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Abstract. This paper proposes the kernel orthogonal mutual subspace
method (KOMSM) for 3D object recognition. KOMSM is a kernel-based
method for classifying sets of patterns such as video frames or multi-view
images. It classifies objects based on the canonical angles between the
nonlinear subspaces, which are generated from the image patterns of each
object class by kernel PCA. This methodology has been introduced in the
kernel mutual subspace method (KMSM). However, KOMSM is different
from KMSM in that nonlinear class subspaces are orthogonalized based
on the framework proposed by Fukunaga and Koontz before calculating
the canonical angles. This orthogonalization provides a powerful feature
extraction method for improving the performance of KMSM. The validity
of KOMSM is demonstrated through experiments using face images and
images from a public database.

1 Introduction

This paper introduces the kernel orthogonal mutual subspace method (KOMSM)
for 3D object recognition. KOMSM is an appearance-based method for classify-
ing a set of patterns such as a video frames or images obtained from a multi-
camera system. As the set of such patterns generally has highly nonlinear struc-
ture, we have to tackle a nonlinear classification problem of multiple sets of
patterns. The kernel mutual subspace method (KMSM) is one suitable method
for this task. KMSM is a nonlinear extension of the mutual subspace method
(MSM)[3] by using the kernel trick. MSM classifies sets of patterns based on
the canonical angles θ between linear class subspaces, which represent the dis-
tribution of the training set of each class respectively as shown in Fig.1. In this
method an w×h image pattern is represented as a vector in w×h-dimensional
space (called input space I). Although MSM has the ability to handle the vari-
ability of patterns to achieve higher performance compared to other methods[1],
its performance drops significantly when the pattern distributions have highly
nonlinear structure. In such cases class distributions cannot be represented by
a linear subspace without overlapping each other. The kernel mutual subspace
method (KMSM)[4, 5] has been proposed in order to solve this problem. In this
method an input pattern x is mapped into a high (in some cases infinite) dimen-
sional feature space F via a nonlinear map φ. Consequently, KMSM carries out
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Fig. 1. Similarity between two distributions of view patterns.

the MSM on the linear subspaces 3generated from the mapped patterns {φ(x)}
using the Karhunen-Loève (KL) expansion, also known as principal component
analysis (PCA).

KMSM works well since each subspace can be generated without overlapping
with another subspace in the feature space F . However its classification perfor-
mance is still insufficient for many applications in practice, because the nonlinear
class subspaces are generated independently of each other [1]. There is no rea-
son to assume a priori that it is the optimal nonlinear class subspace in terms
of classification performance, while each nonlinear class subspace represents the
distribution of the training patterns well in terms of a least-mean-square ap-
proximation. This suggests that there is room for improving the performance of
KMSM.

In order to improve the performance of KMSM the kernel constrained mu-
tual subspace method (KCMSM)[11] has been proposed. In this method, each
nonlinear class subspace is projected onto a discrimination space called the con-
straint subspace. This projection extracts a common subspace of all the nonlinear
class subspaces from each nonlinear class subspace, so that the canonical angles
between nonlinear class subspaces are enlarged to approach orthogonal rela-
tion. KCMSM could significantly improve the performance of KMSM in many
applications, such as face recognition and 3D object recognition[11]. This im-
plies that the concept of orthogonalization is essential for improving the per-
formance of KMSM. Therefore, in this paper we apply the framework proposed
by Fukunaga and Koontz[2], which achieves perfect orthogonalization, while the
orthogonalization achieved in KCMSM is only approximate. We orthogonalize
the nonlinear class subspaces using this framework and then apply KMSM to
the orthogonalized nonlinear class subspaces. Fukunaga and Koontz’s method
has been applied to related linear subspace methods including MSM, improving
their performance [1, 7–9].

In Fukunaga and Koontz’s method orthogonalization is achieved by apply-
ing a whitening transformation matrix to the training patterns or orthogonal
basis vectors of each class subspace. Thus, the main task we need to solve is

3 Note that a linear subspace in the feature space F is an nonlinear subspace in the
input space I.



to construct the whitening transformation matrix for orthogonalizing the linear
subspaces in the feature space F .

