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Abstract. We have developed an online system that automat-
ically identifies ships observed in a rapidly updating sequence
of range-Doppler images produced by inverse synthetic aper-
ture radar (ISAR). In the system, in order to cope with the
invariable noise due to the physics of imaging, we propose to
employ a multiframe image processing algorithm that stably
extracts profiling as a basic feature reflecting all characteristics
of a target. For ship identification, representing the extracted
profiles as high-dimensional vectors, we adapt the vector anal-
ysis using the recently proposed constrained mutual subspace
method (CMSM). The system currently works on an ordinary
PC at 5 frames/s and achieves feasible performance of identi-
fication. The system is verified using simulated data.

Keywords: ISAR – Image sequence – Profile extraction –
Constrained mutual subspace method

1 Introduction

In this paper we deal with automatic identification of ships in
images produced by inverse synthetic aperture radar (ISAR).
The ISAR technique is a well-established method that recon-
structs a rapidly updating sequence of range-Doppler image
frames of the target [3,1].1 Due to the physics of ISAR imag-
ing, however, images are invariably noisy, and not all frames
contain equally useful information as the imaging principle
is primarily based on the target’s angular motions [2]. Some
previous works have thus discussed employment of multiple
images as well as selection of appropriate image frames and
shown the advantage for target identification [14,10]. Those
include matching of corner reflections and cumulative feature
extractions to gain stability over the time variability of ISAR
imagery, and different identification operations based on the
maximum likelihood principle or Bayesian belief networks
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1 By ISAR image we mean the magnitude in the two-dimensional
representation.

have been utilized. However, the evaluation of each feature
such as location of superstructure breaks or the number of
major uprights requires heuristics, and one of the remaining
issues is to evaluate the employed features in a more general-
ized framework.

The research we introduce is related to the previous ap-
proaches in that it is also based on multiframe processing,
but it differs significantly in terms of both feature extraction
and identification operation. The fundamental idea is to first
extract as stable a characteristic as possible for identification
throughout sequential frames of the range-Doppler images and
represent it as a feature vector in a feature space of certain
fixed dimensions so that images of a target due to different
aspect angles can be treated in a unified fashion. Since the
extracted characteristic, namely, the feature vector, inevitably
involves variations, we design the identification process by
way of subspace analysis, which is known to perform well
despite variations of patterns. The thrust is thus twofold as
following.

In our feature extraction we focus on profiling, a presen-
tation of ship height structure, since it is a basic feature of
the target containing all characteristics. The key technique
that makes extraction of profiling possible is in a simple but
effective algorithm [9]; we first detect the target range and
therewith the central axis of the target so as to rectify each im-
age and then generate a binary image with a certain threshold
that we accumulate by a logical “or” operation throughout the
frames for some duration. By this procedure the profiles stand
out despite the background noise. More importantly, we rep-
resent the resulting profiles as high-dimensional vectors that
efficiently describe the target features in terms of subspaces so
that we can suitably apply the subspace method to the problem
of identification. In our real-time application [8] we design the
algorithm in a framework with a closed loop, as depicted in
Fig. 1.

In the identification process our basic proposition is to
carry out a subspace analysis [13,11] and in particular to adapt
some extensions to deal with the diversity in the appearance
of targets. In the subspace method, given a set of profile pat-
terns labeled with the ship’s identity (the learning set) and an
unlabeled set of profile patterns (the test set), we identify the
name of each ship in the test images basically by computing
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Fig. 1. Ship profiling extraction process. See also Fig. 4 for the details of the rectangular block “rectifying operation”

the similarity to the learning set. Since a large number of pat-
terns are usually contained in the learning set, we generate a
reduced number of eigenvectors by principal component anal-
ysis (PCA) and register them as dictionary patterns. Although
this approach is well known within the pattern classification
paradigm,2 we propose to apply a further developed approach,
the constrained mutual subspace method (CMSM);3 we com-
pute the similarity between subspaces in a subspace called
constrained subspace.

In the remainder of this paper, we first describe our tech-
nique of profile extraction in Sect. 2. Introducing CMSM as an
extension of the subspace method in Sect. 3, we demonstrate
the performance of the entire scheme through simulations in
Sect. 4. The paper is summarized in Sect. 5.

2 Profile extraction

Range-Doppler ISAR imaging is based on target angular mo-
tions, and the Doppler frequency for a point on a rotating ob-
ject is proportional to the distance from the center of rotation,
measured perpendicular to the radar line-of-sight. The ISAR
presentation of ship height structure thereby arising from roll
and pitch is known as profiling. Since only little information
is contained in one shot of a typical frame, we propose to
practically extract profiling by image accumulation along the
temporal axis accompanied by geometric rectification.

