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Abstract. This paper introduces the kernel constrained mutual sub-
space method (KCMSM) and provides a new framework for 3D object
recognition by applying it to multiple view images. KCMSM is a kernel
method for classifying a set of patterns. An input pattern x is mapped
into the high-dimensional feature space F via a nonlinear function φ, and
the mapped pattern φ(x) is projected onto the kernel generalized differ-
ence subspace, which represents the difference among subspaces in the
feature space F . KCMSM classifies an input set based on the canonical
angles between the input subspace and a reference subspace. This sub-
space is generated from the mapped patterns on the kernel generalized
difference subspace, using principal component analysis. This framework
is similar to conventional kernel methods using canonical angles, however,
the method is different in that it includes a powerful feature extraction
step for the classification of the subspaces in the feature space F by
projecting the data onto the kernel generalized difference subspace. The
validity of our method is demonstrated by experiments in a 3D object
recognition task using multiview images.

1 Introduction

This paper introduces the kernel constrained mutual subspace Method (KCMSM),
which provides a new framework for view-based 3D object recognition.

Many view-based methods have been proposed to achieve high-performance
object recognition. Of these, the mutual subspace method (MSM)[2] with the
ability of handling multiple images, such as sequential images, and multiview
images, is one of the most suitable and efficient methods for object recognition.
Let an n×n pixel pattern be treated as a vector x in n2-dimensional space (called
input space I). In MSM, the set of patterns {x} of each class is represented
by a low-dimensional linear subspace using Karhunen-Loève (KL) expansion,
also known as principal component analysis (PCA). The classification of a set of
patterns is executed based on the canonical angles θi between subspaces as shown
in Fig.1, where smaller angles indicate higher similarity between two subspaces.

MSM works well when the distribution of each class can be represented by a
linear subspace with no overlap of the distributions. However, this representation
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Fig. 1. Measuring the similarity between two distributions of view patterns with canon-
ical angles θ1,2,...

is not suitable for representing highly nonlinear structures, such as those of
multiview patterns of a 3D object.

To overcome this problem, MSM has been extended to nonlinear kernel MSM
(KMSM)[4, 5] using the “kernel trick” [3]. An input pattern x is mapped onto
the very high dimensional (in some cases infinite) feature space F via a nonlin-
ear map φ. Then, MSM is applied to the linear subspaces generated from the
mapped patterns {φ(x)}, where the linear subspace in the feature space F is a
nonlinear subspace as seen from the input space I. The kernel MSM has better
performance compared to MSM, since the distribution of the mapped patterns
{φ(x)} can be represented by a subspace in the feature space F without overlap-
ping of distributions. However, in practice the classification performance KMSM
is still insufficient for many applications as is the case with other methods based
on PCA, because the subspaces are generated independently of each other [1].
Although each subspace represents the distribution of the training patterns well
in terms of a least mean square approximation, there is no reason to assume a
priori that it is the optimal subspace in terms of classification performance.

This issue is addressed by the constrained MSM (CMSM)[6]. CMSM performs
the MSM algorithm on the patterns after projecting them onto the generalized
difference subspace D (called difference subspace), wherein the differences among
subspaces are contained, as shown in Fig.2. CMSM has significantly higher clas-
sification performance compared to MSM since it selectively uses the canonical
angles θd calculated from discriminative features extracted by the projection[6,
7].

The idea in this paper is to incorporate the mechanism of this powerful fea-
ture extraction of the constrained MSM into the kernel MSM: We construct the
generalized difference subspace in the feature space F , and project the mapped
pattern φ(x) onto this subspace for kernel MSM. This projection τ can be re-
garded as an effective nonlinear feature extraction step for classification of the
subspaces, as seen from the input space I. We name the difference subspace in
the feature space the nonlinear kernel generalized difference subspace Dφ and
the KMSM with the projection the kernel CMSM (KCMSM). One question that
arises is how to calculate the projection onto the difference subspace. We show
that it is in fact possible to calculate the projection using the kernel trick, be-
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cause it consists of the inner products. Consequently, KCMSM carries out the
MSM algorithm on the extracted feature patterns {τ(φ(x))} by the projection.

