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Abstract. We propose a method to measure similarity of shape for 3D
objects using 3-dimensional shape subspaces produced by the factoriza-
tion method. We establish an index of shape similarity by measuring the
geometrical relation between two shape subspaces using canonical angles.
The proposed similarity measure is invariant to camera rotation and ob-
ject motion, since the shape subspace is invariant to these changes under
affine projection. However, to obtain a meaningful similarity measure,
we must solve the difficult problem that the shape subspace changes de-
pending on the ordering of the feature points used for the factorization.
To avoid this ambiguity, and to ensure that feature points are matched
between two objects, we introduce a method for sorting the order of fea-
ture points by comparing the orthogonal projection matrices of two shape
subspaces. The validity of the proposed method has been demonstrated
through evaluation experiments with synthetic feature points and actual
face images.

1 Introduction

In this paper, we propose a method to measure the similarity of 3D object
shapes based on the geometrical relation between shape subspaces produced by
the factorization method [1]. Using the proposed shape similarity measure, we
realize 3D object recognition that is invariant to camera rotation and object
motion.

The factorization method [1] is one of the most successful geometry-based
methods for recovering the 3D shape of an object. The factorization method
tracks the positions of multiple feature points through an image sequence and
constructs a measurement matrix W, which contains the 2D positions of the
tracked feature points. The measurement matrix W is then factored into the
product of a motion matrix U and a shape matrix V. The motion matrix rep-
resents the camera rotation and the shape matrix represents the 3D positions of
the object in a coordinate system attached to the object center.

The columns of the shape matrix span a 3-dimensional subspace, which is
called the shape subspace. Shape subspace is invariant, under affine projection,
to changes of coordinates caused by camera rotation and object motions [2, 3].
Therefore, the concept of shape subspace has been used in various tasks, such
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Fig. 1. Proposed framework of 3D object recognition based on canonical angles between
shape subspaces.

as motion segmentation [4–6] and sequential factorization [7]. This useful char-
acteristic of shape subspaces leads us the idea that a shape similarity that is
invariant to camera rotation and object motion can be established by measur-
ing the geometrical relation between two shape subspaces. The shape subspace
includes information about geometrical relations among multiple feature points.
Therefore, we can obtain an index of the structural similarity between two sets
of multiple feature points by measuring the canonical angles [8] between the two
shape subspaces.

The usefulness of canonical angles (also called principal angles) has recently
been established in applications in the field of computer vision, such as face
recognition [9], where the relation between two subspaces representing distribu-
tions of face patterns is determined. Canonical angles have also been used for
the motion segmentation of a non-ridge object [10], such as the human body. In
this application, canonical angles are used to find the dimension of the intersec-
tion of two motion spaces that are produced by the factorization method. The
dimension of the intersection indicates whether two parts are linked by a point
or an axis.

Figure 1 shows the proposed framework for 3D object recognition. First, the
feature points are tracked through image sequence for each object, and then the
shape subspaces of the two objects are derived from the sets of the tracked feature
points by the factorization method. Finally, the canonical angles between the
shape subspaces are found and used to construct a measure of shape similarity.
To obtain a robust measure of the similarity between shape subspaces, we have
to overcome the problem that shape subspaces change depending on the order
of the feature points used to construct a measurement matrix.

To do this, we use the concept of an orthogonal projection matrix, which
is uniquely determined from the orthogonal basis vectors of a shape subspace.
The core of our idea is to minimize the difference between the two orthogonal
projection matrices, which are generated from the feature points of two objects,
by rearranging the rows and the columns of one of them. The feature points are
taken to have been matched between two objects when the difference between
the two matrices is the smallest.
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Several methods have been proposed for matching feature points based on
shape subspaces. Wang and Xiao [11] applied QR factorization to the orthogonal
projection matrices, and then permuted the rows in matrix Q to produce a
correspondence between shape subspaces. Marques and Costeira [12] used linear
programming to compute a transformation matrix for minimizing the difference
between the orthogonal projection matrices. In this paper, we will compare the
performance of the QR-based method with that of the proposed method, since
both methods involve permuting a matrix.

The rest of the paper is organized as follows. Section 2 briefly describes
the characteristics of shape subspaces. In Section 3, we propose the method for
matching two sets of feature points and measuring shape similarity. In Section 4,
we demonstrate the validity of the proposed method through experiments with a
synthetic 3D object and images of real faces. Section 5 contains our conclusions.

2 Calculation procedure of shape subspace

In this section, we outline how a shape subspace is generated. There are two
calculation procedures: one is based on the factorization [1] of an image sequence,
and the other is based on the positions of multiple feature points on an object.

