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Abstract. This paper introduces a novel approach for face recognition using multiple face
patterns obtained in various views for robot vision. A face pattern may change dramatically
due to changes in the relation between the positions of a robot, a subject and light sources.
As a robot is not generally able to ascertain such changes by itself, face recognition in
robot vision must be robust against variations caused by the changes. Conventional methods
using a single face pattern are not capable of dealing with the variations of face pattern.
In order to overcome the problem, we have developed a face recognition method based on
the constrained mutual subspace method (CMSM) using multi-viewpoint face patterns
attributable to the movement of a robot or a subject. The effectiveness of our method for robot
vision is demonstrated by means of a preliminary experiment.

1 Introduction

Person identification is a very important function for robots which work with humans
in the real world. Face recognition is one of the essential methods identification since
it is non-contact method and the subject can thus be unaware that recognition is being
performed.

Many face recognition methods based on image appearance have been developed
over the past few decades[6–8]. Most of these are based on a single face pattern and
recognize a face using the model for the expected change. Although these methods
have been in practical use for applications in which the lighting condition and face
direction are stable, it is difficult to apply them in general. This is because the
face pattern may change dramatically due to the changes of the relation between
the positions of robot, subject and light sources. As a robot is not generally able
to control such changes by itself, face recognition in robot vision must be robust
against such variations.

In order to overcome the problem, we introduce a novel approach for face recog-
nition using multiple face image patterns obtained in various views. Our approach
exploits the following observations: (i) A robot can make a subject approach it or
turn his/her face toward it by the means of visual or audio alerts. (ii) The robot can
move to an advantageous position for capturing multi-viewpoint face patterns by
itself. Face recognition by a robot is substantially different from that by a desktop
computer in that a robot has the ability to actively capture face patterns.

Fig.1 shows a comparison between our method and a conventional method using
a single face pattern. A face pattern obtained from one view can be represented



Face recognition using multi-viewpoint patterns for robot vision 193

Input multiple patterns

Person A Person B

Input pattern

Person A Person B

.........

(a) Conventional method (b) Our method

Fig. 1. Basic idea: (a) using a single static pattern, (b) using multiple patterns

as a point in a high-dimensional feature vector space where an n×n pixel pattern
is treated as anF (= n×n) dimensional vector. In the conventional method the
identification of a person is based on the minimum distance between an input pattern
and a distribution of reference patterns as shown in Fig.1(a). The minimum distance
is very unstable because the input face pattern varies easily due to the changes
in face direction, expression and lighting. On the other hand, we can see that the
similarity between the distributions of the input patterns and the reference patterns is
more stable as shown in Fig.1(b). Consequently, our method based on the similarity
between the two distributions is hardly affected by the changes mentioned above.
Moreover, it should be noted that the similarity between the two distributions of face
patterns implies implicitly the similarity between 3D shapes of faces[12]. This fact
is one reason for the higher recognition rate of our method compared to single-view
methods.

The distribution of face image patterns can be represented by a lower-dimensional
linear subspace of the high-dimensional feature space. This subspace is generated us-
ing the Karhunen-Lòeve (KL) expansion, also known as principal component analy-
sis (PCA). Moreover, the relationship between two subspaces is strictly defined by the
multiple canonical angles[9], which are an extension of the angle between two vec-
tors. Therefore, we can measure the structural similarity between the distributions of
the face patterns by using the canonical angles between two subspaces. The canonical
angles are calculated by the framework of themutual subspace method (MSM)[3].

The MSM-based face recognition method using the multiple canonical angles
can tolerate variations in the face patterns, considering the information due to the
3D face shape of each person and achieve a high recognition rate compared to the
conventional methods. However, its classification ability still appears insufficient for
face recognition because each subspace is created without considering the rival sub-
spaces that are to be compared[2]. To overcome the problem, we consider employing
theconstrained mutual subspace method (CMSM). The essence of CMSM is to
carry out the MSM framework in a constraint subspaceC which satisfies the con-
straint condition: “it includes only the essential component for classification. The
projection onto a constraint subspace enables CMSM to have a higher classification
ability besides the ability to tolerate variations in the face patterns.
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Fig. 2. Concept of SM and MSM

In the following sections, first, we explain the algorithm of MSM and CMSM.
Then, we construct the face recognition method using CMSM. Finally, the effective-
ness of our method for robot vision is demonstrated by experiments.

