 

1mx −  

and 2mx −  respectively. In this condition, there 

exists a feature vector a  { }xa∈  satisfying 
)()( 21 xdxd = . The vector a  is considered the equal 

distance point from both distributions’ means. 
Therefore, the distance between the two distributions 
can be defined the 2 times of the distance value at the 
point a . In other words, the distance value D  is 
obtained by sum of )(1 ad  and )(2 ad  (as shown in 
Eq.(2)). The formula of D is the definition of the inter 
distribution distance, MPD. Figure 1 shows the 
distance D for examples of )(1 xd  and )(2 xd .  
 

)()( 21 adadD +=                                  (2) 
 
By combining both distance values )(1 ad  and 

)(2 ad , we can take both feature distributions into 
account for the inter distribution measurement.  

 
Figure 1: Distance between two distributions 

 
 
2.2 Computation of Mutual Projection Distance 
 

In order to obtain MPD, it is required the following 
two steps. At first it needs to compute the distance 
value between a vector and a distribution, )(1 xd  or 

)(2 xd . Then, we combine the two distances by 
considering the equal distance point from both 
distributions. These computations are presented in the 
following subsections. 
 
2.2.1 Distance between a vector and a distribution 
 

The distance a vector and a distribution,  )(1 xd  or 
)(2 xd  can be calculated by using simple subspace 

projection. However, we have defined a formula for 
)(1 xd  and )(2 xd  based on Mahalanobis distance, in 

order to consider variances for axes of the subspace.  
The Mahalanobis distance is widely used for a 

normalized distance in the field of pattern recognition. 
The distance md  is defined as Eq.(3): 

 

Distance 
Value )()( 21 xdxd +

)(1 xd )(2 xd

x

D

1m 2ma

1C
2C
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)()( 12 mxmxd T
m −Σ−= −             (3) 

 
where x  is a n -dimensional feature vector, m  is a 

mean vector of a distribution and Σ  shows a 
covariance matrix. However, Mahalanobis distance 
becomes unstable when the Σ  is singular. This 
situation often occurs when the number of training 
samples of recognition target is small. To avoid this 
instability, several distance measurements are 
proposed in this field[6][7]. In this paper, the 
covariance matrix is estimated as following equation.  
 

Ι+Σ=Σ 2ˆ σ                   (4) 
 

In Eq.(5), Σ̂  is a covariance matrix calculated using 
training samples, and the second term shows an initial 
estimation ( 2σ  is a constant and I  is an identity 
matrix.). Eigenvalues and engenvectors obtained are 
represented as iλ  and iΦ . Then, Mahalanobis distance 
formula is transformed into Eq.(5). 
 

2

1
2

2 )}({1 mxd T
i

n

i i
M −Φ

+
= ∑

= σλ
          (5) 

 
Components of subspace spanned by eigenvectors 

with small envenvalues are dominated by noise. 
Therefore, we assumed 2σλ <<i  when ki > , and 
obtained the formula Eq.(6).  

 
2

1
2

22 )}({)( mxmxxd T
i

k

i i

i
p −Φ

+
−= ∑

= σλ
λ

－   (6) 

 
In this paper, )(xd P  which is the root of Eq.(6), are 
called Pseudo Mahalanobis Distance (PMD). In our 
method, PMD is used for the distance function )(1 xd  
and )(2 xd . It is obvious that PMD coincide with the 
projective distance to the subspace in the case of 

02 =σ . The transformations of the equation from 
Eq.(4) to Eq.(6) are based on the literature [6]. 
 
2.2.2 Combining two projective distances 
 

Figure 2 shows a distance value when PMD is 
applied.  It is assumed that the statistical properties 
(mean, eigenvalues and eigenvectors) of one 
distribution are represented as },,{ 1 Φλm  and the 
other distribution is represented as },,{ 2 Ψµm . )(2

1 xd  

and )(2
1 xd  using PMD can be described in Eq.(7). 

 

2
2

1
2

2
2

2
2

2
1

1
2

2
1

2
1

)}({)(

)}({)(

mxmxxd

mxmxxd

T
i

k

i i

i

T
i

k

i i

i

−Ψ
+

−=

−Φ
+

−=

∑

∑

=

=

σµ
µ
σλ

λ

－

－
  (7) 

 

Because )(2 xd p  is proportional to 2mx −  shown 

in Eq.(6), )(xd P must be proportional to mx − . The 

)(1 xd , )(2 xd  using PMD are defined on the line 
between  1m  and 2m  in Eq.(8) . 