2.1 Factorization of an image sequence

The factorization method [1] can robustly recover the shape and motion of an
object from an image sequence without assuming a model of motion, such as
constant translation or rotation. An image sequence can be represented as a
2F × P measurement matrix W, with P points tracked through F frames as
follows:

W =


x11 . . . x1P

y11 . . . y1P
...

. . .
...

xF1 . . . xFP

yF1 . . . yFP

 , (1)

where xfp and yfp are the 2D coordinates of the pth point in frame f .
If image coordinates are given with respect to their centroids, the measure-

ment matrix W is factored into the product of three matrices:

W = UΣVT ≃ U′Σ′V′T , (2)

where U is a 2F × 2F orthogonal matrix and V is a P × P orthogonal matrix.
Σ is a 2F × P diagonal matrix with the singular values σi of W in descending
order. Here, the rank of matrix W is 3 due to the geometrical constraint, so
σ4, ..., σD = 0 (or are very small). Hence, W can be represented as the product
of a 2F × 3 matrix U′, a 3 × 3 diagonal matrix Σ′ and a 3 × P matrix V′T as
shown in Eq. (2).

The column vectors of the shape matrix V′ span the shape subspace. The
shape subspace is invariant under an affine transformation of the set of feature
points [4], such as that caused by camera rotation or object motion.
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2.2 Generation based on the coordinates of multiple points

If the 3D coordinates of all the multiple feature points of an object are known,
the shape subspace can be obtained directly without using the factorization
method.

The shape subspace corresponding to an object is spanned by the column
vectors of the P × 3 matrix S defined by

S = (r1 r2 . . . rP )
T
=

 x1 y1 z1
...

...
...

xP yP zP

 , (3)

where rp = (xp yp zp)
T for 1 ≤ p ≤ P denotes the positional vector of the

pth point on an object. These vectors satisfy the relation
∑P

p=1 rp = 0. In this
definition, the shape subspace is invariant to the selection of coordinates.

3 The proposed method

In this section, we first propose a method for matching feature points using an
orthogonal projection matrix. Then, we explain how to measure the geometrical
similarity between two shape subspaces using the canonical angles [8].

3.1 Matching feature points using orthogonal projection matrices

The shape subspace is the column space of V′ in Eq. (2) or of S in Eq. (3). If the
orders of feature points change, the shape subspace corresponding to them also
changes. Therefore, we need to match the feature points between two objects to
obtain shape similarity based on the geometric relation between shape subspaces.

The key property of the orthogonal projection matrix The proposed
method is based on the fact that an orthogonal projection matrix is uniquely
determined by its corresponding object.

Let Φ = (ϕ1 ϕ2 . . . ϕM ) be an orthonormal basis for the M -dimensional
subspace P. The orthogonal projection matrix P is then defined by

P =
M∑
i=1

ϕiϕi
T = ΦΦT . (4)

Two shape matrices VA and VB obtained from the same object are not
always equal, even if their feature points correspond to each other, because each
shape matrix is just one set of basis vectors of the shape subspaces. Therefore,
we cannot use the shape matrices to match the feature points. However, the two
orthogonal projection matrices calculated from VA and VB using Eq. (4) always
coincide:

Q = VAV
T
A = VBV

T
B . (5)
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Fig. 2. Example of swapping rows and columns of the orthogonal projection matrix by
swapping feature points. (P = 4)

Based on this property, we match of feature points by rearranging the rows
and columns of the orthogonal projection matrices corresponding to both ob-
jects, instead of handling the shape matrices.

Exchanging feature points Exchanging the order of two feature points on
an object is equivalent to permuting the rows and columns of the orthogonal
projection matrix. We will illustrate how to exchange the order of feature points
by considering the following simple case.

Suppose that four feature points are extracted from an object. Figures 2
(a) and (b) show the shape matrix V and the orthogonal projection matrix Q
calculated from V. If feature point 1 and feature point 2 are exchanged, then
the 1st row and the 2nd row are swapped in Q, and the 1st column and the 2nd
column are also exchanged at the same time, as shown in Fig. 2 (c). Note that
the sets of the elements of the 1st row of (b) and the 2nd row of (c) are the
same, although the orders of the elements are different. This rule is obeyed even
if the number of the feature points to be exchanged increases.

Based on this rule, we can compare the rows of the orthogonal projection
matrices by sorting the elements of the rows of each projection matrix in advance.
The problem of matching feature points then reduces to finding the pairs of row
vectors closest each other.