2.1 Geometric image rectification

In general, the appearance of a ship in ISAR imagery not only
changes due to the motion of the ship but varies depending on
the aspect angles. Ship identification in real ISAR data may
be extremely complicated even for a human operator when
the appearance is confusing, for instance, by involving the in-
fluence of yaw motion. In many situations, however, ISAR
imagery of a ship tends to be a long shape oriented along the
range dimension in a dark and noisy background with some
clutter arising from sea waves, and in this paper we typically
deal with such situations with a view to automating the task
of human operators. See Fig. 2 for an example of a simulated

2 Similar approaches have been applied to various tasks such as
character, speech, and face recognition.

3 As applied to face recognition, CMSM is shown to be effective
against a diversity of illumination as well as variations of face direc-
tion or expression [4,5].

Fig. 2. ISAR simulated image sequence of ship Akz in roll motion

ISAR image sequence of a ship in roll motion. To geometri-
cally rectify the target we need to detect the centerline. Rather
than the least-square fit of target features, we try detecting the
coordinates of the bow and the stern, explicitly referring to
the target boundaries (at both ends of the target region in the
range direction) so that the centerline can be determined as
the line connecting the point of the bow through the point of
the stern. See Fig. 3 for the schematic.

Although the task of detecting target boundaries is non-
trivial as it is almost always obscure due to the uncertainty
associated with sensor/target interaction [6], we carry it out in
a cumulative image by using the presumed characteristics of
the long shape of the ship target. That is, denoting the inten-
sity of input ISAR image at coordinate (x, y) as I(x, y), we
first accumulate the recent (and already rectified) frames and
then define in the resulting image, Ia(x, y), a boundary func-
tion, q(x), of the range (horizontal) coordinate, x, in terms
of the brightness of the target region in contrast to the dark
background:

q(x) = (h(x) − h̄(x; s))
(

C

h̄(x; s)

)α

(1)

h̄(x; s) =
1
s

s∑
k=1

h(x± k) , (2)

W

B S

Fig. 3. Sketch of bow–stern axis. The horizontal axis corresponds to
the range direction
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Fig. 4. Process of image rectification – details of the rectangular block “rectifying operation” in Fig. 1. The block “−1” indicates a one-frame
delay in the feedback

where h(x) = maxy Ia(x, y) represents the highest intensity
among the image pixels whose coordinate in the range direc-
tion is x and h̄(x; s) is the mean of h(x) in an extent defined
by s in the outer side of the image. The minus sign in Eq. 2 ap-
plies to the left half of the image and the plus sign to the right
half. Note that α in Eq.1 encodes the significance of h̄(x; s),
which inversely stresses the brightness ratio of the target edge
against the background, whereas C takes a constant value for
scaling.

By definition, q(x) takes a relatively high value whereh(x)
rises suddenly when searched both from the left and right end
of the image and thus takes the maximum peak locally near
the target boundary. Since multiple peaks may appear due
to the image noise, we regard each of them as a boundary
candidate and select the correct one according to the value of
q(x) and also to the closeness to the prediction derived from
the previous frames. That is, we evaluate each candidate, xc,
by the function e(xc):
e(xc) = {1 + |xc − xp|}q−β(xc) , (3)
where xp is the predicted coordinate (it may simply be the
position of the boundary in the previous frame) and β encodes
the significance of q(x). As e(xc) takes a small value for small
|xc − xp| and large q(xc), the criterion for the selection is to
minimize e(xc). Denoting the selected coordinates in the left
and right side as x0 and x1, respectively, the target range can
be roughly regarded as x0 ≤ x ≤ x1. Since the bow and the
stern are on the boundaries and must appear as strong reflectors
in the ISAR imagery, they are determined as points that have
particularly high brightness in the vicinity of the peaks of q(x).
Figure 4 depicts the process of finding the bow–stern axis as
the centerline to be used for the image rectification.

Fixing the centerline of the target by detecting the bow
and the stern, we rectify each image prior to the process of
accumulation in such a way that the centerline aligns with the
horizontal scan line along the range direction in the center

of the image. At this stage we also judge if the target shape
appears upside-down in the image according to the phase of
the target motion. We make this judgment by computing the
phase ratio, R, between the averages of the intensity on both
sides of the centerline where the intensity is weighted by the
distance from the centerline. That is,

R = Iu/Il (4)

Iu =
1
nu

∑
upper

(y − c(x))I(x, y) (5)

Il =
1
nl

∑
lower

(c(x) − y)I(x, y) , (6)

where c(x) indicates the vertical coordinate on the centerline
andnu andnl are the numbers of pixels on the upper and lower
side of the centerline in the rectangular region (shown as W
in Fig. 3), respectively. Since the side containing the super-
structure should make a higher contribution to the averaged
intensity, Iu and Il, if R < 1 it is judged to be upside-down
and we reinvert the image along the vertical direction prior to
the image accumulation. Meanwhile, if the distinction of the
phase ratio turns out to be subtle (R � 1), we do not consider
the frame for further processing as it is expected to contain
only little information about the structure.

