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Difference subspace and its generalization
for subspace-based methods

Abstract —Subspace-based methods are known to provide a practical solution for image set–based object recognition. Based on the
insight that local shape differences between objects offer a sensitive cue for recognition, this paper addresses the problem of extracting
a subspace representing the difference components between class subspaces generated from each set of object images
independently of each other. We first introduce the difference subspace (DS), a novel geometric concept between two subspaces as an
extension of a difference vector between two vectors, and describe its effectiveness in analyzing shape differences. We then generalize
it to the generalized difference subspace (GDS) for multi-class subspaces, and show the benefit of applying this to subspace and mutual
subspace methods, in terms of recognition capability. Furthermore, we extend these methods to kernel DS (KDS) and kernel GDS
(KGDS) by a nonlinear kernel mapping to deal with cases involving larger changes in viewing direction. In summary, the contributions
of this paper are as follows: 1) a DS/KDS between two class subspaces characterizes shape differences between the two respectively
corresponding objects, 2) the projection of an input vector onto a DS/KDS realizes selective visualization of shape differences between
objects, and 3) the projection of an input vector or subspace onto a GDS/KGDS is extremely effective at extracting differences between
multiple subspaces, and therefore improves object recognition performance. We demonstrate validity through shape analysis on
synthetic and real images of 3D objects as well as extensive comparison of performance on classification tests with several related
methods; we study the performance in face image classification on the Yale face database B+ and the CMU Multi-PIE database, and
hand shape classification of multi-view images.

Index Terms —Subspace method, mutual subspace method, canonical angles, difference subspace, 3D object recognition.
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1 INTRODUCTION

SUBSPACE-based methods [1], [2], [3], which provide a
practical solution for pattern recognition in image sets,

have been a central research topic for object recognition in
computer vision. This is because a set of images of an object
can be effectively modeled by a low-dimensional subspace
of a high-dimensional vector space [4], [5], [6], [7], [8].

The recognition task in this framework is to compare
an input image or a set of input images to the image sets
of reference class objects, and classify the (set of) input
images into the correct class. It is assumed that each object
region is roughly segmented and normalized with respect
to size in advance of classification [5], [7], [9], [10], [11],
[12], [13], [14]. In the recognition process, an image of a
3D object, represented by w×h pixels, is treated as a vector
in a w×h-dimensional vector space. A set of images of the
object is thus represented as a low-dimensional subspace
of the vector space. Such a subspace is typically generated
by applying to the image set either the Karhunen–Loève
expansion (also known as principal component analysis
(PCA)), or Gram–Schmidt orthogonalization.

Subspaces considered in this paper implicitly contain
information about the shape of a 3D object. When the
image set of a 3D object with a convex Lambertian surface
under a fixed viewpoint and several different illumination
conditions is considered, the subspace generated from the
image set is called an illumination subspace. It contains ex-
plicit information about the shape and albedo of the object
in the form of their inner products [4], [5], [6], [7], [8].
If an object has uniform albedo, its illumination subspace
contains shape information only. This implies that structural
similarity between two illumination subspaces is related to
shape similarity between the objects represented by those
subspaces [10], [15], [16].

The structural similarity between two subspaces can be
mathematically measured by a set of canonical (or principal)
angles between them [17], [18]. A canonical angle is a natu-
ral extension of the angle between two vectors. All canonical
angles between perfectly coincident subspaces are zero; all
canonical angles between orthogonal subspaces are 90◦.

One of the most popular methods of classification by
canonical angles is the mutual subspace method (MSM) [9].
MSM is a natural extension of the classic and well-known
subspace method (SM) [1], [2], [3], whose input is one
vector. In contrast to SM, MSM classifies on the basis of the
canonical angles between an input subspace and the object
class subspaces. These subspaces are generated from the sets
of images of the unknown object and those of the reference
class objects, respectively. The characteristics of SM and
MSM make them both excellent at handling multiple classes
by their nature, unlike binary classifiers including support
vector machines. This ability to handle multiple classes is
extremely important for multi-class applications such as
facial recognition. Both SM and MSM generate a subspace
for each class; this also makes them quite different from the
Eigenface [19] and Fisherface methods [20].

Despite the strengths of SM and MSM, their ability to di-
rectly classify objects is still limited in the sense that the class
subspaces are generated independently of each other [3].
Although each subspace is a good representation, in terms
of least mean square approximation of the distribution of
the training images, there is no reason to assume a priori
that these representations are the optimal subspaces for
classification. When distinguishing between similar objects,
a measure of similarity based on such naively chosen sub-
spaces will be inherently unreliable, because it captures just
the global shape similarity between the objects. Our insight
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is that local shape differences between objects should be a
more stable and sensitive measure for dealing with objects
having subtle differences.

