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SUMMARY We propose a new method to precisely detect
pupil contours in face images. Pupil contour detection is neces-
sary for various applications using face images. It is, however,
difficult to detect pupils precisely because of their weak edges
or lack of edges. The proposed method is based on minimizing
the energy of pattern and edge. The basic idea of this method
is that the energy, which consists of the pattern and the edge
energy, has to be minimized. An efficient search method is also
introduced to overcome the underlying problem of efficiency in
energy minimization methods. “Guide patterns” are introduced
for this purpose. Moreover, to detect pupils more precisely we
use an ellipse model as pupil shape in this paper. Experimental
results show the effectiveness of the proposed method.
key words: pupil contour detection, pattern recognition, edge
detection, energy minimization

1. Introduction

Detection of feature points (eyes, nostrils, etc.) in face
images is necessary for various applications using face
images such as face recognition and gaze detection. Eye
pupils are considered to be the most important feature
among those facial feature points. It is difficult to de-
tect pupils precisely in a face image. This difficulty is
attributable to two factors: contours of pupils consist
of weak edges and edges are often lacking along the
contours.

Many pupil detection methods have been reported.
Some are based on edge and shape information, for ex-
ample, using deformable templates [1] or Hough trans-
form [2]. A method using view-based pattern matching
has also been reported [3]. However, there are prob-
lems respecting the robustness and accuracy of those
methods. Recently, approaches have been proposed in
which both appearance and shape are used. An ac-
tive appearance model [4] is one of those approaches.
An active appearance model, however, is often defined
rather strictly, and therefore, it is inappropriate for
pupils since their appearance changes dramatically de-
pending on the individual, face direction and lighting
conditions.

We propose a new method to precisely detect pupil
contours in faces. The method is based on minimiz-
ing the energy that consists of the pattern energy and
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Table 1 Characteristics of edge detection and pattern
matching.

Method Edge detection Pattern matching
Scale Local Global
Location accuracy Good Poor
Noise robustness Poor Good

the edge energy. Edge detection and pattern match-
ing have complementary characteristics. Table 1 shows
features of those methods. Pattern matching is subject
to a problem concerning accuracy and edge detection
is subject to a problem concerning robustness. There-
fore, if used in combination, pattern matching and edge
detection can compensate for each other’s deficiencies.

In [5] a method to extract facial feature points
based on a combination of pattern matching and shape
extraction has been proposed. It is a robust and flexible
system compared with the other methods mentioned
above. But in [5] pattern matching and edge detection
are used only separately, i.e., the edge detection was
used only as the pre-processing for the pattern match-
ing.

A more generalized method is proposed in this pa-
per. It integrates pattern matching and edge detec-
tion in a unique framework of energy minimization and
therefore it is a more robust and flexible method. An
efficient search method using “guide patterns” is also
introduced to overcome the optimization problem in-
herent in energy minimization methods.

If pupils are detected accurately, they can be used
for face recognition for example. In view-based face
recognition [6], the performance is highly dependent on
the accuracy of the detection of face location and size.
Accurate location is thus necessary for view-based face
recognition. In gaze detection the problem is more se-
rious. In view-based gaze detection (for example [7]),
in addition to accurate locations of the pupils, shape
information is also needed. The proposed method has
a possibility of being used for gaze detection since it
can handle an ellipse model as a pupil shape.

In Sect. 2, we present the basic concept of our
method. The relationship between pattern and shape
is discussed in Sect. 3. In Sect. 4, we introduce the con-
cept of “guide patterns.” In Sect. 5, the details of the
pupil contour detection method with ellipse models are
described. In Sect. 6, the experimental result and the
discussion based on it are presented. Conclusions are
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given in the final section, Sect. 7.

2. Basic Concept

We use the energy minimization scheme to integrate
two types of information. Various energy minimization
methods have been proposed for use in image recogni-
tion. For example, an active contour model [8] is one of
the well-known methods. Employment of pattern en-
ergy, however, has not been discussed sufficiently so far.
Figure 1 shows a conceptual diagram of the proposed
method. The integrated energy is defined in Eq. (1).