 

)(
)(

)(

),(
)(

)(

2
12

2

1
21

1

xm
L
md

xd

mx
L
md

xd

−=

−=
                  (8) 

 
where || 12 mmL −= . Equal distance point a  is 
obtained by solving )()( 21 xdxd = . 

 

)()(
)()(

1221

212121

mdmd
mmdmmda

+
+

=                   (9) 

 
Therefore, Mutual Projection Distance (MPD) is 
represented as D  of Eq.(10) in this condition (derived 
from Eq.(3) and Eq.(9)).  
 

)()(
)()(2

1221

1221

mdmd
mdmdD

+
⋅

⋅=                   (10) 

 

 
Figure 2: Distance between subspaces using PMD 

 
 
The D  of Eq.(10) is the MPD formula based on 

PMD. The MPD is computed as a harmonic mean of 
two PMDs, which obtained by projecting each mean 
vector into the opposite subspace. 

D

1m 2ma
x

)(2 xd

)(1 xd )( 21 md)( 12 md

Distance 
Value 
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Mutual Projection Method (MPM) is a recognition 
method by using MPD for measurement of inter-
distribution. 
 
3. Experiments for Image sequences 
 

Several applications such as gate control system and 
human machine interface are considered for the 
proposed method. These applications are used under 
various illuminations, and target face images include 
various poses or expressions. They require robustness 
in these conditions.  

We have applied MPM to several face recognition 
tasks for image sequences. Two experiments were 
performed to investigate face recognition performance 
of MPM. The first experiment used image sequences 
taken under various illuminations, and the second 
experiment applied pose variations.  

The face recognition experiments have used 
temporal image sequences for both query and 
enrollment samples. The following steps were used for 
the two experiments. 
1) Beforehand, statistical properties of enrollment 

samples },,{ 1 Φλm  are calculated for each person.   
2) Sequential N frame images are obtained from a 

query image sequence. (Frame No.: f = 1 to N) 
3) Statistical properties of query samples },,{ 2 Ψµm  

are calculated for N frame images. 
4) MPD is computed for each person and the 

identification is performed by using the distance. 
5) The next N frame images (Frame No.: f=2 to N+1) 

are obtained. The identification process continues 
until the sequence ends. 

 
3.1 Pseudo Divergence 
 

Distance between two distributions has been studied 
for years in statistic research field, such as 
Bhattacharyya distance and Divergence[8]. In 
assumption that two distributions are normal, the 
divergence is represent as Eq.(11).  

 

 
( )

[ ]Itr

MMMM
div

t

⋅+ΣΣ+ΣΣ+

−Σ+Σ−
=

−−

−−

2
2

)()(

1
1

22
1

1

21
1

2
1

121
   (11) 

 
Divergence value is thought to be useless for our 

applications because it needs the inverse of covariance 
matrices, which is empirically unstable to noise. 
However, we found the divergence formula of Eq.(11) 
becomes arithmetic mean of Maharanobis distances by 
eliminating the second term. Therefore, we applied 

PMD to the divergence formula, and defined Pseudo 
Divergence (PD) shown in Eq.(12). This measurement 
is used for comparison with MPM in following 
experiments.  

 

))()((
2
1

1221 mdmdDD +=                  (12) 

 
3.2 Experiment I (Under Various Illuminations) 
 

In order to investigate performance under various 
illuminations, following experiment was performed 
Facial images used in the experiments were captured 
by Digital Video Camera in home environment, and 
they have taken under 12 kinds of illuminations. These 
facial images were geometrically corrected by both 
eyes location, and normalized by mean and variance of 
luminance histogram. Eyes locations were given by 
hand. Then the face images were resized to 12x18. 
Figure 3 shows examples of face images used. Table 1 
represents the image dataset details. 

 

 
Figure 3:  Face image examples 

 
Table 1:  Dataset used in experiment I 

Environment Enrollment Query 
12 illuminations
At home indoor 

200 images  
for each person 
(8 persons) 

4420 images 
(16 persons) 

 
In the experiment, a person identification 

performance was evaluated. The evaluation was done 
by ROC curve (plotting FRR and FAR). Figure 4 
shows the experimental result. The number of the 
projective dimension k was 20 for query and 20 for 
enrollment, the number of input frames N was 30, and 

2σ  was 0.001. The performance of the proposed 
method was compared with several other methods: 
Subspace Method (SM), Mutual Subspace Method 
(MSM) and Pseudo Divergence (PD). Subspace 
Method represents the identification method by using a 
distance of subspace projection. Note that average 
score of N frames was used in identification with SM. 