This paper is organized as follows. Section 2 describes the calculation of the
canonical angles. In Section 3, we compute the whitening transformation. In
Section 4, we define the kernel whitening transformation and orthogonalize non-
linear class subspaces. Then we construct the KOMSM by applying the KMSM
to the orthogonalized nonlinear class subspaces. Section 5 demonstrates the ef-
fectiveness of KOMSM through experiments. We conclude in section 6.

2 Canonical angles between subspaces

Given an mp-dimensional linear input subspace P and an mq-dimensional linear
reference subspace Q in the n-dimensional feature space, the canonical angles
{0 ≤ θ1, . . . , θnp ≤ π

2 } between P and Q (for convenience mp ≤ mq) are uniquely
defined as [12]:

cos(θk) = max
u∈P

max
v∈Q

u>v (1)

subject to :
u>i ui = v>i vi = 1; ui

>uj = 0;vi
>vj = 0; i 6= j, i = 1∼mp, i = j∼mq,

Let Φi and Ψi denote the i -th n-dimensional orthonormal basis vectors of the
subspaces P and Q, respectively. These orthogonal basis vectors can be obtained
as the eigenvectors of the correlation matrix

∑l
i=1 xix>i calculated from the l

learning patterns {x} of each class.
A practical method of finding the canonical angles is by computing the matrix

X=A>B, where A = [Φ1, . . . ,Φmp ] and B=[Ψ1, . . . ,Ψmq ]. Let {κ1, . . . , κmp}
be the singular values of the matrix X. The canonical angles between the two
subspaces can be obtained as {cos−1(κ1), . . . , cos−1(κmp)}. In practice, we con-
sider the value of the mean of the canonical angles, S[t] = 1

t

∑t
i=1 cos2 θi, as the

similarity between two subspaces. The value S reflects the structural similarity
between two subspaces.

3 Orthogonalization by the whitening transformation

In this section, we will describe how to calculate the whitening matrix O for
orthogonalizing r m-dimensional linear class subspaces with the orthogonal basis
vectors ei(i = 1∼m) in the n-dimensional input space I.

At first, we define the projection matrix corresponding to the projection onto
the class i subspace Pi by Pi=

∑m
j=1 eje>j where ej is the j-th orthogonal basis

vector of Pj . Then we define the total projection matrix G=
∑r

i=1 Pi.
Using the eigenvectors and the eigenvalues of the total projection matrix G,

the v×n whitening matrix O is defined by the following equation:

O = Λ−1/2H> , (2)
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Fig. 2. Concept of orthogonalization of subspaces by the whitening transformation.

where v = r×m, (v = n, if v > n), Λ is the v×v diagonal matrix with
the i-th highest eigenvalue of the matrix G as the i-th diagonal component,
and H is the n×v matrix whose i-th column vector is the eigenvector of the
matrix G corresponding to the i-th highest eigenvalue. We can confirm that the
matrix O can whiten the matrix G so that r class subspaces are orthogonalized
as proved in [8]. Fig.2 shows the concept of orthogonalization by the whitening
transformation. We can see that the orthogonalization is achieved by whitening,
i.e. homogenizing the variances in all directions:

All transformed basis vectors are orthogonal to each other when the multiple
of the number r of classes and the dimension m of each class is smaller than
the dimension f of the input space[8]. On the other hand, since the transformed
basis vectors of an input subspace are no longer orthogonal, all transformed basis
vectors need to be orthogonalized again by Gram-Schmidt orthogonalization.

4 The proposed method

In this section, we will first describe the concept of nonlinear subspaces, and
then construct the kernel whitening matrix in the feature space F .

4.1 Nonlinear subspace by kernel PCA

The nonlinear function φ maps the patterns x = (x1, . . . , xn)> of an n-dimensional
input space I onto an f -dimensional feature space F : φ : <n → <f , x → φ(x).
To perform PCA on the mapped patterns, we need to calculate the inner product
(φ(x) · φ(y)) between the function values. However, this calculation is difficult,
because the dimension f of the feature space F can be very high, possibly infi-
nite. However, if the nonlinear map φ is defined through a kernel function k(x,y)



which satisfies Mercer’s conditions, the inner products (φ(x) · φ(y)) can be cal-
culated from the inner products (x · y). This technique is known as the “kernel
trick”.