E(X) = αEp(X) + βEe(X) (1)

The integrated energy consists of the pattern en-
ergy Ep(X) and the edge energy Ee(X). α and β
are weighting coefficients. X is a feature vector which
describes the object shape and location. For exam-
ple, if the object shape is described by the coordinates
of its contour, the set of coordinates can be used for
X = (x1, x2, . . . , xn). In the case of a parametric shape
object, dimension of the feature vector can be reduced
by using their parameters.

The pattern energy Ep(X) is the similarity be-
tween a pattern normalized by shape X and a refer-
ence pattern normalized by a correct shape Xc (Fig. 2).

Fig. 1 Conceptual diagram of the proposed method.

Fig. 2 Examples of the images normalized by shape model.

We discuss the relationship between pattern and object
shape in Sect. 3. The edge energy Ee(X) is based on
the edge intensity along the contour of shape X. The
energy originated in edge is subject to a problem in that
the energy is incorrect when the position is far from the
correct position. The pattern energy does not dramat-
ically change as the edge energy does. Examples of the
pattern and the edge energy maps are shown in Fig. 3.
The edge energy has an acute peak, which is important
for determining the shape precisely.

3. Relationship between Pattern and Shape

In this section, we briefly summarize the relationship
between pattern and shape of contour.

The contour shape of an object is closely related to
the pattern through a normalization process. Suppose,
for instance, that an ellipse shape is normalized to be
a circle shape (A in Fig. 2). If the contour is detected
correctly, the normalized pattern is similar to that of
reference patterns which are normalized by the contour
shape. On the contrary, if the contour is not detected
correctly (B and C in Fig. 2), the normalized pattern
is dissimilar to that of reference patterns. Therefore,
the pattern similarity between an input pattern and
the reference pattern is able to describe the accuracy
of detected contours. In other words, the similarity of
patterns changes as the normalization parameter (i.e.
object shape and location) changes. Therefore, the nor-
malization parameter can be derived from the change
of the pattern.

There are other approaches to deal with the pat-
tern, i.e. the appearance of the object parametri-
cally. For example, the method using parametric eigen-
spaces [9] is proposed. It uses the direction or the pose
of the object as the parameters for patterns. We use the
object contour shape as parameters instead of them.

4. Guide Patterns

There is always a search problem in energy minimiza-
tion. If the initial point is far from the correct one,
the energy minimization does not work correctly. To
overcome this problem, we introduce “guide patterns,”
which plays a role in navigating to the correct point.

Fig. 3 Examples of the pattern and the edge energy maps
(x and y are some of the parameters of X).
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Figure 4 shows examples of the guide patterns along the
path from the initial position to the correct position in
2-dimensional space. The guide pattern P (Xc+dX) is
a set of pattern images that are normalized by slightly
shifted shape (X = Xc + dX)).

Figure 5 shows examples of pupil image patterns
when the shape of a pupil is described as a circle. The
guide pattern can suggest the most likely direction in
energy minimization procedure, because the shift pa-
rameters are known in advance. The direction is the
opposite of the shift parameter used in normalization.
If Sim(X,Xc + dX), which is the similarity between a
pattern at X and a pattern at Xc+dX, is greater than
Sim(X,Xc), one can guess that X is near Xc + dX.
Therefore, to get close to the correct point Xc, it has
to be translated in −dX direction.

This idea is similar to the parametric eigenspace
method for navigating a robot to the target position.

Fig. 4 Guide patterns along the path to the correct position
in 2-D. (Guide patterns are described as boxes with arrows.)

Fig. 5 Examples of the images normalized with shifted
parameters.

Maeda et al. [10] adopted the strategy of estimating the
current position of the robot by learning the images
along the path to the target.

5. Pupil Contour Detection by the Proposed
Method

5.1 Elliptical Shape Model and the Definition of En-
ergy

In this section we describe the pupil contour detection
method based on the energy minimization. The contour
of a pupil is approximated by an ellipse model. For the
generalized feature vector,X, we use five ellipse param-
eters that are the location of the center point, (x, y),
major and minor axes, a and b, and the rotational an-
gle, θ.