2 Basic identification by MSM

2.1 Algorithm of MSM

The mutual subspace method (MSM) is an extension of the subspace method
(SM)[1,2] used widely for solving various pattern recognition problems. SM is for
calculating the similarity as the minimum angleθ1 between an input vector and a
reference subspace which represents the variation of the learning set as shown in
Fig.2(a). By contrast, in MSM, the similarity is defined by the minimum angleθ1

between the input subspace and the reference subspace as shown in Fig.2(b). MSM
utilizes only the minimum canonical angle. However, given anM -dimensional
subspaceP and anN -dimensional subspaceQ in theF -dimensional feature space,
we can obtainN canonical angles (for convenienceN ≤ M ) betweenP andQ[9].
Therefore, we use these canonical angles to define the similarity between these
subspaces. The canonical angleθi betweenP andQ is defined as

cos2θi = max
ui⊥uj(=1,...,i−1)
vi⊥vj(=1,...,i−1)

|(ui,vi)|2
||ui||2||vi||2 (i = 1, . . . , N) (1)

whereui ∈ P,vi ∈ Q, ||ui|| 6= 0, and ||vi|| 6= 0. Let the F×F dimensinal
projection matrix corresponding to projection of a vector on theM -dimensional
subspaceP beP, and theF×F dimensional projection matrix corresponding to the
N -dimensional subspaceQ beQ. cos2θ of the angleθ betweenP andQ is equal
to the eigenvalue ofPQP or QPQ[3]. The largest eigenvalue of these matrices
representscos2θ1 of the smallest canonical angleθ1, whereas the second largest
eigenvalue representedcos2θ2 of the smallest angleθ2 in the direction perpendicular
to that ofθ1. cos2θi for i = 3, . . . , N are calculated similarly.

The eigenvalue problem ofPQP can be transformed to that of a matrix with
smaller dimensions[3]. LetΦi andΨi denote thei -th F -dimensional orthogonal
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Fig. 3. Similarity S[t] between two subspaces: it changes from 0.0 to 1.0 depending on the
relation between two subspaces

basis vectors of the subspaceP andQ, respectively. The eigenvalue problem of
PQP is then attributed to that of theN×N matrixX1 as:

Xc = λc (2)

whereX = (xij), xij =
∑M

k=1(Ψi ·Φk)(Φk ·Ψj).

2.2 Definition of similarity using multiple canonical angles

We consider the value of the mean of the canonical angles,S[t] = 1
t

∑t
i=1 cos2 θi,

as the similarity between two subspaces. The similarityS[t] has the characteristic
shown in Fig.3. In the case that two subspaces coincide completely with each other,
S[t] is 1.0, since all canonical angles are zero. The similarityS[t] becomes smaller
as the two subspaces separate. Finally, the similarityS[t] is zero when the two
subspaces are orthogonal to each other.

For practical use of the similarityS[t], we should consider the situation in which
both subject and robot stand still. In this case,S[t] (t ≥ 2) can not be used, since
the distribution of input patterns degenerates and the canonical angles excepting the
minimum canonical angle are unreliable2

3 High-performance identification by CMSM

3.1 Algorithm of CMSM

MSM does not have the ability to reject the influence of undesirable changes in
a face pattern, such as changes due to lighting condition, a face direction or an
expression. In Fig.4 the difference vector,d(|u| = |v| 6= 0), of the two vectors,u
andv, composing the minimum angle,θ, includes some components derived from
such changes and the angles between the subspaces will accordingly deviate from
what should be observed solely between individuals.
1 This matrix can be also derived by several other methods[9].
2 In such situation, a multi-camera system is valid, since the system can obtain various face

patterns at the same time without depending on the movement of the subject and the robot.
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Fig. 4. Concept of CMSM

In order to attenuate the influence of such undesirable variation, we consider
employing theconstrained mutual subspace method (CMSM). In CMSM, we
introduce a constraint subspaceC which satisfies the constraint condition: “it includes
the effective component for recognition, that is the difference between people, but
does not include any unnecessary component for recognition, namely, undesirable
variation.”. Then, we calculate the canonical angles between the projected input
subspacePc and the projected reference subspaceQc using MSM. The canonical
angle θc between theM -dimensional projected input subspacePc and theN -
dimensional projected reference subspaceQc is defined as:

cos2θi = max
uc

i
⊥uc

j(=1,...,i−1)
vc

i
⊥vc

j(=1,...,i−1)

|(uc
i ,v

c
i )|2

||uc
i ||2||vc

i ||2
(i = 1, . . . , N) (3)

whereuc
i ∈ Pc,vc

i ∈ Qc, ||uc
i || 6= 0, ||vc

i || 6= 0. The subspacePc is calculated by
the following steps:

1. M orthogonal basis vectors of the subspaceP are projected onto the constraint
subspaceC.

2. The length of each projected vector is normalized.
3. Gram-Schmidt orthogonalization is applied to the normalized vectors to obtain

M orthogonal basis vectors of the subspacePc.

