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Synonyms

Multiple similarity method

Related Concepts

� Dimensionality Reduction
� Principal Component Analysis (PCA)

Definition

Subspace analysis in computer vision is a generic
name to describe a general framework for com-
parison and classification of subspaces. A typical
approach in subspace analysis is the subspace
method (SM) that classifies an input pattern vec-
tor into several classes based on the minimum
distance or angle between the input pattern vector
and each class subspace, where a class subspace
corresponds to the distribution of pattern vectors
of the class in high-dimensional vector space.

Background

Comparison and classification of subspaces have
been one of the central problems in computer
vision, where an image set of an object to be
classified is compactly represented by a subspace
in high-dimensional vector space.

The subspace method is one of the most
effective classification method in subspace
analysis, which was developed by two Japanese
researchers, Watanabe and Iijima around 1970,
independently [1,2]. Watanabe and Iijima named
their methods the CLAFIC [3] and the multiple
similarity method [4], respectively. The concept
of the subspace method is derived from the
observation that patterns belonging to a class
form a compact cluster in high-dimensional
vector space, where, for example, a w×h pixels
image pattern is usually represented as a vector
in w×h-dimensional vector space. The compact
cluster can be represented by a subspace,
which is generated by using Karhunen-Loève
(KL) expansion, also known as the principal
component analysis (PCA). Note that a subspace
is generated for each class, unlike the Eigenface
Method [5] in which only one subspace (called
eigenspace) is generated.

The SM has been known as one of the most
useful methods in pattern recognition field since
its algorithm is very simple and it can han-
dle classification of multiple classes. However,
its classification performance was not sufficient
for many applications in practice, because class
subspaces are generated independently of each
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other [1]. There is no reason to assume a priori
that each class subspace is the optimal linear class
subspace in terms of classification performance.

To deal with this problem, the SM has been
extended. Two typical extensions are the orthog-
onal subspace method and the learning subspace
methods. The orthogonal subspace method [6]
executes the SM to a set of class subspaces
that are orthogonalized based on the framework
proposed by [7] in learning phase. The orthogo-
nalization is known as a useful operation to boost
the performance of angle-based method, such as
SM, since class subspaces are usually close to
each other in many classification problems.

The learning subspace methods [1, 8, 9] exe-
cute the SM to a set of class subspaces, the
boundaries between which are adjusted to sup-
press classification errors for the learning pattern
vectors. This adjustment is performed based on
the following procedure. First, a learning vector
x is classified by using the SM. Then, if x is
wrongly classified into an incorrect class sub-
space Lr , which is not corresponding to the class
of x, subspace Lr is slightly rotated into the
direction away from x, and in contrast the correct
class subspace Lc of x is slightly rotated to the
direction close to x. This adjustment is repeated
several times for a set of learning vectors until a
minimum classification error is achieved.

Moreover, to deal with the nonlinear distri-
bution of pattern vectors, the SM had also been
extended to the kernel nonlinear SM [10, 11] by
introducing a nonlinear transformation defined by
kernel functions.

These extensions aim mainly to improve the
classification ability. In addition to such exten-
sions, the generalization of the SM to classifica-
tion of sets of patterns is also important for many
computer vision problems. In order to handle a
set of multiple pattern vectors as an input, the
SM has been extended to the mutual subspace
method (MSM) [12]. The MSM classifies a set
of input pattern vectors into several classes based
on multiple canonical (principal) angles [13, 14]
between the input subspace and class subspaces,
where the input subspace is generated from a
set of input patterns as class subspaces. The
concept of the MSM is closely related to that of

the canonical correlation analysis (CCA) [13].
Actually, the cosine of the i-th smallest canonical
angle corresponds to the i-th largest canonical
correlation.

The MSM has achieved high performance
in recognition of complicated 3D object such
as face, using a set of images from image
sequence or multi-view images. This success
can be mainly explained by the fact that the
MSM implicitly utilizes 3D shape information
of objects in classification. This is because
the similarity between two distributions of
various view images of objects reflects the
3D shape similarity between the two objects.
To boost the performance of the MSM, it
has been further extended to the constrained
mutual subspace method (CMSM) [15, 16]
and the whitening (or orthogonal) mutual
subspace method (WMSM) [17], where the
relationship among class subspaces is modified
to approach orthogonalization in the learning
phase. In CMSM, the orthogonalization is
performed by projecting the class subspaces
onto a generalized difference subspace [16],
which represents difference components among
the class subspaces. In WMSM, it is performed
by whitening all the class subspaces. These
extensions have boosted the classification ability
of the MSM. The MSM and its extensions
have been further extended to kernel nonlinear
methods [18–21] by kernel trick.