In this paper, we propose a framework to extract local
shape differences between distinct objects and then per-
form a classification using those differences. To simplify
the following discussion, we primarily consider the case
that all objects under consideration have uniform albedo.
In this case, since the shape information of each object is
well modeled by the corresponding illumination subspace,
the shape difference between two objects is well captured
by the difference components between the corresponding il-
lumination subspaces. If desired, this framework can be
extended to objects that do not have uniform albedo by
simultaneously considering differences in shape and albedo.

The problem we address here is, therefore, how to extract
the subspace corresponding to the difference components of
a pair of original subspaces. To address the problem, we
first geometrically define the concept of difference subspace
(DS), which represents the difference components between
two subspaces; these components are based on the canonical
angles. A DS is a natural extension of the difference vector
concept to a pair of subspaces. Therefore, the projection
of a vector or a subspace onto a DS enables us to extract
difference components between two class subspaces from
the vector or subspace.

To handle more than two class subspaces, we generalize
the concept of a DS to a generalized difference subspace (GDS),
which contains the difference components among the class
subspaces. For this generalization, we first show that a DS
between two subspaces can be defined analytically by using
the two projection matrices of the subspaces. From this
analytical definition, we can then systematically generate a
GDS. The projection on a GDS allows us to extract difference
components between multiple class subspaces. In the con-
text of 3D object recognition, this projection extracts shape
differences between 3D objects.

Interestingly, in addition to the above qualitative un-
derstanding, the properties of GDS projection can be un-
derstood quantitatively: it expands the canonical angles
between different class subspaces towards an orthogonal
relationship. In this respect, GDS projection is closely related
to the orthogonalization method proposed by Fukunaga and
Koontz [21], [22].

Specifically, our approach to enhancing the classification
ability of SM and MSM is to incorporate GDS projection
into the framework of SM or MSM. See Figure 1, which
shows the concept. We call the enhanced SM and MSM
constrained SM and MSM (CSM and CMSM), respectively.
CSM and CMSM use the canonical angles θc between the
projected subspaces, PC and QC , as a new measure of sim-
ilarity. The term “constrained” reflects the fact that we per-
form conventional SM and MSM on a constraint subspace
which satisfies some constraints. Various types of constraint
subspaces are possible depending on the application. We
choose to use GDSs as constraint subspaces in this paper.

Furthermore, we take nonlinearity of inputs into ac-
count. Although GDS projection works well for many
datasets, the performance may degrade significantly as is
the case with SM and MSM for image sets, such as multi-
view images of 3D objects, due to their highly nonlinear
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Fig. 1. Conceptual diagram of the constrained mutual subspace method.
The canonical angles {θC} between the two projected subspaces PC

and QC onto the GDS are measured. Since it is not possible to depict
the subspaces in a high-dimensional space, we show these schemati-
cally.

structure. To cope with this problem, we use nonlinear sub-
spaces generated by kernel principal component analysis
(KPCA) [23] and then construct a nonlinear kernel DS (KDS)
and a kernel GDS (KGDS) from these subspaces. We will
show that KGDS can improve the performances of kernel
SM [24], [25] and kernel MSM (KMSM) [11], [26] in the way
that GDS can improve the performances of SM and MSM.

The main contributions of this paper are summarized as
follows.

1) We describe the intrinsic characteristics of the types
of difference subspaces (DS, GDS, KDS and KGDS)
both theoretically and practically.

1-1) We confirm that these difference subspaces
represent difference components between
subspaces through their visualization by il-
lumination subspaces of 3D objects.

1-2) We discuss a close relationship between pro-
jecting class subspaces onto a GDS/KGDS
and the orthogonalization method of the
class subspaces. We demonstrate that the
projection works effectively as a pseudo-
orthogonalization of class subspaces.

2) By using the above, we show that the optimal di-
mension of a GDS/KGDS should be set to the value
that maximizes the overall mean of the canonical
angles between projected class subspaces.

3) We demonstrate clearly by three different types of
evaluation experiments that GDS/KGDS projection
is an effective method to enhance the performance
of conventional subspace-based methods.

Although some ideas in this paper have appeared in ear-
lier publications [15], [27] in preliminary form, the present
paper contains a more general formulation of our frame-
work as well as the novel GDS, and provides a more in-
depth discussion on the natures of the difference subspaces.
We also report the results of new extensive experiments on
object recognition, as well as on demonstrations of differ-
ence subspaces. These results are evidence for the utility of
our proposed methods.