SimilarlyQc is calculated.

3.2 Generation of constraint subspace

How to generate the constraint subspace is an important problem. Here, we derive
the constraint subspace based on the concept ofdifference subspace that we have
proposed in [5]. First, thedifference subspace is defined geometrically with the
canonical angles. Then, we redefine thedifference subspace using the projection
matrices analytically. Finally, we generalize the concept of thedifference subspace
for multiple subspaces and show that thegeneralized difference subspace is avail-
able as the constraint subspace.
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Fig. 5. Concept of difference subspace: (a) difference vector, (b) difference subspace, (c)
generalized difference subspace for k subspaces

Definition of difference subspaceHere, we formulate thedifference subspace
between two subspaces. Thedifference subspace is an extension of the difference
vector between two vectors in multidimensional space as shown in Fig.5(a)(b). The
difference subspace is an effective component for discriminating two subspaces.

When MSM is applied toM -dimensional subspaceP andN -dimensional sub-
spaceQ, N canonical angleθi, i = 1, . . . , N (for convenienceN ≤ M) are
obtained. Letdi be the difference vectorui-vi between vectorui and vectorvi

forming thei -th canonical angleθi. All di are then orthogonal to each other. By nor-
malizing the length of each difference vectordi to 1.0, we regard these normalized
difference vectors̄di as the basis vectors of thedifference subspace D2.

We can redefine thedifference subspace, defined geometrically, analytically
using the projection matrices. For this purpose, we show that half of all the eigen-
vectors of matrixP + Q corresponding to eigenvalues smaller than 1.0 span the
difference subspace between the two subspaces. Let thei-th largest eigenvalue of
matrix P + Q be λi(P + Q) and thei-th largest eigenvalue of matrixPQ be
λi(PQ). Starting fromλi(PQ)=(λi(P + Q)− 1)2, proved in [10], we can obtain
the relation between the eigenvalues of matrixP + Q, thedifference subspace D2,
and principal component subspacePc2 which represents the “principal component”
of multiple subspaces as follows

1. N eigenvectors of matrixP + Q corresponding to eigenvalues smaller than 1.0
span thedifference subspace D.

2. N eigenvectors of matrixP + Q corresponding to eigenvalues larger than 1.0
span theprincipal component subspace Pc.

The relations lead us to the conclusion that the sum subspaceS2 spanned by all
the eigenvectors of matrixP + Q is represented by the orthogonal direct sum of the
principal component subspacePc2 and thedifference subspace D2. In other words,
the difference subspace D2 can be defined as the subspace which is produced by
removing the principal component subspacePc2 from the sum subspaceS2.
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From the above discussion, we see that thedifference subspace, defined as
the subspace which represents “difference” between two subspaces becomes at
the same time the subspace, which does not include the principal components of
the two subspaces. Thus, thedifference subspace satisfies the constraint condition
mentioned in Section 3.1.

Generalization of difference subspaceNow, we generalize the concept of the
difference subspace for multiple subspaces on the basis of the definition using pro-
jection matrices. Givenk(≥2) N -dimensional subspaces, a generalized difference
subspaceDk can be defined as the subspace which is produced by removing the
principal component subspacePck of all the subspaces from the sum subspaceSk of
that. According to this definition, the generalized difference subspaceDk is actually
spanned byNc eigenvectors of the sum matrixG =

∑k
i=1 Pi of projection matrices

Pi, di(i = N×k −Nc, . . . , N×k).

Gd = λd, (4)

where eigenvectorsdi correspond to thei-th eigenvalueλi in descending order and
an optimal dimensionNc of the difference subspace is set experimentally3.

Fig.5(c) shows the concept of the generalized difference subspaceDk for k
subspaces. We can see that the generalized difference subspaceDk includes only
the essential component for face recognition since it is orthogonal to the principal
component subspacePck, which represents the intersections of reference subspaces
of each person.

3.3 Framework of face recognition using the CMSM

Fig.6 shows the framework of our face recognition based on CMSM. First, the pupils
and nostrils are directly detected from an input image using a feature detection
method based on a combination of separability filter and pattern matching[11].
The input subspace is updated, in real time, whenever a normalized face pattern is
extracted on the basis of the position of the four facial feature points, then projected
onto the constraint subspace. To update the input subspace we have adopted the
simultaneous iteration method[2]. Then, we compute the similarity between the
projected input subspace and the projected reference subspace on a database, and
the reference subspace that has the highest similarity is determined to be that of the
identified person given the similarity is above a threshold. The whole process from
inputting an image to identification can be executed at the speed of 25 frames/sec
using a PC (Pentium-III 800MHz).