A common choice is to use an exponential function: k(x,y)=exp
(
− ||x−y||2

σ2

)
.

The function φ with this kernel function maps an input pattern onto an infinite
feature space F . The PCA of the mapped patterns is called kernel PCA[10].
Note that the linear subspace in the feature space F is a nonlinear subspace in
the input space I.

4.2 Kernel whitening transformation

In the following, we will explain how to generate the kernel whitening matrix Oφ

from all the basis vectors of r d-dimensional nonlinear class subspaces Vk(k =
1 ∼ r), that is, r×d basis vectors. This calculation corresponds to the kernel
PCA for the basis vectors of all the classes.

Assume that a class k nonlinear subspace Vk is generated from l learning
patterns xk

i (i = 1 ∼ l). The d basis vectors ek
i (i = 1∼d), which expand the

subspace Vk, are defined by the following equation:

ek
i =

l∑

j=1

ak
ijφ(xk

j ) , (3)

where the coefficient ak
ij is the j-th component of the eigenvector ai correspond-

ing to the i-th largest eigenvalue λi of the m×m kernel matrix K defined by
kij=(φ(xk

i ), φ(xk
j )). ai is normalized to satisfy λi(ai · ai)=1.

Next, assume that E is the matrix where all basis vectors are arranged as
the column component:

E = [e1
1, . . . , e

1
d, . . . , e

r
1, . . . , e

r
d] . (4)

Then, we solve the eigenvalue problem of the matrix Q defined by the fol-
lowing equation:

Qb = βb (5)
Qij = (Ei ·Ej), (i, j = 1∼r×d) ,

where Ei means the i-th column component of the matrix E. In the above
equation, the inner product between i-th basis vector ek

i of class k and j-th
basis vector ek∗

j of class k∗ can be actually calculated as the linear combination
of a kernel function value k(xk,xk∗) of xk and xk∗ .

(ek
i · ek∗

j ) = (
l∑

s=1

ak
isφ(xk

s) ·
l∑

t=1

ak∗
jt φ(xk∗

t )) (6)

=
l∑

s=1

l∑
t=1

ak
isa

k∗
jt (φ(xk

s) · φ(xk∗
t )) (7)

=
l∑

s=1

l∑
t=1

ak
isa

k∗
jt k(xk

s ,xk∗
t ) . (8)



The i-th row vector Oφi
of the kernel whitening matrix Oφ can be represented

as the linear combination of the basis vectors Ej (j = 1 ∼ r×d) using the
eigenvector bi corresponding to the eigenvalue βi as the combination coefficient.

Oφi
=

r×d∑

j=1

bij√
βi

Ej , (9)

where the vector bi is normalized to satisfy that βi(bi · bi) is equal to 1. The
row vectors of Oφ with eigenvalues β lower than a threshold value are discarded,
since their reliability is low. Moreover, assume that E[j] is the η(j)-th basis
vector of the class ζ(j). Then the above equation can be changed as follows:

Oφi
=

r×d∑

j=1

bij√
βi

l∑
s=1

aζ(j)
η(j)sφ(xζ(j)

s ) (10)

=
r×d∑

j=1

l∑
s=1

bij√
βi

a
ζ(j)
η(j)sφ(xζ(j)

s ) . (11)

Although we cannot calculate this vector Oφi , the inner product with the mapped
vector φ(x) can be calculated.

4.3 Whitening transformation of the mapped patterns

The mapped vector φ(x) is transformed by the kernel whitening matrix. This
can be calculated from an input vector x and all r×l learning vectors xk

s(s =
1∼l, k = 1∼r) using the following equation:

(φ(x) ·Oφi)=
r×d∑

j=1

l∑
s=1

bij√
βi

aζ(j)
η(j)s(φ(x) · φ(xζ(j)

s )) (12)

=
r×d∑

j=1

l∑
s=1

bij√
βi

aζ(j)
η(j)sk(x,xζ(j)

s ) . (13)

Finally, the whitening transformed vector χ(φ(x)) of the mapped vector φ(x)
is represented as (z1, z2, . . . , zno)

>, zi = (φ(x) ·Oφi), 1≤i≤no≤r×d, where
no is the row number of Oφ mentioned above.