In addition to the high classification performance, our method has also an
ability of handling multiple classes in a simple framework. This is indispensable
for many applications of object recognition, such as face recognition. On the
other hand, many other types of kernel methods do not have this ability. For
instance, the well-known support vector machine classifier is basically a two-
class classifier[10]. Thus, the classification process becomes more involved and
time-consuming in a multiple class problem.

This paper is organized as follows. In section 2, we review the CMSM algo-
rithm. In section 3, we introduce the kernel generalized difference subspace in
the feature space, and construct KCMSM. Our method is demonstrated by the
evaluation experiments in section 4. In Section 5, conclusions are presented.

2 Recognition based on CMSM

In this section, we first review the concepts of the canonical angle and the gen-
eralized difference subspace. Then, we explain the CMSM algorithm.

2.1 Calculation of canonical angles

A natural way for comparing two subspaces is by computing the canonical angles
between them [8]. We can obtain N canonical angles θi (for convenience N ≤ M)
between an M -dimensional input subspace P and an N -dimensional reference
subspace Q in the f -dimensional input space I. Let Φi and Ψi denote the i -th
f -dimensional orthonormal basis vectors of the subspaces P and Q, respectively.
The value cos2θi of the i-th smallest canonical angle θi (i = 1, . . . , N) is obtained
as the i-th largest eigenvalue λi of the following N×N matrix X[6, 8]:

Xc = λc , (1)

X = (xij), xij =
∑M

k=1(Ψi ·Φk)(Φk ·Ψj) .



2.2 Generation of the generalized difference subspace

The generalized difference subspace represents the difference among multiple
k(≥2) subspaces as an extension of the difference subspace defined as the differ-
ence between two subspaces.

Given k(≥2) N -dimensional subspaces, the generalized difference subspace
D is defined as the subspace which results by removing the principal component
subspace M of all subspaces from the sum subspace S of these subspaces as
shown in Fig.3. According to this definition, D is spanned by Nd eigenvectors
di(i = N×k − Nd, . . . , N×k) corresponding to the Nd smallest eigenvalues, of
the matrix G =

∑k
i=1 Pi of projection matrices Pi. where the projection matrix

Pi =
∑N

j=1 Φi
jΦ

i
j
>, Φi

j is the j-th orthonormal basis vector of the i-th class
subspace. The eigenvectors, di correspond to the i-th eigenvalue λi in descending
order.

The projection onto the generalized difference subspace D corresponds to re-
moving the principal (common ) component subspace M from the sum subspace
S. This projection has the effect of expanding the canonical angles between sub-
spaces and forms a relation between subspaces which is close to the orthogonal
relation, thus improving the performance of classification based on canonical
angles [6].

2.3 The CMSM Algorithm

The steps of the CMSM algorithm are as follows:

0. The reference subspace PD
k of each class k is generated from the training

patterns projected onto the generalized difference subspace D using PCA.
1. The input subspace PD

in is generated from the input test patterns projected
onto D using PCA.

2. The canonical angles θ between the PD
in and the PD

k of each class are cal-
culated using Eq.(1).

3. The similarity S[t] is calculated as the mean value 1
t

∑t
i=1 cos2θi. The ref-

erence subspace with the highest similarity is determined to be that of the
identified class, given the similarity is above a threshold.

Instead of steps 0 and 1, we can also obtain the canonical angles by the procedure
described in [6]. In this method, the input subspace and the reference subspaces
are first generated from the set of patterns, and then these generated subspaces
are projected onto D.

3 The Kernel Constrained Mutual Subspace Method

In this section, we first review kernel Principal Component Analysis (KPCA).
Next, we define the kernel generalized difference subspace using the technique
of the kernel PCA, and we describe the new KCMSM algorithm.