X = (x, y, a, b, θ) (2)

To calculate the similarity for pattern energy
Ep(X), we use the subspace method [12]. The subspace
method, which can absorb pattern deformation, is more
robust than the simple correlation method. Therefore,
it can be used for pupils that change their appearances
depending on the individual or lighting conditions. The
correct pattern subspace is made from the images nor-
malized by correct ellipse parameters. The elliptical
shape is normalized to be a circular shape (Fig. 2). The
feature vector used for the subspace method is created
by raster scan of the normalized image. When the nor-
malized image is n×n, the feature vector has n×n di-
mensions. In subspace method, the feature vector can
be expressed as linear subspaces spanned by multiple
eigenvectors. The bases of the subspace are calculated
by principle component analysis. Figure 6 illustrates
the subspace method. The similarity is defined by the
angle between the subspace D and the input vector g.
The squared cosine of the angle is defined as

cos2 θ =
1

||g||
N∑

n=1

(g, φn)2 (3)

where φn is the bases of D and N is the dimension of
the subspace.

For the edge energy Ee(X), we use separability [5].
Separability is based on linear discriminant analysis†.
It represents the degree of difference between two re-
gions and is used to detect edges or contours. Separa-
bility is defined by η in Eq. (4).

η =
σb

2

σT
2

(4)

σb
2 = n1(P1 − Pm)

2
+ n2(P2 − Pm)

2

†Linear discriminant analysis is used for various appli-
cations. The threshold selection method known as Otsu’s
method [11] is the example.
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Fig. 6 Subspace method. (The similarity is defined by the
angle θ between the subspace D and the input vector g.)

Fig. 7 Separability filters.

Fig. 8 Framework of the proposed pupil contour detection
method.

σT
2 =

N∑

i=1

(Pi − Pm)
2

where Pi is an image intensity at pixel i, P1, P2, Pm

are the mean values of the image intensity in region 1,
2, 1+2, and n1, n2, N are the numbers of pixels in each
region. Figure 7 (a) shows an example of the circular
separability filter [5]. We use an ellipse separability fil-
ter to calculate the edge intensity. Figure 7 (b) shows
an example of the ellipse separability filter. The shape
of the filter represents an elliptical model.

The framework of the proposed method is shown
in Fig. 8. The details of each step are as follows.

5.2 Detection of Initial Location and Size

The facial parts detection method proposed in [5] is

Fig. 9 Examples of the feature point candidates.

used to detect the initial location and the size of the
pupils as a circle.

First, the face region is detected in an input im-
age. We use a face detection method based on pattern
matching using the subspace method [12].

And then candidate feature points are detected by
separability filters with circular shape (Fig. 7 (a)). For
each pixel in the detected face region, the separability is
calculated while changing the position and radius of the
filter. The feature point candidates are selected among
the local maximum peaks of separability value. Fig-
ure 9 shows the examples of the detected feature point
candidates. Finally the candidate points are verified by
pattern matching [5].

5.3 Search with Guide Pattern Subspaces

In order to avoid detecting wrong contours and to re-
duce processing time, we use “guide pattern search,”
which is carried out according to the following proce-
dure.

“Guide pattern subspaces” are used instead of
simple guide patterns. The guide pattern subspaces
are generated from the images normalized by slightly
shifted known parameters that describe an elliptical
shape.

First, the similarity is calculated with the cor-
rect pattern subspace and the guide pattern subspaces
which are created in advance. The correct pattern sub-
space is made from the images normalized by correct
parameters. The guide pattern subspaces, on the other
hand, are made from the images normalized by the pa-
rameters at a known distance from the correct one. We
use two guide pattern subspaces for each ellipse param-
eter (Fig. 5). For instance, +dx and −dx are created
for the parameter x.

The position is translated in the opposite direction
to that of the shift parameter that has the maximum
similarity. The search is continued until the similarity
with the correct pattern subspace becomes greater than
that with any guide pattern subspace.

For example, if the similarity between an input
image and the subspace cropped at the location of +dx
from the correct location is the largest among the guide
subspaces, one can guess that the input image is close to
+dx from the correct location. Therefore, the position
has to be translated in −dx direction.
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5.4 Minimizing the Energy and Detecting the Pupil
Contours

Pupil contours are detected by minimizing the total en-
ergy which consists of pattern energy and edge energy
(Eq. (1)). The weighting coefficients α and β are dis-
cussed in Sect. 6.3. The pattern energy Ep(X) and the
edge energy Ee(X) are described in Eqs. (5) and (6).