4.4 The KOMSM Algorithm

We construct the KOMSM by applying the linear MSM to the linear subspaces
generated from the whitening transformed vector χ(φ(x)) in the feature space
F as follows.

In the learning stage:

1. The nonlinear mapped φ(xk
i ) of all the patterns xk

i (i = 1 ∼ l) belonging to
class k are transformed by the kernel whitening matrix Oφ.



2. The basis vectors of the n-dimensional linear orthogonal reference k sub-
space POφ

k are obtained as the eigenvectors of the correlation matrix gener-
ated from the whitening transformed pattern set {χ(φ(xk

1)), . . . , χ(φ(xk
l ))},

corresponding to the n highest values.
3. Similarly the other linear reference orthogonal subspaces are generated on

the nonlinear feature space F .

In the recognition stage:

1. The linear input orthogonal subspace POφ

in is also generated from the whiten-
ing transformed pattern set {χ(φ(xin

1 )), . . . , χ(φ(xin
l ))}.

2. The canonical angles between the linear orthogonal input subspace POφ

in

and the linear orthogonal reference subspaces POφ

k are calculated as the
similarity.

3. Finally the object class is determined as the linear orthogonal reference sub-
space with the highest similarity S, given that S is above a threshold value.

In the above process, it is possible to replace the generation process of the
nonlinear orthogonal subspaces with the following processes. Firstly the input
subspace and the reference subspaces are generated from the set of the nonlinear
mapped patterns. Next the basis vectors of the generated subspaces are trans-
formed by the kernel whitening matrix, and then the whitening transformed
basis vectors are orthogonalized by the Gram-Schmidt method.

5 Evaluation experiments

We compared the performances of KOMSM with previous methods (MSM[3],
CMSM[6], OMSM[8], KMSM[4], KCMSM[11]) using the public data base of
multi-view images (Cropped-close128 of ETH-80)[13] and the data set of front
face images collected by ourselves.

5.1 3D object recognition (Experiment-I)

Thirty similar models were selected as the evaluation data from the ETH-80
database as shown in Fig.3. The images of each model were captured from 41
views as shown in Fig.3. All images are cropped, so that they contain only the
object without any border area.

The odd numbered images (21 frames) and the even numbered images (20
frames) were used for training and evaluation, respectively. We prepared 10
datasets for each model by making the start frame number i changes from 1 to
10 where 10 frames from i-th frame to i + 9-th is one set. The total number
of the evaluation trials is 9000(=10×30×30). The evaluation was performed in
terms of the recognition rate and the equal error rate (EER), which represents
the error rate at the point where the false accept rate (FAR) is equal to the false
reject rate (FRR).



Fig. 3. Left: Evaluation data, Bottom: cow, Middle: dog, Bottom: horse. This figure
shows five of ten models. Right: All view-patterns of dog1, the rows indicated by arrows
are used as training data.

Table 1. Recognition rate and EER of each method (%) (Experiment-I).

Method MSM CMSM-200 OMSM-100 KMSM KCMSM-400 KOMSM-550

Rate 78.6 92.33 89.6 96.33 99.67 99.67

EER 16.6 4.7 7.7 5.2 1.0 1.0

The experimental conditions are as follows. We converted the 180×180 pixel
color images to 15×15 pixels monochrome images and use them as the evaluation
data. Thus, the dimension n of a pattern is 225(=15×15). The dimensions of the
input subspace and the reference subspaces were set to 7 for all methods. The
whitening matrix O and the kernel whitening matrix Oφ were generated from
thirty 20-dimensional linear class subspaces and thirty 20-dimensional nonlinear
class subspaces respectively. The row numbers of O and Oφ were set to 100 and
550, respectively, on the basis of the eigenvalues β in Eq.(6). The dimensions
of constraint subspaces of the CMSM and KCMSM were set to 200 and 400,
respectively, as used in [11]. The length of input vectors was not normalized for
all the methods. A Gaussian kernel with σ2 = 1e + 6 was used for all the kernel
methods.