The rest of this paper is organized as follows. Section 2
reviews related work, especially the relationship to orthog-
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onalization. Section 3 describes the concept of canonical
angles and the algorithms of SM and MSM. In Sections 4
and 5, the novel concepts of DS and GDS are introduced
and their optimal dimensionalities are discussed. KDS and
KGDS are constructed in Section 6. In Section 7, GDS/KGDS
projection is incorporated into MSM/KMSM. In Section 8,
the characteristics of DS and GDS using synthetic and
real 3D objects are shown, and the validity of GDS/KGDS
projection is experimentally confirmed by using public and
in-house databases. Section 9 summarizes our conclusions.

2 RELATED WORK

In this section, we describe the close relationship between
GDS/KGDS projection in CSM and CMSM and the orthog-
onalization transformation (whitening transformation) [3],
[22], a well-known method to enhance the performance of
subspace-based methods such as SM and MSM [3], [28], [29],
[30], [31].

The orthogonalization of given class subspaces can be
accomplished by whitening the mixture auto-correlation
matrix R of the basis vectors (the learning vectors) of all the
class subspaces. Matrix R can be diagonalized by using an
orthogonal matrix U as URUT =Λ. The orthogonalization
transformation matrix is then given as Λ−1/2U [3], [22]. This
equation means that the orthogonalization transformation
has been realized by minimizing the variance of variances
in the direction of basis vectors in the image vector space.

In contrast, projecting a subspace to GDS/KGDS is
equivalent to removing the principal components of each
class subspace, as described in Section 4. This operation
discards basis vectors with larger variances and keeps those
basis vectors with relatively smaller variances in the image
vector space. Consequently, the variance of the variances
due to the remaining basis vectors becomes smaller than
that from the whole set of basis vectors. This means that
characteristics similar to those achieved by the orthogonal-
ization transformation are realized. Despite this positive ef-
fect, the above operation also has the drawback of reducing
orthogonality between class subspaces by projecting a vec-
tor (resp. subspace) onto a GDS (resp. KGDS) with smaller
dimension than the original space. Thus, these two factors
need be considered to fully describe how GDS/KGDS pro-
jection achieves quasi-orthogonality. We opt to demonstrate
the quasi-orthogonality by GDS/KGDS projection experi-
mentally, as theoretical analysis is beyond the scope of this
paper.

The orthogonalization method achieves the maximum
possible orthogonality. In particular, complete orthogonal-
ization can be achieved with a kernel mapping function.
However, performance degrades in cases where common
subspaces exist between the given class subspaces. These
common subspaces affect classification because orthogonal-
ization does not remove them. In contrast, our method
automatically removes common subspaces and is hence
hardly affected by their existence.

In terms of orthogonalization, CMSM and kernel CMSM
(KCMSM) are also related to the whitening MSM [29], the
orthogonal subspace methods (OSM) [28], and the kernel
orthogonal MSM (KOMSM) [31]. From what has been dis-
cussed so far, CMSM and KCMSM are expected to have the

same level performance as those methods. Moreover, CMSM
relates to discriminant analysis of canonical correlations
(DCC) as discussed in [13]. DCC attempts to maximize
the canonical angle of between-class subspaces while mini-
mizing the canonical angles of within-class subspaces. This
operation is closely related to orthogonalization.

In a broader sense, the proposed methods are also related
to analysis on the Grassmann manifold [32], [33], [34]. It
is defined by a set of r-dimensional subspaces in an f -
dimensional vector space as Gr(r, f). In this framework,
each subspace is treated as a point on the Grassmann man-
ifold. In this respect, MSM can be seen as the simplest form
using the distance between two points on the manifold.
Hence, for our reference, we also study the performance
of Grassmann discriminate analysis (GDA) [32], an example
of Grassmann manifold–based methods, and additionally
discuss its relation to our proposed methods.

3 THE FORMULATION OF SUBSPACE -BASED METH -
ODS

In this section we define canonical angles, and then outline
the MSM algorithm.

3.1 Definition of canonical angles

Suppose an f -dimensional vector space with an Np-
dimensional subspace P and an Nq-dimensional subspace
Q. For convenience, we suppose Np ≤ Nq . The canonical
angles {0 ≤ θ1, . . . , θNp ≤ π

2 } between P and Q are
recursively defined as follows [17], [18]:

cos θi = max
u∈P

max
v∈Q

uTv = uT
i vi, (1)

s.t . ∥u∥ = ∥v∥ = 1,uT
i uj = vT

i vj = 0, j = 1, . . ., i− 1,

where ui and vi are the canonical vectors that form the ith
smallest canonical angle, θi. The first canonical angle θ1 is
the smallest angle between P and Q. The second smallest
angle θ2 is the smallest angle in a direction orthogonal to
that of θ1. The remaining θi for i = 3, . . . , Np are calculated
analogously, in a direction orthogonal to all smaller canoni-
cal angles.