Figure 5 illustrates the process of geometric rectification
using an example input image of ship Akz. For the input image
shown in Fig. 5a, the computed boundary function, q(x) (com-
puted with s = 10 (pixels), C = 50, and α = 2 in Eq. 1), and
the extracted centerline are superimposed in Fig. 5b. The range
between the two high peaks of q(x) at both ends is indicated
by increasing the gray scale in the off-target range. Figure 5c
shows the rectified image. In this example the inversion of the
image with respect to the centerline occurrs as the superstruc-
ture is judged to be in the lower part according to the phase
ratio (R = 0.67 < 1). Other frames in the input sequence

q(x)

a b c d

Fig. 5. a Sample input image frame of ship Akz (160×120). The target shape appears upside-down. b q(x), the boundary function (white line),
and extracted bow–stern axis (black line) are superimposed. For visualization the gray scale outside the target range is increased. c Rectified
image according to the bow–stern axis. When it is judged to be upside-down at this stage, we reinvert the image along the vertical direction as
in this example. d Binary image by thresholding. Note that an incomplete example is shown deliberately
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are rectified analogously. It should be noted that thresholding
one shot usually generates just such an incomplete binary im-
age. Figure 5d shows an incomplete silhouette that lacks some
part of the superstructure, whereas some noise from sea clutter
is still present. Thus, accumulation throughout some frames
takes place to generate a mask and to extract the target profile
thereafter.

2.2 Image accumulation

In the second stage, we generate the profile of a target by way of
accumulating the rectified images. Although multiframe pro-
cessing enables us to extract different features that are likely to
be present in successive image frames, simple accumulation
would only emphasize regularly appearing features. In order
to also preserve relatively weak but important features, with a
certain threshold, Ith, we generate a binary image, Bf (x, y),
out of each geometrically rectified image, In(x, y), through-
out F frames for some duration and form a mask,B(x, y), by
a logical “or” of the masks. That is,

Bf (x, y) =
{

1, for In(x, y) > Ith
0, for In(x, y) ≤ Ith

(7)

B(x, y) =
F⋃

f=1

Bf (x, y) . (8)

Accumulation for one cycle of target motion is usually suffi-
cient to reflect available information while avoiding the influ-
ence of the target drift. Smoothing the resulting mask,B(x, y),
by dilation to fill incidental holes in the mask, we obtain a sim-
ple l-dimensional representation of the profile vector as

p(x) = min y {y | B(x, y) = 1, B(x, y + 1) = 0}. (9)

Note that we gain the computational practicality in this sim-
plification by sacrificing some of the details in the two-
dimensional mask. For the following process of identification
based on the subspace method, we define p(x) in certain di-
mensions, l, using the information in the target range, where
we normalize the length so that ‖p(x)‖ = 1.

Figure 6 exemplifies the target profile vectors, p(x), gen-
erated by the process of accumulation. The profile dimension,
l, is aligned to be 100 (pixels). Each of these examples is the
result of the logical “or” operation through a fixed number
of image frames. It is observed that the profiles are extracted
quite stably, though they vary slightly in details.

Fig. 6. Samples of extracted profile vectors of ship Akz. The dimen-
sion is aligned to be 100 (pixels), whereas the length is normalized
so that ‖p(x)‖ = 1

3 Identification by subspace method

Figure 7 visualizes the eigenvectors, i.e., the principal com-
ponents of the extracted profiles as exemplified in Fig. 6. Im-
portantly, those eigenvectors span the subspace to which the

Fig. 7. Eigenvectors computed for the profile of ship Akz. Three
eigenvectors corresponding to the three greatest eigenvalues are
shown. For visualization the background of the negative components
is gray colored

profiles of ship Akz belong in the l-dimensional space. The
eigenvector corresponding to the greatest eigenvalue roughly
characterizes the profile, whereas the remaining eigenvectors
detail it. The eigenvectors of higher orders, however, are often
contaminated by noise factors. Thus, although they describe
the details of the profile, eigenvectors corresponding to a few
of the major eigenvalues are employed as the bases to represent
the profile of each ship.