The matching algorithm The procedure is as follows:
INPUT: N×N Orthogonal projection matrices XA and XB generated from N
feature points of two objects A and B
OUTPUT: N × 2 Correspondence matrix C

1. Initialization: QA(0) = XA, QB(0) = XB

2. for t = 0 to N do

(a) Sort the unmasked elements of QA(t) and QB(t) within each row to
produce temporary matrices Q′

A(t) and Q′
B(t).
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Fig. 3. Example of the proposed matching process. In this example, these matrices are
not orthogonal projection matrices, although they are symmetric matrices. (a) shows
the input matrices QA(0) and QB(0). In (b), the matrices are sorted within each row to
produce temporary matrices Q′

A(0) and Q′
B(0). The 4th row of Q′

A(0) and the 1st row of
Q′

B(0) are matched, as their L1-norm is the smallest. In (c), the 4th row of QA(0) and
the 1st row of QB(0) are masked from the lists to be matched. Then, the 4th column
and the 1st column are paired. These matrices are defined as QA(1) and QB(1). In
(d), the non-corresponding elements of the rows of QA(1) and QB(1) are sorted. These
matrices are Q′

A(1) and Q′
B(1). Then, the 2nd row of Q′

A(1) and the 2nd row of Q′
B(1)

are matched.

(b) Find a pair of rows of Q′
A(t) and Q′

B(t) with the minimum L1-norm

distance. The distance function between the row vectors, ui of Q′
A(t)

and vj of Q′
B(t), is defined as follows:

d(ui,vj) =
∑N

k=1 |uik − vjk| (t = 0) ,

d(ui,vj) =
∑N−t

k=1 |uik − vjk|+
∑t

k=1 |x∗
ki − y∗kj | (t ≥ 1) .

The row numbers found in the searcing, rA and rB , are set to the tth
row vector ct of C, as ct = (rA, rB).

(c) Mask the rAth row and the rAth column x∗
(t+1) of QA(t), and the rBth

row and the rBth column y∗
(t+1) of QB(t), respectively. These masked

matrices are set to QA(t+1) and QB(t+1).
3. end for

Figure 3 shows a simple example of this matching procedure.

3.2 Similarity between shape subspaces

First, we introduce canonical angles; then, we define the similarity between shape
subspaces using them.

Consider an M -dimensional subspace SA and an N -dimensional subspace
SB, where M ≤ N . Given ui ∈ SA and vi ∈ SB , the canonical angles θi
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(θ1 ≤ θ2 ≤ . . . ≤ θM ) are uniquely defined by [8]

cos2 θi = sup
ui⊥uj , vi⊥vj

1≤i,j≤M, i̸=j

(ui · vi)
2

||ui||2||vi||2
, (6)

where (·) denotes the inner product and || · || denotes the norm of a vector.

Let QA and QB denote the orthogonal projection matrices of the subspaces
SA and SB. Then, cos

2θ for the canonical angle θ between SA and SB is equal to
the eigenvalue of QAQB or QBQA [8]. The largest eigenvalue corresponds to the
smallest canonical angle θ1, whereas the second largest eigenvalue corresponds
to the smallest angle θ2 in a direction perpendicular to that of θ1. The values of
cos2θi (i = 3, . . . ,M , and M ≤ N) are calculated similarly.

From these canonical angles, we define the shape similarity φ by

φ =
1

M

M∑
i=1

cos2θi. (7)

If two shape subspaces coincide completely with each other, φ is 1.0, since all
canonical angles are zero. The similarity φ gets smaller as the two spaces sepa-
rate. Finally, the similarity φ is zero when the two subspaces are orthogonal to
each other.

3.3 3D object recognition based on the proposed similarity measure

Figure 4 shows the proposed procedure, from inputting the image sequences of
two objects A and B to the output of the shape similarity index.

First, multiple feature points are tracked through an image sequence of ob-
ject A by a tracker, such as the Kanade-Lucas-Tomasi (KLT) feature tracker
[13]. Then, the measurement matrix WA is calculated from the positions of the
tracked feature points. Next, the measurement matrix WA is factored into the
product of the shape matrix VA and the motion matrix UA. A shape matrix VB

and a motion matrix UB are also obtained from the image sequence for object
B. The orthogonal projection matrices QA and QB are calculated from VA and
VB. Their rows and columns are rearranged to match feature points. Then, the
shape similarity φ can be calculated from the shape subspaces using Eq. (7).

4 Experimental results

In this section, we first use synthetic data to evaluate the accuracy of the pro-
posed algorithm for matching feature points, and then use images of real faces
to demonstrate the effectiveness of the proposed method for object recognition.
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Fig. 4. Flow of the object recognition process based on the proposed similarity measure.

4.1 Experiment I: Matching feature points using synthetic data

We evaluate the robustness of the proposed matching method using a synthetic 3-
dimensional data set. We prepared two sets of feature points for the evaluation
experiment. The first set is a set of P randomly generated points on an unit
sphere. The second set is the first set with added Gaussian noise of standard
deviation σ. Two shape matrices were generated from both the sets of feature
points using Eq. (3) in Sec. 2.2. We compared the proposed matching method
with the matching method based on QR factorization [11] described in Sec. 1.