There are several methods to calculate canonical
angles [9], [17], [18]. The simplest and most practi-
cal method is singular value decomposition (SVD). As-
sume that A = [Φ1 . . .ΦNp ] ∈ Rf×Np and B =
[Ψ1 . . .ΨNq ] ∈ Rf×Nq form unitary orthogonal bases
for the two subspaces P and Q. Let the SVD of
ATB ∈ RNp×Nq be ATB = UΣVT , s.t . Σ =
diag(κ1, . . . , κNp ). The canonical angles {θi}Mi=1 can be ob-
tained as {cos−1(κ1), . . . , cos

−1(κNp)} (κ1≥, . . . ,≥ κNp).
The corresponding canonical vectors, ui,vi (i = 1, . . . , Np)
are obtained by the equations

[
u1 u2 . . .uNp

]
= AU and[

v1 v2 . . .vNp

]
= BV. The similarity between the two

subspaces P and Q is measured by t angles as follows:

S[t] =
1

t

t∑
i=1

cos2 θi, 1≤t≤Np. (2)
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Fig. 2. Conceptual diagram of difference subspace: (a) difference vec-
tor d between u and v; (b) difference subspace D̃2 between Np-
dimensional subspaces P and Nq-dimensional Q is defined with the
canonical vectors ui ∈ P and vi ∈ Q forming the i th canonical angle
θi between them. The orthogonal bases {d̄i}

Np

i=1 of D̃2 are obtained by
normalizing the difference vectors di between ui and vi.

3.2 Process flow of mutual subspace method

MSM proceeds as follows. Let us consider a set of L images
of a class k object (k = 1, . . ., C) and denote the images as
f(= w×h) dimensional vectors, {xk

l }Ll=1, for images with
w×h pixels.

In the training phase,

1) an f×f auto-correlation matrix is computed as
Rk = 1

L

∑L
l=1 x

k
l x

k
l

T
from the given {xk

l }Ll=1,
2) the orthonormal basis vectors of an Nd-dimensional

subspace Pk of each class k are obtained as the
eigenvectors corresponding to the Nd largest eigen-
values of Rk, and

3) all of the class subspaces {Pk}Ck=1 are generated.

In the testing phase,

1) an Nin-dimensional input subspace, I , is generated
from a set of L

′
input images {xin

l }L
′

l=1 for an
unknown object,

2) the similarities {Sk}Ck=1 between I and all the class
subspaces {Pk}Ck=1 are calculated using Eq. (2), and

3) I is classified into the class subspace with which it
exhibits the highest similarity.

Note that in the SM [1], [3], I is replaced with an input
vector for the testing phase.

4 CONCEPT OF DIFFERENCE SUBSPACES

In this section, we first define the DS between two subspaces
geometrically. This definition is based on the canonical vec-
tors that form the canonical angles between the subspaces.
We then offer an equivalent analytic definition of the differ-
ence subspace by using the orthogonal projection matrices
of the subspaces.

4.1 Geometrical definition of difference subspace

The difference subspace is a natural extension of the dif-
ference vector between two vectors, u and v, as shown in
Figure 2 (a).

We denote the difference subspace between the Np-
dimensional subspace P and the Nq-dimensional subspace

Q as D̃2. The tilde is to distinguish the difference subspace
from the generalized difference subspace between P and Q,
and the index “2” represents the number of classes to be
classified. This will be defined shortly.

When there is no intersection between the two sub-
spaces, Np canonical angles {θi}

Np

i=1 (we assume Np ≤ Nq)
are obtained between the subspaces as shown in Figure 2
(b). Let di be the difference vector ui−vi between canonical
vectors ui ∈ P and vi ∈ Q, which form the ith canonical
angle θi. The vectors {di}

Np

i=1 are all mutually orthogonal,
since the directions of all the canonical angles are orthogonal
to each other as described in Section 3. After normalizing
the length of each di to 1, we regard the set of normalized
difference vectors d̄i as an orthonormal basis of D̃2. D̃2 is
then defined as

⟨
d̄1, d̄2, · · · , d̄Np

⟩
.

4.2 Analytic definition of difference subspace

We now define D̃2 analytically by using the concept of
an orthogonal projection matrix, which corresponds to the
orthogonal projection operator onto a subspace. For the
two subspaces P and Q considered in Section 3, the cor-
responding projection matrices P and Q are calculated
as

∑Np

i=1 ΦiΦi
T and

∑Nq

i=1 ΨiΨi
T , respectively. In the fol-

lowing discussion, we assume that Np is equal to Nq for
simplicity.