3.1 Kernel PCA

The nonlinear function φ maps the patterns x = (x1, . . . , xf )> of an f -dimensional
input space I onto an fφ-dimensional feature space F : φ : Rf → Rfφ , x → φ(x).
To perform PCA on the mapped patterns, we need to calculate the inner product
(φ(x) · φ(y)) between the function values. However, this calculation is difficult,
because the dimension of the feature space F can be very high, possibly infinite.
However, if the nonlinear map φ is defined through a kernel function k(x,y)
which satisfies Mercer’s conditions, the inner products (φ(x) · φ(y)) can be cal-
culated from the inner products (x · y). This technique is known as the “kernel
trick”. A common choice is to use the Gaussian kernel function[3]:

k(x,y) = exp
(
−||x− y||2

σ2

)
. (2)

The function φ maps an input pattern onto an infinite feature space F . The
PCA of the mapped patterns is called kernel PCA[3], and the linear subspace
generated by the kernel PCA are nonlinear subspaces in the input space I.

Given the N -dimensional nonlinear subspace Vk of class k generated from
m training patterns xi, (i = 1, . . . ,m), the N orthonormal basis vectors ek

i ,(i =
1, . . ., N), which span the nonlinear subspace Vk, can be represented by the linear
combination of the m φ(xk

i ),(i = 1, . . . , m) as follows

ek
i =

m∑

j=1

ak
ij φ(xk

j ), (3)

where the coefficient aij is the j-th component of the eigenvector ai correspond-
ing to the i-th largest eigenvalue λi of the m×m matrix K defined by the fol-
lowing equation:

Ka = λa (4)
kij = (φ(xi) · φ(xj))

= k(xi,xj),

where ai is normalized to satisfy λi(ai · ai)=1. We can compute the projection
of the mapped φ(x) onto the i-th orthonormal basis vector ek

i of the nonlinear
subspace of class k by the following equation:

(φ(x), ek
i ) =

m∑

j=1

ak
ij k(x,xj). (5)

3.2 Generation of the kernel difference subspace

It is possible to compute the projection of a mapped pattern φ(x) onto the ker-
nel generalized difference subspace Dφ using the kernel trick, since it consists of
the inner products in the feature space F . Let the Nφ

d -dimensional Dφ be gener-
ated from the r N -dimensional nonlinear subspace Vk, (k = 1, . . . , r). Firstly we



calculate the orthonormal bases of kernel generalized difference subspace from
all the orthonormal basis vectors of r nonlinear subspaces, namely, r×N basis
vectors. This calculation corresponds to the PCA of all basis vectors. Define E
to be a matrix, which contains all basis vectors as columns:

E = [e1
1, . . . , e

1
N , . . . , er

1, . . . , e
r
N ]. (6)

Secondly we solve the eigenvalue problem of the matrix D defined by the follow-
ing equation:

Db = βb (7)
Dij = (E[i] ·E[j]), (i, j = 1, . . ., r×N) , (8)

where E[i] represents the i-th column of the matrix E.
The inner product between the i-th orthonormal basis vector ek

i of the class k
subspace and the j-th orthonormal basis vector ek∗

j of the class k∗ subspace can
be obtained as the linear combination of kernel functions k(xk,xk∗) as follows:

(ek
i · ek∗

j ) = (
m∑

s=1

ak
isφ(xs) ·

m∑
t=1

ak∗
jt φ(x∗t )) (9)

=
m∑

s=1

m∑
t=1

ak
isa

k∗
jt (φ(xs) · φ(x∗t )) (10)

=
m∑

s=1

m∑
t=1

ak
isa

k∗
jt k(xs,x∗t ) (11)

The i-th orthonormal basis vector dφ
i of the kernel generalized difference sub-

space Dφ can be represented by a linear combination of the vectors E[j] (j =
1, . . . , r×N), dφ

i =
∑r×N

j=1 bijE[j], where the weighting coefficient bij is the j-th
component of the eigenvector bi corresponding to the i-th smallest eigenvalue
βi of matrix D under the condition that the vector bi is normalized to satisfy
that βi(bi · bi)=1.

Let E[j] denote the η(j)-th basic vector of class ζ(j). The above orthonormal
basis vector dφ

i is converted to the following equation:

r×N∑

j=1

bijE[j] =
r×N∑

j=1

bij

m∑
s=1

aζ(j)
η(j)sφ(xζ(j)

s ) (12)

=
r×N∑

j=1

m∑
s=1

bija
ζ(j)
η(j)sφ(xζ(j)

s ) . (13)

3.3 Projection onto the kernel difference subspace

Although it is impossible to calculate the orthonormal basis vector dφ
i of the

kernel generalized difference subspace Dφ, the projection of the mapped pattern
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φ(x) onto this vector dφ
i can be calculated from an input pattern x and all m×r

training patterns xk
s(s = 1, . . ., m, k = 1, . . ., r).