Figure 5 shows an example of feature-point matching for P = 30 and σ = 0.1.
Figure 6 shows a comparison of the error rates of the two methods of matching
for various values of the parameters P and σ. For each of the parameters, 200
independent experiments were run. The proposed method consistently shows a
lower error rate than the QR based method [11]. When σ = 0.1 and P = 30,
the error rate is about 20% (see Fig. 6 (a)). If P = 100 and σ = 0.0316, the
error rate with our method is about 5% (see Fig. 6 (b)). We conclude that the
proposed matching method has high accuracy and is robust even under high
noise conditions.

4.2 Experiment II: Face recognition

We now consider the application of the proposed method to face recognition.
The surface of a human face has many feature points, such as moles and freckles,
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Fig. 6. Performances of the proposed matching method: (a) error rate vs. level of noise
(P = 30) and (b) error rate vs. the number of feature points (σ = 0.0316).

which are distinct characteristics that can be used to identify individuals. The
effectiveness of using these feature points for face recognition has been shown
by Pierrard and Vetter [14]. We detected moles and freckles from facial images
using a circular separability filter [15], and used them as feature points.

The number of participants was 22. A participant sat on a chair about 1
meter away from a camera. We captured 300 frames for each participant, while
the head was moving. The image size was 1024× 768 pixels.

Figure 7 shows examples of the input image, detected face region and separa-
bility map. First, we detected the facial region [16] and the regions of pupils and
nostrils [15]; we then remove the latter regions from the facial region, because
they are common features of all subjects. Next, we applied a circular separability
filter to obtain a separability map. Finally, we detected and tracked 26 feature
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(a) (b) (c)

Fig. 7. Pre-processing for generating the shape subspace: (a) input image, (b) detected
face, pupils and nostrils, (c) separability map.

Fig. 8. Examples of detected and tracked feature points (P = 26).

points from the 300 separability maps by applying the KLT feature tracker [13].
Figure 8 shows examples of the tracked feature points.

The 300 frames were divided into sets of 30 frames for each of the 22 sub-
jects so that we obtained 220 datasets. A shape subspace was generated from
each dataset by the factorization method. We compared the proposed match-
ing method and the conventional matching method using QR factorization in
terms of classification performance. The input subspace generated from a set of
input image sequences was classified using the Nearest Neighbor algorithm. The
classification rate was estimated by the Leave-One-Out method.

Figure 9 shows an example of the feature points matched. Figure 10 shows
the similarity maps among the sets of sequential images by the proposed method.
Figure 10 (a) shows the result by the proposed matching method and (b) shows
that by the conventional method. Table 1 lists the recognition rates and Equal
Error Rate (EER), which is defined as the crossing point of the False Acceptance
Rate and False Rejection Rate curves. The value of ERR should be as low as
possible to achieve high performance face recognition.

From Table 1 we can see that the proposed matching method is superior
to the conventional, QR-based method. The recognition rate of the proposed
method was 99.5% with 22 subjects whereas the recognition rate using the QR-
based method was 94.1%. The large difference between the performances of the
two methods seems to derive from the degree of robustness of feature extraction
against ambiguity resulting from added noise and occlusions. Moreover, the EER
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Fig. 9. An example of feature points matched between two image sequences.
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Fig. 10. Similarity maps based on the canonical angles for face recognition with 22
subjects: (a) using the proposed matching method and (b) using the conventional
method based on QR factorization [11].

of the proposed method is very low: it is only 2.60%, compared to 17.3% for the
QR-based method. These results clearly support the validity of our framework
for 3D object recognition based on the canonical angles between shape subspaces.

5 Conclusions

In this paper, we have proposed a method for measuring the similarity between
3D object shapes, which is invariant to camera rotation and object motion. The
proposed measure of shape similarity is based on the shape subspaces produced
by the factorization method. The shape subspace produced depends on the order

Table 1. Comparison between the proposed method and the conventional method for
face recognition.

Matching method Recognition rate EER

Proposed 99.5%(219/220) 2.60%

QR-based [11] 94.1%(207/220) 17.30%
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of the feature points considered. To avoid this ambiguity, we have proposed a
method of matching the feature points of two objects by rearranging the rows
and columns of their orthogonal projection matrices.

We have confirmed through an evaluation experiment using synthetic data
that the proposed matching method can match the feature points of two objects.
Our method is more robust to noise than the conventional method based on QR
factorization. We have also demonstrated that a framework based on the com-
bination of shape similarity and our matching method is effective for classifying
facial images.
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