Lemma. λi=(λ∗
i − 1)2 where λ∗

i and λi are the ith largest
eigenvalue of matrix P+Q and that of matrix PQ, respectively.

Proof: Let ∆2 be a diagonal matrix whose entries are
the positive eigenvalues of P + Q. Let W be a matrix
with each column containing the normalized eigenvector
of P + Q for the corresponding eigenvalue in ∆2. The
relationship (P +Q)W = W∆2 holds. By premultiplying
the above equation by P and Q, we obtain the two equations
P(QW) = PW(∆2 − I) and Q(PW) = QW(∆2 − I), re-
spectively. Further, by substituting the second of these equa-
tions into the first, we obtain the equation (PQ)(PW) =

(PW)(∆2 − I)
2. Hence, the relationship λ = (λ∗

i − 1)2

holds. □
Theorem. The ith basis vector d̄i of the difference subspace D̃2 is
equal to the normalized eigenvector xi of P+Q that corresponds
to the ith smallest eigenvalue smaller than 1.

Proof: From the Lemma, we can see that the eigenvalues λ∗
i

of P + Q are written with 1 ±
√
λi. Thus, we obtain the

following equation for an eigenvector x:

(P+Q)x = (1±
√
λi)x. (3)

Although the equation has two forms, depending on the
sign of the right-hand side, we focus on the case where the
magnitude of the eigenvalue is smaller than 1.0. In this case,
the eigenvalue of P+Q is 1−

√
λi.

First, we consider the i = 1 case, as follows:

(P+Q)x1 = (1−
√
λ1)x1. (4)

Note that x1 is the desired eigenvector, corresponding to the
smallest eigenvalue of P + Q.

Since vector x1 is an eigenvector of P + Q, it can be
represented by a linear combination of Np pairs of canonical
vectors, ui ∈ P and vi ∈ Q, with weights ai and bi such
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that x1 =
∑Np

i=1 aiui+
∑Np

i=1 bivi. Substituting this equation
into Eq. (4),

(P+Q)(

Np∑
i=1

aiui +

Np∑
i=1

bivi)

= (1−
√
λ1)(

Np∑
i=1

aiui +

Np∑
i=1

bivi). (5)

The variables in the above equation have the following
relationships for µi =

√
λi: Pvi = µiui, Qui = µivi,

Pui = ui, and Qvi = vi [35]. Using these relationships,
we obtain the following equation from Eq. (5).

Np∑
i=1

(biµi + aiµ1)ui +

Np∑
i=1

(aiµi + biµ1)vi = 0. (6)

Here, since the vectors {u1,. . .,uNp
,v1,. . .,vNp

} are linearly
independent, all the coefficients of the vectors ui and vi

must be zero. Hence, the following relationships hold.

a1µ1 + b1µ1 = 0, (7)
a2µ1 + b2µ2 = a2µ2 + b2µ1 = 0, (8)

...
aNpµ1 + bNpµNp = aNpµNp + bNpµ1 = 0. (9)

From Eq. (7) we obtain that a1 = −b1, and from Eq. (8)
that (a2 + b2)(µ1 + µ2) = 0. Here, since µ1 + µ2 ̸= 0, also
a2 = −b2. Thus, we obtain that a2(µ2−µ1) = 0 and b2(µ2−
µ1) = 0 by substituting the above relationship into Eq. (8).
Since µ2 ̸= µ1, we obtain that a2 = b2 = 0. Similarly, the
other coefficients, {ai}

Np

i=3 and {bi}
Np

i=3, are all zeros. Finally,
the eigenvector x1, which satisfies Eq. (4), can be written as
x1 = a1(u1 − v1).

In the same way, the eigenvector {xi}
Np

i=2, which satisfies
the equation (P + Q)xi = (1 −

√
λi)xi, can be written as

xi = ai(ui − vi). Since xi is a normalized eigenvector, it
holds that d̄i = xi from the definition that di = ui − vi. □
Definition. In addition to D̃2, We define the sub-
space that is spanned by the eigenvectors of P +
Q corresponding to eigenvalues larger than 1 as the
principal component subspace (PCS), M̃2, in the sense that
it consists of the principal components of the two subspaces
P and Q.

The correspondence relationships described above can
be summarized as follows.

1) The Np eigenvectors of matrix P + Q that corre-
spond to eigenvalues larger than 1 span the princi-
pal component subspace M̃2.

2) The Np eigenvectors of matrix P + Q that cor-
respond to eigenvalues smaller than 1 span the
difference subspace D̃2.