3 Eq.(4) appears to be an equation of principal component analysis (PCA) in that basis vectors
of each subspace are considered as a sample vector. However, it is completely different
from PCA in thatm subspacesPij (j = 1∼m) which belong toi-th class should be
integrated into the same subspacePi∗ . Actually, Pi∗ can be generated as the subspace
which is spanned by all the eigenvectors of the sum matrix

∑m

j=1
Pij .
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Fig. 7. Data for evaluation: (a) the collected sequential face images, (b) the normalized face
patterns of subject1 in lighting condition L1-L8 (from left)

4 Experiments

We have compared our method with conventional methods using a single face pattern:
the subspace method (SM) and the eigenface method (EFM)[6]4, in addition, MSM
in terms of the recognition rate and the separability5 which is a normalized index of
classification ability between subjects.

We have considered the situation in which a subject moves and a robot stands
still, for example, a subject approaches a robot or turns his/her face toward the
4 EFM is widely used as the base of various commercial products.
5 The higher the separability is, the higher is the classification ability allowing larger for

possible choice of rejection threshold.
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Table 1. Recognition performance of each method, similarityS[1]andS[3] are defined in
Section 2.2

Methods SM EFM MSMS[1] MSM/S[3] CMSM/S[1] CMSM/S[3]
Recognition rate75% 75% 80% 89% 99% 99%

Separability 0.10 0.12 0.12 0.39 0.57 0.65

robot. A situation in which conversely the subject stands still and the robot moves
is fundamentally the same, although how to move to a position where the robot can
obtain various face patterns useful for face recognition is a difficult problem.

To simulate the first situation we collected sets of 320×240 pixels face images
while making the subject change position and direction of their face as shown in
Fig.7(a). The system for data collection consists of a PC (Pentium-III 800MHz),
an image capture board, and a CCD camera with a lens with focal length=7.5mm.
The camera is installed below the monitor so that it looks up at the face of the
subject. We have carried out the collection to obtain 80 face images for each subject
in each lighting condition and extracted the 15×15 pixels normalized face patterns
from these images as shown in Fig.7. The number of subjects was 25. The lighting
condition was changed by switching three lamps off/on: making eight combinations
(L1-L8).

The normalized face patterns of subjecters 1-12 in lighting conditions L1-L4
were used for generating the constraint subspaceC. The face patterns extracted from
the images of the other subjects, 13-25, in lighting conditions L5-L8 were used
for evaluation. Using the normalized face patterns, we generated the 7-dimensional
subspacePij for each subjecti in lighting conditionj by the KL expansion.

The constraint subspaceC was then generated as follows. First, for subjecti, four
10-dimensional subspacesPij , (j=1∼4) are integrated into the 40-dimensionalPi∗ .
Then, we calculated the sum matrixG from the projection matrices of the twelve
40-dimensional subspacesPi∗ of subject1-12. Finally, the eigenvectors of the matrix
G corresponding to theNc smallest eigenvalues become the basis vectors of theNc

dimensional constraint subspaceC. Nc is set, experimentally, to 170.
In the evaluation of each methods, assuming that each subspace under lighting

condition j is an input subspace and all the subspaces under lighting condition
j∗ are reference subspaces, we calculated the similarity between the subspaces
while changing the combination of lighting conditions. The dimensions of an input
subspace and the reference subspaces are set at 5 based on a preliminary experiment.
The dimension of a reference subspace of SM is also set at 5. SM utilizes the mean
of the 80 face patterns as an input vector so that the number of face patterns used for
calculating the similarity is the same in all the methods. FEM also utilizes the mean
of the 80 face patterns as an input vector and a reference vector.

Table 1 shows the evaluation result of each method in terms of the recognition
rate and the separability. We can see that the method using CMSM is superior to the
others with regard to both indices. This result also shows that the performance of face
recognition has been further improved by using the multiple canonical angles. This



Face recognition using multi-viewpoint patterns for robot vision 201

is results from information on 3D face shape, from the multiple canonical angles,
being reflected in the recognition process.

5 Conclusion

This paper has presented a face recognition method on the basis of CMSM using
multiple face patterns. The effectiveness of our method for robot vision is demon-
strated by means of a preliminary experiment, which shows improvement based on
the fact that our method is able to utilize various multiple face patterns. In future
work, we intend to consider in particular of planning function for data collection and
the actual implementation of our method in a robot.
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