Theory

Subspace Method
Assume an input vector p and k class subspaces
in f -dimensional vector space. The similarity S

of the pattern vector p to the i-th class is defined
based on either of the length of the projected
input vector p̂ on the i-th reference subspace [3]
or the minimum angle [4] between the input
vector p and the i-th class subspace as shown
in Fig. 1a. The length of an input vector p is
often normalized to 1.0. In this case, these two
criteria coincide. In the following explanation,
therefore, the angle-based similarity S defined by
the following equation will be used:
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Fig. 1 Conceptual
illustrations of SM and
MSM. (a) Subspace
method (SM). (b) Mutual
subspace method (MSM)

Input vector

a b
Subspace Subspace

..... ..........
u1

v1

Subspace

S = cos2θ =
dq∑

i=1

(p · φφφi)
2

||p||2 , (1)

where dq is the dimension of the class subspace
and φφφi is the i-th f -dimensional orthogonal nor-
mal basis vector of the class subspace, which are
obtained from applying the principal component
analysis (PCA) to a set of patterns of the class.
Concretely, these orthonormal basis vectors can
be obtained as the eigenvectors of the correlation
matrix

∑l
i=1 xix�

i calculated from the l learning
patterns {x} of the class.

Process Flow of the SM
The whole process of the SM consists of a learn-
ing phase and a recognition phase.

In the Learning Phase All k class dq -
dimensional subspaces are generated from
a set of pattern vectors of each class by using
PCA.

In the Recognition Phase The similarities S of
an input vector p to all the k class subspaces
are calculated by using Eq. (1). Then, the input
vector is classified into the class of the class
subspace with highest similarity. If the highest
similarity is lower than a threshold value fixed
in advance, the input vector is classified into a
reject class.

Mutual Subspace Method
Assume an input subspace and class subspaces
in f -dimensional vector space. The similarity of
the input subspace to the i-th class subspace is
defined based on a minimum canonical angle θ1

[13, 14] between the input subspace and the class
subspace, as shown in Fig. 1b.

Given a dp-dimensional subspace P and a
dq -dimensional subspace Q (for convenience,

dp ≤ dq ) in the f -dimensional vector space, the
canonical angles {0 ≤ θ1, . . . , θdp ≤ π

2 } between
P and Q are uniquely defined as [14]

cos2θi

= max
ui⊥uj (i �=j, i, j = 1∼dp)

vi⊥vj (i �=j, i, j = 1∼dp)

(ui · vi )
2

||ui ||2||vi ||2
,

(2)

where ui ∈ P, vi ∈ Q, ‖ui‖ �= 0,‖vi‖ �= 0, (·)
and ‖ ‖ represent an inner product and a norm,
respectively.

Let �i and �i denote the i-th f -dimensional
orthonormal basis vectors of the subspaces P
and Q, respectively. A practical method of
finding the canonical angles is by computing
the matrix X=A�B, where A = [�1, . . . ,�dp ]
and B = [�1, . . . ,�dq ]. Let {κ1, . . . , κdp }
(κ1≥, . . . ,≥ κdp ) be the singular values of
the matrix X. The cosines of canonical angles
{θ1, . . . , θdp } can be obtained as {κ1, . . . , κdp }.
The original MSM uses only a minimum
canonical angle θ1 to define the similarity.
However, since the remaining canonical angles
also have information for classification, the value,
S̃ = 1

t

∑t
i=1 cos2 θi , defined from the smallest

t canonical angles is often used as the similarity
in many computer vision problems. The value
S̃ reflects the structural similarity between two
subspaces. The whole process of the MSM is the
same as that of the SM except that an input vector
is replaced by an input subspace.

Constrained Mutual Subspace Method
The essence of constrained mutual subspace
method (CMSM) [15, 16] is to conduct MSM
on a generalized difference subspace (GDS),
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where the GDS is generated from the sum of
the orthogonal projection matrices of all the
class subspaces [16]. This can be performed by
applying MSM to a set of an input subspace and
class subspaces, which are projected onto the
GDS. For the projection, there are two ways that
give equivalent results. One is to project the basis
vectors of each class subspace onto GDS and then
normalize the projected basis, which is further
followed by Gram-Schmidt orthogonalization
after the orthonormality is lost by the projection.
The alternative is to first project the images for
each class subspace and then generate a class
subspace from the projected images.

Application

The subspace methods and their extensions have
been applied to various problems [1, 10, 11] of
computer vision due to their high general versatil-
ity and low computational cost. In particular, the
extended SMs have produced remarkable results
in optical character recognition (OCR), such as
handwriting Chinese character recognition [2,4],
in Japanese industry.

The mutual subspace method has also
been demonstrated to be extremely effective
for 3D object recognition. In particular, the
MSM has been known to be suitable for face
recognition [15, 17, 22] because the subspace
(called “illumination subspace”), which includes
any face image patterns under all possible
illumination conditions, can be generated from
face images under more than three different
illumination conditions [23]. The nonlinear
extensions of the MSM, CMSM, and WMSM
have been shown to be further effective for
3D object recognition using image sequences
and multi-view images [18–21, 24, 25]. These
methods work well together with CNN features,
which are extracted through a pre-trained
Convolution neural network [26].
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