The relationships indicate that the sum subspace W2 of
P and Q, spanned by all the Np×2 eigenvectors of matrix
P+Q, can be directly decomposed to M̃2 and D̃2 such that
W2 = M̃2

⊕
D̃2. Figure 3 shows a conceptual diagram of

this direct sum decomposition.
This decomposition suggests that the DS defined as the

subspace representing the difference between two subspaces

Difference subspace

Principal component subspace

90 degree

Sum subspace

Subspace P Subspace Q 

Fig. 3. Direct sum decomposition of sum subspace W2 of P and Q into
M̃2 and D̃2.

Illumination subspace

Difference subspace

Illumination subspace

Principal component subspace

Fig. 4. Examples of M̃2 and D̃2 between two 3-dimensional illumination
subspaces P and Q.

can be computed simultaneously with the subspace that is
generated by removing the PCS of the two subspaces from
their sum subspace.

Figure 4 shows the 3-dimensional basis vectors of sub-
spaces M̃2 and D̃2 between two 3-dimensional illumination
subspaces of two synthetic hemispheres with identical cen-
ters and different diameters.

5 GENERALIZED DIFFERENCE SUBSPACE

Based on the analytic definition of difference subspace in-
troduced in the preceding section, we generalize the concept
of the difference subspace to the case of differences between
two or more subspaces.

5.1 Generalization with projection matrices

Figure 5 shows the conceptual diagram of the generalized
difference subspace (GDS) for C≥2 subspaces.

Given C(≥2) N -dimensional class subspaces, Pk(k =
1, . . ., C), a GDS DC can be defined as the subspace pro-
duced by removing the PCS MC of all the class subspaces
from the sum subspace WC of those subspaces. From this
definition, the GDS DC is spanned by Nd eigenvectors,
{di}N×C

i=N×C−Nd+1 corresponding to the Nd smallest eigen-
values, λi, of the sum matrix G =

∑C
k=1 Pk of orthogonal

projection matrices Pk of the class k. Note that the GDS D2

coincides with D̃2 if the dimensions of M2 and D2 are equal.
This equation may appear to be an equation of PCA in that
basis vectors of all the subspaces are regarded as sample
vectors. However, it differs from PCA because all sample
vectors belonging to the same class should be orthogonal
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Principal component subspace

Generalized difference subspace 

Fig. 5. Conceptual diagram of GDS DC for C subspaces {Pk}Ck=1,
obtained by removing the PCS MC from the sum subspace of the
subspaces.

Illumination

subspace I

Illumination

subspace II

Illumination

subspace III

Principal component

subspace 
Difference subspace

Fig. 6. PCS M3 and GDS D3 of three 3-dimensional illumination sub-
spaces of different synthetic objects.

to each other. DC contains only the essential component for
discriminating all the classes, since it is orthogonal to the
principal component subspace MC which represents the
principal component of all the class subspaces.

Figure 6 shows the basis vectors of a 6-dimensional D3

between the 3-dimensional illumination subspaces of three
planes with three small and one large hemispheres. The
large hemispheres are put at the center, and the other three
small hemispheres are put at each corner. The visualization
result shows that the basis vectors of the D3 contain no
information on the two common hemispheres (the small
hemisphere at the upper left and the large hemisphere at the
center) but retaining information of the other hemispheres
as a difference.

Figure 7 shows the orthonormal basis vectors of M128

and D128 of 128 16-dimensional illumination subspaces of
the front faces of 128 subjects from the CMU Multi-PIE
database [36]. This database consists of face images of 337
subjects, captured from 15 viewpoints with 20 lighting con-
ditions in 4 recording sessions. In this visualization, we used
front face images only of 128 subjects, with images collected
across all four sessions. We took a sub-sampled image of
size 16×16 pixels from an original image; we cropped this
image by reference to the two inner corners of the eyes and
the tip of the nose. The dimension of D128 was set to 211
according to a criterion that will be discussed next.

5.2 Selection of the optimal dimension of GDS

To consider how to select the optimal dimension of a GDS,
we measured how the canonical angles between illumina-
tion subspaces are expanded by projecting them onto the

(a)

(b)

Fig. 7. Orthogonal basis vectors of M128 in the upper region (a) with 45
dimensions, and D128 in the remaining region (b) with 211 dimensions.

GDS. As the measure, we introduced the orthogonal degree,
ω = 1.0 − S̄, between two projected subspaces over all the
pairs, where S̄ is the mean of the similarities S in Eq. (2). As
the relationship between the subspaces approaches perfect
orthogonality, ω approaches 1.0.