The subspace method [11] has been widely applied to vari-
ous pattern recognition tasks. It is for calculating the similarity
of the angle between a vector and a subspace, i.e., the minimum
angle between the test vector and the vectors that belong to the
learning set. While it gives fairly good results in most tasks, it
has limited recognition ability in rather complicated tasks. The
mutual subspace method (MSM) is an extension of the sub-
space method where not only reference patterns (the learning
set) but also input patterns (the test set) are represented with
subspaces. See Fig. 8 for the concept of MSM where the two
subspaces are denoted by P and Q. The similarity is defined
by the minimum angle between the subspaces and computed
as the maximum eigenvalue of a matrix. Since varieties of
patterns are compared to compute the angle, MSM is suit-
able for recognizing multiappearance objects and achieves a
high recognition rate compared with the conventional sub-
space method.

Although MSM is able to deal with a variety of appear-
ances, its classification ability still appears insufficient for our
task of ship identification. This is because the profiling of the
ISAR presentation of ship height structure is based on the
motion of the target and thereby the diversity involved in the
extracted profile vectors is dependent on the type of physi-
cal target motions such as roll or pitch. Thus, the difference
vector, d(|u| = |v| �= 0), of the two vectors, u and v, compos-
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Fig. 8. Concept of MSM and CMSM
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ing the minimum angle, θ, as sketched in Fig. 8 will include
some components derived from such diversity, and the an-
gle between the subspaces will accordingly deviate from what
should be observed solely between targets. In order to atten-
uate the influence of such diversity, we consider employing
the constrained mutual subspace method (CMSM) [4,5]. The
essence of CMSM is to carry out MSM in a constraint sub-
space where no contribution due to the diversity of appearance
is contained. See Fig. 9 for the schematic of the recognition
process with CMSM. Then the issue is to effectively design a
constraint subspace such that the robust nature of CMSM is
brought out in favor of the task of ship identification. We now
proceed to the formulation of MSM and CMSM.

3.1 The mutual subspace method (MSM)

As already stated, MSM utilizes the angle between two sub-
spaces for defining the similarity between two sets of vectors.
Given subspaces P and Q, the angle between P and Q is
defined as the minimum angle between the vectors u and v,
where u ∈ P and v ∈ Q. The angle, θ, is defined as

cos2θ = sup
u∈P,v∈Q

||u||�=0,||v||�=0

|(u, v)|2
||u||2||v||2 . (10)

LetM -dimensional input subspaces be P ,N -dimensional dic-
tionary subspaces be Q, andP andQ be orthogonal projection
operators onto P and Q. Then the angle between P and Q,
i.e., the similarity, is calculated as the maximum eigenvalue
of PQP or QPQ [7,12]. Further, it has been proved that the
eigenvalue calculation can be practically reduced to that of
lower dimensions. Let X = (xij) be

xij =
M∑

m=1

(ψi, φm)(φm, ψj) , (11)

where φ and ψ are the bases of P and Q, respectively. Then
the eigenvalues of X are equal to those of PQP and QPQ
[7], and the similarity is given as their maximum value.

3.2 The constrained mutual subspace method (CMSM)

In CMSM for ship identification it is necessary to develop a
constraint such that the contribution due to the diversity in the
type of ship motion is excluded from the difference vector, d,
and we realize it by projecting d onto a constrained subspace,
C, that has no vector components arising from the diversity. As
depicted in Fig. 8, the angle, θc, corresponding to the projected
vector, dc, approximates the angle that would be obtained by
eliminating the contribution due to the diversity from θ. θc can
also be interpreted as the angle between uc and vc, which are
the projections of u and v on C, respectively. Analogously to
the angle defined in MSM, we thus formulate the similarity as
the minimum angle between uc and vv and compute it by

cos2θc = sup
u∈P,v∈Q

||Cu||�=0,||Cv||�=0

|(Cu,Cv)|2
||Cu||2||Cv||2 , (12)

where C denotes a matrix that projects arbitrary vectors onto
C.

In practice, we first compute the difference vectors for all
the combinations between different targets in the learning set
while only using profile vectors produced by an identical type
of motion, and then define the constrained subspace, C, by
bases consisting of those difference vectors.

4 Experiments

We illustrate the performance of ship identification by an ex-
periment designed with 16 image sequences of 12 different
ships simulated to be in roll or pitch motions as listed in Ta-
ble 1.4 Some examples of the simulation data are in Figs. 10
and 11. In each case the ships were simulated to proceed in
the direction of 30◦ from the viewing angle.