Table 1 shows the recognition rate and EER of each method. The recognition
of multiple view images is typically a nonlinear problem. This is clearly shown by
the experimental results that the performance of the nonlinear methods (KMSM,
KCMSM and KOMSM) is superior to that of the linear methods (MSM, CMSM
and OMSM). The performance of MSM was improved by the nonlinear extension
of MSM to KMSM where the recognition rate increased from 78.6% to 96.3%
and the EER decreased from 16.6% to 5.2%. KOMSM further improved the
performance of KMSM where the recognition rate increased from 96.3% to 99.6%
and the EER decreased from 5.7% to 1.0%. This confirms the effectiveness of the



Fig. 4. Face images: From left, Lighting1∼Lighting10.

Table 2. Recognition rate and EER of each method (%)(Experiment-II)

Method MSM CMSM-200 OMSM KMSM KCMSM-1050 KOMSM

Recognition rate 91.74 91.30 97.09 91.15 97.40 97.42

EER 12.0 7.5 6.3 11.0 4.3 3.5

orthogonalization of the nonlinear subspaces, which serves as a feature extraction
step in the feature space F .
5.2 Recognition of face image (Experiment-II)

We conducted the evaluation experiment of all the methods using the face images
of 50 persons captured under 10 kinds of lighting. We cropped the 15 ×15 pixel
face images from the 320 × 240 pixel input images based on the positions of
pupils and nostrils.

The normalized face patterns of subjects 1-25 in lighting conditions L1-L10
were used for generating the difference subspace D, the kernel difference sub-
space Dφ, the whitening matrix O and the kernel whitening matrix Oφ. The
face patterns extracted from the images of the other subjects, 26-50, in lighting
conditions L1-L10 were used for evaluation. The number of the data of each
person is 150∼180 frames for each lighting condition. The data was divided into
15∼18 sub datasets by every 10 frames. The input subspaces were generated
from these sub datasets. The dimension of the input subspace and reference
subspaces were set to 7 for all the methods. The difference subspace D and the
whitening matrix O were generated from 25 60-dimensional linear subspaces of
1∼25 persons. The kernel difference subspace Dφ and the kernel whitening ma-
trix Oφ were generated from 25 60-dimensional nonlinear class subspaces. The
row numbers of of O and Oφ were set to the full dimensions, 225 and 1500, re-
spectively. The dimensions of the generalized difference subspace and the kernel
generalized difference subspace were set to 200 and 1050, respectively. We used
a Gaussian kernel with σ2 = 1.0 for all nonlinear methods.

Table 2 shows the recognition rate and the EER of each method. The dif-
ference between the recognition rates of OMSM and KOMSM was small, while
the EER decreased from 6.3% to 3.5%. This implies that the data sets used in
this task do not exhibit highly nonlinear structure. The good performance of
KOMSM and KCMSM are also demonstrated in this experiment. In particular
the EER of KOMSM is very low.

Although the performance of KOMSM and KCMSM are at the same level
regardless of their different principals of orthogonalization, KOMSM has an ad-
vantage in selecting parameters compared to KCMSM. KOMSM does not have



any parameters to be tuned. In contrast, the dimension of the constraint sub-
space used in KCMSM needs to be carefully selected in prior experiments, since
the performance of KCMSM strongly depends on this value.

6 Conclusion

In this paper we have introduced the kernel orthogonal mutual subspace method
(KOMSM) and applied it to 3D object recognition. The essence of the KOMSM
is to orthogonalize nonlinear subspaces based on Fukunaga and Koontz’s frame-
work before applying the KMSM. We have confirmed that this orthogonalization
provides a strong feature extraction method for the KMSM and that the per-
formance of the KMSM is improved significantly. This was shown by evaluation
on multi-view image sets of 3D objects as well as frontal face images. In feature
work, we will attempt to find the efficient computation of the eigen problems of
the matrixes K and Q with the sizes which are proportional to the numbers of
the classes and the training patterns.
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