Ee(X) = −Sep(X) (5)
Ep(X) = −Sim(X,Xc) (6)

Sep(X) is the separability value at X, which was de-
scribed as η in Eq. (4). Sim(X,Xc) is the similarity
between an input pattern and the correct pattern sub-
space. Negative signs are added in order to incorporate
them into the energy minimization scheme.

The position is moved step by step to the loca-
tion that has less energy from the initial position. This
process is continued until the current position has the
minimum energy in the neighboring area.

6. Experimental Result

We show the experimental result obtained by the above-
mentioned method. Figure 10 shows examples of cor-
rectly detected pupil contours. The proposed method
was applied to real face images. Evaluation was per-
formed for six people. We used 20 images for each per-
son. Both left and right pupil images are used for the
evaluation. The correct pupil contours used for evalua-
tion were extracted manually. We have used 1600 sam-
ple images of eight people to generate both the correct
pattern subspace and the guide pattern subspaces. The
data of the test people are not contained in the above
sample images. 225 dimensions for the normalized im-
age size of 15 × 15 pixels are used in the experiment.
The method of normalization is described in Sect. 3.
Figure 5 shows the examples of the normalized images.

Fig. 10 Examples of detected pupil contours.

The results show that almost all pupil contours were
detected correctly.

The experimental system consists of a personal
computer (Intel Pentium III 933MHz), a video camera
and an image capture board (Matrox Meteor-II). The
process works in approximately real time from captur-
ing to displaying the result for one person in an image
of 640× 480 size.

The estimation of contour accuracy was performed
based on the difference of the area inside the detected
contour from that of the correct contour. The differ-
ence of area includes both inner and outer region of
the correct contour. The area difference is normalized
by the area in the correct contour in order to be in-
variant to changes in the pupil size. Figure 12 shows
the definition of “normalized area difference (NAD).”
This value is appropriate in the present case, because
it includes not only the information on the difference in
location but also on that in shape. For example, when
the shape of the object is circle, if the detected contour
has the same size and shape, and only the center point
differs by half the radius, the normalized area difference
is about 63%. If the threshold t for NAD is decided by
applications, whether the detection is successful or not
is able to be decided. For example, when the threshold
t for NAD is 30%, which corresponds to about 25% of
the radius in location of the center point, the detection
rate in this experiment is about 98%.

Figure 11 shows the examples of incorrectly de-
tected pupil contours. Some causes of failure are con-
sidered. One is that an initial parameter is far from a
correct one. Other causes are the influence of the face
direction and strong edge of eyelashes.

In Sect. 6.1, a comparison with the previous
method is presented. Then we discuss the features
of the proposed method in more detail. Dependency

Fig. 11 Examples of incorrectly detected pupil contours.

Fig. 12 Definition of normalized area difference (NAD).
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on initial parameters (Sect. 6.2), the weighting coeffi-
cients (Sect. 6.3), and the effect of guide pattern search
(Sect. 6.4) are considered.

6.1 Comparison with the Previous Method

The experimental results compared with the results of
the previous method reported in [5] are presented.

The estimation using the mean value of the nor-
malized area difference for six people as mentioned
above is shown in Fig. 13. The error of detected con-
tours is much smaller than that in the case of the previ-
ous method. The errors are almost half of those in the
case of the previous method. The error of center point
is also used for evaluation. In this case the normaliza-
tion is carried out using the radius that has the same
area with the correct contour of elliptical shape. The
evaluation by the normalized errors of center points is
also shown in Fig. 14. This graph also shows that the
proposed method is more effective than the previous
method.

Fig. 13 Estimated normalized area differences from correct
contour.

Fig. 14 Estimated normalized errors of center points from
correct contour.