Table 1. Ship database

Category Name of ship

Learning set (Roll) Akz, Ckg, Mng, Grc
Isz, Hrn, Suy, Mur

Test set I (Pitch) Akz, Ckg, Mng, Grc
Test set II (Roll) Ymg, Srn, Kng, Ybr

Using eight of these image sequences, all due to roll mo-
tion, we have generated a dictionary while extracting a num-
ber of profile vectors as a learning set for each ship. Regarding
the test data, we first examined four independent sequences of
those ships, all synthesized due to pitch motion (we call them
test set I). We have applied CMSM by defining the constrained
subspace, C, with the dictionary and projecting the test set as
well as the learning set on C. Note that the components due to
the difference between types of motion should not be included
in C since the learning set for the dictionary is composed only
of identical (roll) motion.

4 ISAR simulations were carried out using RIG, Radar Imagery
Generator, a product of Technology Service Corp.
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Fig. 10. Images of Learning set (by roll) – Akz, Ckg, Mng, Grc,
Isz, Hrn, Suy, and Mur

Fig. 11. Top: Images of test set I (by pitch) – Akz, Ckg, Mng, and
Grc. Bottom: Images of test set II (by roll) – Y mg, Srn, Kng, and
Y br

The results of the first examination are shown in the up-
per portion of Fig. 12. The highest similarity in each case is
scored ideally (above 0.98) when compared with the correct
target out of the eight candidates, whereas the scores of sim-
ilarity to the other candidates are suppressed. It may then be
useful to also set a threshold, T , to avoid false acceptance,
for example T = 0.6 (see the dotted line in the graph). In
a few cases the evaluations of the similarity turn out to be
above the threshold while not being identical (e.g., Ckg vs.
Isz). Although it is observed to be due to the resemblance in
the original ship profile, the overall performance with CMSM
appears satisfactory. In fact, the separability, η, as an index

Fig. 12. Like the ship candidates, in each test the comparison is
made with the 8 candidates in the dictionary (8 bars from left:
Akz, Ckg, Mng, Grc, Isz, Hrn, Suy, and Mur). Top: Test set I
(1.Akz, 2.Ckg, 3.Mng, and 4.Grc). Bottom: Test set II (1.Y mg,
2.Srn, 3.Kng, and 4.Y br)

of identification ability between identities (see Appendix) has
been significantly improved (η = 0.506) compared to the case
of using MSM (η = 0.248). Clearer discrimination between
ships with similar profilings will be an issue in future work.

We have also tested another four sequences of different
ships (we call them test set II) that are not registered in the dic-
tionary. The results are shown in the lower portion of Fig. 12.
The similarity score is favorably low in each case (far smaller
than the threshold), indicating the rejection performance of
the method whereby the ships are not misidentified as being
any of the candidates in the dictionary.

In our online implementation, the extraction of a 100-
dimensional profile vector in images with 160 × 120 pixels
and the identification of target by CMSM were continuously
carried out. The frame rate to work through the entire algo-
rithm was about 5 frames/s and the correct identification rate
was above 95%.

5 Conclusion

For solving the problem of automatic ship identification in
ISAR imagery, we have proposed extraction of ship profil-
ing as the basic feature of the target patterns and adaption of
the subspace analysis as a scheme of pattern recognition. In
order to stably extract the profiling we introduced a simple
but effective algorithm to vectorize the profile – a multiframe
accumulation preceded by a precise target detection and im-
age rectification. The algorithm is straightforward and gains
stability in real-time implementation with closed loop. In the
identification of the extracted profiling, we employed the con-
strained mutual subspace method (CMSM), and it performed
well on the profile vectors despite the diversity due to the type
of physical target motions. In our preliminary experiments us-
ing simulated ISAR image databases, the overall performance
of the identification turned out to be satisfactory.

Future work will focus on evaluations of the algorithm
for larger databases including various classes of ships with
different noise levels. As we have assumed a long shape of
ship oriented along the range dimension, worth investigating
is also the influence of significant differences in aspect angles.
Another interesting extension may be to incorporate other cues
such as ship length overall, if available, for limiting the target
identification to certain candidates.

Appendix: Definition of separability

Given the scores of similarity Si between the input and the
dictionary of which n1 cases are within class and n2 cases
between classes, the separability, η, between classes is defined
as

η =
σb

2

σT
2 (13)

σb
2 = n1(S1 − Sm)

2
+ n2(S2 − Sm)

2
(14)

σT
2 =

n1+n2∑
i=1

(Si − Sm)
2
, (15)

where S̄1, S̄2, and S̄m denote the average of n1 scores of sim-
ilarity within a class, that of n2 scores of similarity between
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classes, and that of all the n1 +n2 scores. The higher the sep-
arability, the higher the identification ability allowing larger
ranges of possible rejection threshold choices.
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