(φ(x) · dφ
i )=

r×N∑

j=1

m∑
s=1

bija
ζ(j)
η(j)s(φ(xζ(j)

s ) · φ(x)) (14)

=
r×N∑

j=1

m∑
s=1

bija
ζ(j)
η(j)sk(xζ(j)

s ,x) (15)

Note that we can compute k(xζ(j)
s ,x) through Eq.(2) easily. Finally, each com-

ponent of the projection τ(φ(x)) of the mapped φ(x) onto the Nφ
d (< r×N)-

dimensional kernel generalized difference subspace is represented as the follow-
ing: τ(φ(x)) = (z1, z2, . . . , zNφ

d
)>, zi = (φ(x) · dφ

i ).

3.4 The KCMSM Algorithm

We construct KCMSM by applying linear MSM to the projection τ(φ(x)). Fig.4
shows a schematic of the KCMSM algorithm.

In the training stage, the mapped patterns φ(xki) of the patterns xk
i , (i =

1, . . . , m) belonging to class k, are projected onto the kernel difference subspace
Dφ. Then, the Nφ-dimensional linear reference subspace PDφ

k of each class k is
generated from the mapped patterns τ(φ(xk

i )) using PCA.
In the recognition stage, we generate the linear input subspace PDφ

in on the
Dφ from the input patterns xi,(i = 1, . . . ,m). Then we compute the similarity S,
defined in Sec.2.3, between the input subspace PDφ

in and each reference subspace
PDφ

k . Finally the object class is determined as the reference subspace with the
highest similarity S, given that S is above a threshold value.
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Fig. 5. Data set: (a) Subset of the input images, Top: cows, Middle: dogs, Bottom:
horses. (b) All 41 view-patterns of a dog model: the columns indicated by the arrows
are used as the training data

4 Evaluation experiments

We compared KCMSM with MSM, CMSM, and KMSM using the public database
of the multi-view image set (ETH-80: Cropped-close128)[9].

Experimental conditions: We selected 30 similar models (10 of each; cows,
dogs, and horses) from the database as shown in Fig.5(a) and used them for the
evaluation. The images of each model were captured from 41 views as shown in
Fig.5(b). The view directions are the same for all models. All images are cropped,
so that they contain only the object without any border area.

The odd numbered images (21 frames) and the even numbered images (20
frames) were used for training and evaluation, respectively. We prepared 10
datasets for each model by making the start frame number i change from 1 to 10
where 10 frames from i-th frame to i + 9-th is one set. The total number of the
evaluation trials is 9000(=10×30×30). The evaluation was performed using mea-
sures for recognition rate and separability: a normalized index of classification
ability. Given two classes of similarities within a model category and similari-
ties across different model category, separability was calculated as a ratio of the
between-class scatter to the total scatter.

We converted the 180×180 pixels color images to 15×15 pixels monochrome
images and use them as the evaluation data. Thus, the dimension f of a pattern is
225(=15×15). The dimensions of the input subspace and the reference subspaces
were set to 7 in all methods.

PD
in and PD

k were generated from the patterns projected on the generalized
difference subspace. The difference subspace D was generated from thirty 20-
dimensional subspaces of all classes according to the procedure described in
Sec. 2.2. We varied the dimension Nd of D between 190 and 215 to compare
the performance. The kernel difference subspace Dφ was generated from thirty
20-dimensional subspaces of all classes according to the procedure described in



Table 1. Performance of each method

(a) Recognition rate (%)

t=1 t=2 t=3 t=4

MSM 72.7 73.7 76.3 74.3
CMSM-215 75.7 81.3 76.3 73.7
CMSM-200 73.3 81.0 79.3 77.7
CMSM-190 71.0 73.0 73.0 75.0

KMSM 84.7 87.0 82.0 81.7
KCMSM-550 83.0 85.3 85.7 86.3
KCMSM-500 79.3 85.0 87.0 87.0
KCMSM-450 82.0 88.0 89.3 89.7
KCMSM-400 83.3 87.7 88.3 89.7
KCMSM-300 81.0 87.7 88.7 89.0
KCMSM-200 81.7 81.7 83.3 83.3
KCMSM-100 57.7 62.7 68.0 65.3