In addition, we measured three performance indexes:
class separability, error equal rate (EER), and recognition er-
ror rate (ER), to examine the extent to which the orthogonal
degree corresponds to the discriminative ability of the GDS.
Class separability represents the ratio of the similarities
within classes and that between classes, and is equivalent to
the Fisher criterion. The recognition performance is higher
as the separability is closer to 1.0.

These indexes were measured by applying MSM to the
projected testing subspaces while varying the dimension of
the GDS from 256 to 60. The reference subspace of each
subject was generated from 20 front face images in a session
subset of the dataset used in the preceding subsection, and
the testing subspaces were generated from the subsets in the
remaining three sessions.

The value of ω was also measured by using the three
testing subsets as the reference subspaces. We repeated the
above measurements four times by changing the combina-
tion of the reference and testing subspaces. Finally, we used
the means of all the indexes as the final values of ω and as
three performance indexes.

Figure 8 shows changes in the resulting indexes against
the dimension of the GDS. When the dimension is 256, all
the indexes are the same as for MSM. Here note that ω was
calculated as a predictive value by using just the reference
subspaces in the learning phase. The three indexes were the
actual values measured using both the reference and testing
subspaces in testing phase.

The graph indicates clearly that the trend of the value
of ω corresponds well to those of the three performance
indexes. In particular, it is worth noting that all the in-
dexes reach a maximum near 211 dimensions, at which ω
has achieved a maximum value of 0.89 (ω is 0.31 without
projection).
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Fig. 8. Changes in the orthogonal degree between the projected sub-
spaces and three performance indexes against the dimension of the
GDS.

In the previous case (Figure 6), ω achieved a maximum
of 0.73 at dimension 6 of the GDS, at which dimension the
differences among the three objects appeared most clearly.
In the case of four 3-dimensional subspaces of four 3D
objects, ω achieved a maximum of 0.88 at dimension 9, at
which dimension the differences among the objects were
most clear.

These observations lead to an idea: we should select
the dimension at which the value of ω is maximum. This
criterion is easy to measure, and can be accurately estimated
even from a subset of all the class reference subspaces.

6 NONLINEAR KERNEL GENERALIZED DIFFER -
ENCE SUBSPACE

In this section, to deal with a set of multi-view images of
a 3D object, we extend the GDS to nonlinear kernel GDS
(KGDS) by using nonlinear kernel principal component
analysis (KPCA) [23].

6.1 Generation of nonlinear class subspaces

Let ϕ be the nonlinear function that maps the patterns x =
(x1, . . . , xf )

T of an f -dimensional input space I onto an
fϕ-dimensional feature space F , ϕ : Rf → Rfϕ , x → ϕ(x),
where fϕ ≫ f .

Given an N -dimensional nonlinear subspace Vk of class
k generated by applying KPCA to L training patterns
{xk

l }Ll=1, the N orthonormal basis vectors {eki }Ni=1, which
span the nonlinear subspace Vk, can be represented by the
linear combination of {ϕ(xk

l )}Ll=1 as eki =
∑L

l=1 akil ϕ(x
k
l ),

where the coefficient akil is the lth component of the eigen-
vector aki corresponding to the ith largest eigenvalue λi

of the L×L Gram matrix K. The elements of matrix K
are defined as [kll′ ], where kll′ = (ϕ(xk

l ) · ϕ(xk
l′)) =

k(xk
l ,x

k
l′
). We use an exponential kernel function k(x,y) =

exp
(
− ||x−y||2

σ2

)
. The vector of aki is normalized to satisfy

λi(a
k
i · aki )=1.

6.2 Generation of KGDS

We generate Nϕ
d -dimensional KGDS Dϕ from the set of

C N -dimensional nonlinear class subspaces {Vk}Ck=1. The
orthonormal basis of a KGDS can be obtained from all the
orthonormal basis vectors of all the nonlinear subspaces;
that is, the C×N basis vectors are used to find the orthonor-
mal basis. This calculation is equivalent to applying PCA
to all basis vectors. Let E be the matrix that contains all
the basis vectors as columns: E = [e11 . . . e

1
N . . . eC1 . . . eCN ].

Then, we solve the eigenvalue problem of the matrix D,
defined as ETE. In the calculation of each element of the
matrix D, the inner product between the ith orthonormal
basis vector eki of the subspace of class k and the jth
orthonormal basis vector ek

′

j of the subspace of class k′ can
be obtained as the linear combination of kernel functions
k(xk

l ,x
k′

i′ ) as follows:

(eki · ek
′

j ) = (
L∑

l=1

akilϕ(x
k
l ) ·

L∑
l′=1

ak
′

jl′ϕ(x
k′

l′ )) (10)