Experimental results in Fig.4 show that the 
identification performance (ROC curve) of MPM was 
better than SM and PD.  The results also represent the 
error rate of MPM was similar to MSM. 
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Figure 4: ROC curve of experiment I 
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Figure 5: Relationship EER and k (experiment I) 

 
Figure 5 presents EER (the value when FAR=FRR) 

transition when the projective dimension k varies. In 
the condition of k=20, EER values of SM, MSM, 
MPM ( 2σ =0.001) and PD are 0.047, 0.0059, 0.0094 
and 0.026 respectively.  

When k < 20, MPM ( 2σ =0.001) performance was 
better than MSM. However, MSM results were better 
when k was large. In practice, it is thought that the 
difference of identification performance between MPM 
and MSM is quite small. The results indicate that k and 

2σ  were important factors for identification 
performance of MPM. 
 

3.3 ExperimentII (Under Pose Variation) 
 

We investigated performance of MPM under pose 
variation. Face image dataset we used was consisted of 
images with pose variation of around 20 degrees and 
small expression changes. Query image sequences 
were captured on a few days after we got enrollment 
image sequences. Subjects have slightly changed their 
expressions when the query images captured. Table 2 
shows the image dataset details. Preprocessing and 
normalization was same as experiment I.  

 
Table 2:  Dataset used in experiment II 

Environment Enrollment Query 
Fixed illuminant
Pose variation 

800 images 
for each person 
(20 persons) 

800 images  
for each person 
(24 persons) 

 
Figure 6 shows the experimental result. The number 

of the projective dimension k was 20 for query and 20 
for enrollment, the number of input frames N was 30, 
and 2σ  was 0.001. In Fig.6, MPM showed the best 
performance among the compared method. SM 
represents the worst result as we expected. However, 
MSM performance was worse than PD in experiment 
II (different from experiment I). This is because that 
distribution form of the image sequence did not 
adequate to MSM. 

Figure 7 presents EER (the value when FAR=FRR) 
transition when the projection dimension k varies. In 
the condition of k=20, EER values of SM, MSM, 
MPM ( 2σ =0.001) and PD are 0.18, 0.054, 0.041 and 
0.044 respectively. The results also presented EER 
values did not depend on the k value in experiment II. 
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Figure 6: ROC curve of experiment II 
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Figure 7: Relationship EER and k (experiment II) 

 
3.4 Comparison of Computational Performance 
 

Table 3 represents an average processing time for 
each method. The processing time was calculated by 
taking an average for each person and each query in 
experiment I. The results have shown that the 
processing time of MPM was about 50% of MSM. 

 
Table 3:  Comparison of processing time 

Method Time (msec) 
SM (N frames mean) 32 

MSM 23 
PD 12 

MPM 12 
(Frames for each query N=30, on PIII 866MHz) 

 
From the result, MPM has an advantage of 

computational cost in comparison with MSM. The 
reason is thought that while MSM needs to compute 
the maximum eigenvalue of the matrix VUX T= , 
MPM does not require such an eigenvalue analysis. 
(PD has also shown a good computational performance 
by the same reason.) 
 
4. Conclusion 
 

This paper has proposed a new face recognition 
method using mutual projection of feature distributions. 
The proposed method, referred to as Mutual Projection 
Method (MPM), introduced a new measurement 
between two feature distributions. This measurement 
was computed by a harmonic mean of two distance 
values obtained by projection of each mean value into 
the opposite feature distribution. The MPM does not 
require eigenvalue analysis of the two subspaces. The 
MPM was applied to several face recognition tasks of 
temporal image sequence. The experimental results 
have demonstrated that the computational cost was 

improved by about 50% compared with the Mutual 
Subspace Method. The identification performance was 
much better than Subspace Method (a single image 
based method), and represents similar results to the 
Mutual Subspace Method for various conditions of 
illumination and facial pose. Therefore, MPM is 
promising for various applications using image 
sequence recognition. 
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