(b) Separability

t=1 t=2 t=3 t=4

MSM 0.055 0.074 0.082 0.080
CMSM-215 0.203 0.236 0.242 0.236
CMSM-200 0.215 0.257 0.254 0.245
CMSM-190 0.229 0.255 0.249 0.244

KMSM 0.375 0.420 0.420 0.429
KCMSM-550 0.538 0.581 0.584 0.538
KCMSM-500 0.556 0.607 0.616 0.612
KCMSM-450 0.549 0.618 0.621 0.621
KCMSM-400 0.529 0.601 0.607 0.609
KCMSM-300 0.483 0.536 0.545 0.545
KCMSM-200 0.340 0.385 0.403 0.408
KCMSM-100 0.141 0.194 0.212 0.213

Sec.2.3. We varied the dimension Nφ
d of Dφ between 100 and 550. We used a

Gaussian kernel with σ2 = 0.05 defined by Eq.(2).
Experimental results: Table 1 shows the recognition rate and the separability.
In the tables, the notation method type – dimension of the difference subspace
is used and t denotes the number of the canonical angles used for the similarity
S[t] defined in step 3 of Section 2.3.

From these results, it can be observed that the performance of the nonlinear
methods (KMSM and KCMSM) is superior to the one of the linear methods
(MSM and CMSM), indicating that the recognition of multiple view images is
typically a nonlinear problem.

The performance of MSM was improved by the nonlinear extension of MSM
to KMSM where the recognition rate increased from 76.3% to 87.0% and the
separability increased from 0.082 to 0.429.

The new KCMSM improved the recognition rate further to 89.7% and in-
creased the separability by a value of almost 0.2 in comparison to KMSM. This
confirms the effectiveness of projection the onto the kernel difference subspace,
which serves as a feature extraction step in the feature space F . In particular,
the high separability of KCMSM is remarkable. This indicates that KCMSM can
maintain high performance even if the number of classes becomes larger.

The classification ability of KCMSM was improved while increasing t of the
similarity S[t]. These results show that the similarity S[1] is not sufficient for
classification of the models with similar 3D shapes. This is because S[1] utilizes
only the information of a single view. On the other hand, S[t](t≥2) reflects the
information of 3D shape including multiple views. Note that the recognition
rate of KMSM decreased, although it is also a nonlinear method. From this, one
can deduce that the projection onto the kernel difference subspace ensures the
validity of the similarity S[t], (t≥2).

In comparison between KCMSM-450 and KCMSM-300, the extreme degra-
dation of performance does not appear even when the dimension of the kernel



difference subspace decreased to 300. This implies that we can decrease the di-
mension Nφ

d within the permissible range to reduce the computing cost.

5 Summary and Conclusions
This paper has introduced the kernel constrained mutual subspace method
(KCMSM) and demonstrated its application to 3D object recognition. We showed
a significant performance improvement over kernel MSM, which is a state-of-the-
art method for classifying multiple view patterns with nonlinear structure. The
projection onto the kernel generalized difference subspace can be viewed as a
nonlinear feature extraction step based on the concept of constrained MSM.
The extracted features by this projection could improve the classification ability
of kernel MSM. The validity of KCMSM was shown through the experimental
results with the set of the multiple view patterns of 3D objects.

In future work, we will evaluate the performance of KCMSM using other
databases, such as a face image database. In this case, the comparisons with
other kernel methods[10] are required. Another problem that remains to be ad-
dressed is the computation of the eigen–problems of the matrices K and D,
which becomes difficult when the size of these matrices become large in pro-
portion to the numbers of the classes and the training patterns. To solve this
problem, the reduction of the number of the training patterns is most effective.
Thus, the framework of ensemble learning[11] is useful, since it can obtain high
performance using only a few training patterns.
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