6.2 Dependency on Initial Parameters

The evaluation is performed using only the mean val-
ues of six people in Sect. 6.2 to 6.4. Figure 15 shows the
initial parameter dependency evaluated by normalized
area differences. To evaluate initial parameter depen-
dency, we set initial parameters artificially instead of
using the process described in Sect. 5.2. For Fig. 15 (a),
(b) and (c) the initial parameters are set at dx, dy
and dr from the parameters of the correct contour, re-

Fig. 15 Initial parameter dependency evaluated by normalized
area differences. Initial parameters for (a), (b) and (c) are dx, dy
and dr from correct parameters, respectively.
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spectively, where x means the horizontal location, y is
the vertical one and r represents the size of the pupil.
These results show that the detection accuracy does
not largely depend on the initial radius, which repre-
sents the size of the pupil. For the horizontal direc-
tion represented by x, the allowed range of the initial
parameter is approximately within twice the pupil ra-
dius†. (In this experiment, the radius of the pupils is
about 10 pixels.) On the other hand, for the vertical
direction, as the initial position moves in the upper di-
rection, the error rapidly becomes large. This means
that the eyebrows are at the upper position near the
pupils. The eyebrows are similar to the pupils when
they are normalized to small images. Therefore if the
initial position is near the eyebrow, it sometimes falls in
the false local minimum of the energy. Such an initial
position, however, is not detected at the pre-processing
stage described in Sect. 5.2, because the eyebrows are
learned as error patterns corresponding to pupil pat-
terns [5].

6.3 Weighting Coefficients

The weighting coefficients α and β in Eq. (1) are de-
cided experimentally. Figure 16 is the graph of the nor-
malized area differences when the ratio of the weighting
coefficients α and β changes. The value is normalized as
the sum of α and β becomes 1. In this experiment, the
initial parameters are the same as those in Sect. 6.1.
The best performance occurs when α is around 0.5.
When α is 0, using the edge energy only, or 1, using
the pattern energy only, the performance deteriorates.
It shows the effectiveness of using both edge energy and
pattern energy. We have decided to use α = 0.5 and
β = 0.5 from this experiment.

6.4 Effect of Guide Patterns

We also describe the effect of introducing guide pat-
terns. Table 2 shows the mean computational cost,
which corresponds to the processing time in one step

Fig. 16 Weighting coefficient dependency (evaluated by
normalized area difference).

of the guide pattern search (Sect. 5.3). The process-
ing time in one step of the energy minimization (in
Sect. 5.4) is about 10 times as long as that of the guide
pattern search. The processing time for pattern match-
ing using subspace method is almost the same in regard
to guide pattern search and energy minimization when
the number of reference subspaces is the same. How-
ever, the processing time for making normalized images
differs, because energy minimization needs n+ 1 crop-
ping procedure for searching n-neighbors for each step
(we use 10-neighbors), whereas guide pattern search
needs only one cropping for each step.

In this experiment, the initial parameters are the
same as those in Sect. 6.1. This result shows that both
accuracy and efficiency have been improved by using
guide patterns.

The evaluation using various initial parameters is
also performed. Figure 17 shows the initial parameter
dependency of normalized area difference in horizontal
direction††. For this evaluation we use only horizontal
direction because the error in the initial position tends
to be in horizontal direction as shown in Fig. 9. The
computational cost is also shown in Fig. 18. These re-
sults show that both accuracy and efficiency have been
much more improved by using guide patterns when the
initial parameter is far from the correct one.

Table 2 Computational cost for with and without guide
pattern search.

With/without guide pattern search with without
Normalized area difference (%) 19.1 20.0
Mean number guide pattern search (s1) 1.26 0

of steps energy minimization (s2) 4.68 4.99
Computational cost (s1+s2×10) 48.0 49.9

Fig. 17 Initial parameter dependency(x) of normalized area
difference for with/without guide pattern search.

†Slight asymmetry on either side originates in the devi-
ation of the image data, such as lighting conditions and face
directions, used in the experiment.

††The initial parameter is artificially changed. So the
result is not equal to that in Table 2.
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Fig. 18 Initial parameter dependency(x) of computational cost
for with/without guide pattern search.

7. Conclusion

We have proposed a precise pupil detection method
based on minimizing the energy of pattern and edge.
An ellipse model is introduced for precise detection.
We have also proposed the guide pattern subspace that
helps to minimize the energy smoothly and stably. The
method has been verified through experimental results.

In future work we intend to apply this algorithm
to a large number of samples and to extend it to treat
other facial parts such as lip contours.
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