=
L∑

l=1

L∑
l′=1

akila
k′

jl′(ϕ(x
k
l ) · ϕ(xk′

i′ )) (11)

=
L∑

l=1

L∑
l′=1

akila
k′

jl′k(x
k
l ,x

k′

l′ ). (12)

The ith orthonormal basis vector dϕ
i of the KGDS Dϕ can be

represented as a linear combination of the vectors {Ej}C×N
j=1 ,

i.e. dϕ
i =

∑C×N
j=1 bijEj where Ej indicates the jth column

of the matrix E, and the weighting coefficient bij is the jth
component of the eigenvector bi that corresponds to the ith
smallest eigenvalue βi of the matrix D under the condition
that the vector bi is normalized to satisfy that βi(bi · bi)=1.

Ej corresponds to the η(j)th basis vector of class ζ(j),
where η(j) = mod(j−1, N)+1 and ζ(j) = floor(j−1/N)+
1. The above notation for dϕ

i may be written as follows:

C×N∑
j=1

bijEj =
C×N∑
j=1

bij

L∑
l=1

a
ζ(j)
η(j)lϕ(x

ζ(j)
l ) (13)

=
C×N∑
j=1

L∑
l=1

bija
ζ(j)
η(j)lϕ(x

ζ(j)
l ). (14)

6.3 Projection onto KDS

It is impossible to visualize the orthonormal basis vectors
dϕ
i of the KGDS Dϕ. However, the projection τ(ϕ(x)) of

the mapped pattern ϕ(x) onto the basis vectors dϕ
i can be

calculated from an input pattern x and all L×C training
patterns {xk

l }Ll=1 (k = 1, . . ., C) as follows:

(ϕ(x) · dϕ
i ) =

C×N∑
j=1

L∑
l=1

bija
ζ(j)
η(j)l(ϕ(x

ζ(j)
l ) · ϕ(x)) (15)

=
C×N∑
j=1

L∑
l=1

bija
ζ(j)
η(j)lk(x

ζ(j)
l ,x), (16)

where we can easily compute k(x
ζ(j)
l ,x) through k(x,y) =

exp
(
−∥x−y∥2

σ2

)
. Finally, the projection τ(ϕ(x)) of the
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mapped ϕ(x) onto the Nϕ
d (< C×N) dimensional KGDS is

represented as following:

τ(ϕ(x)) = (z1, z2, . . . , zNϕ
d
)T , zi = (ϕ(x) · dϕ

i ). (17)

7 INCORPORATION OF GDS/KGDS PROJECTION

INTO MSM/KMSM

In this section, we describe the CMSM and KCMSM
algorithms. As described in Section 1, the essence
of CMSM/KCMSM is to conduct MSM/KMSM on
GDS/KGDS. Thus, the key matter of interest here is the
way to project the input subspace and class subspaces onto
the GDS/KGDS. There are two ways that give equivalent
results. One is to project the basis vectors of each subspace
onto GDS/KGDS and then normalize the projected basis,
which is further followed by Gram–Schmidt orthogonaliza-
tion after the orthonormality is lost by the projection. The
alternative is to first project the sample images for each
subspace and then generate a subspace from the projected
images. We base our description on this second method as
it is more straightforward to understand.

7.1 Algorithm of the CMSM

Given: a set of C N -dimensional class subspaces {Pk}Ck=1
generated from the set of the L training image patterns
{xk

l }Ll=1 of each class k.
In the training phase,

1) an Nd-dimensional GDS Dc is generated from a set
of the class subspaces {Pk}Ck=1 in the way described
in Section 5,

2) the training images {xk
l }Ll=1 of class k are projected

onto the Dc, and
3) the N -dimensional class subspace PD

k of class k is
generated by applying PCA to the projected images
{τ(xk

l )}Ll=1.

In the testing phase,

1) an Nin-dimensional input subspace PD
in is gener-

ated from the set of the projected input images
{τ(xin

l′ )}L
′

i′=1 onto the Dc (note that PD
in is replaced

by a vector for CSM),
2) the similarities {Sk}Ck=1 between PD

in and all the class
subspaces {PD

k }Ck=1 are calculated by using Eq. (2),
and

3) the class subspace with the highest similarity is
determined to be that of the identified class if the
similarity exceeds a threshold.

7.2 Algorithm of the KCMSM

Figure 9 shows the steps of the algorithm of KCMSM,
exemplified by a hand shape classification using multiple
view images.

Given: a set of C nonlinear class subspaces {Pk}Ck=1,
obtained by applying KPCA to the set of the training images
{xk

l }Ll=1 of class k(= 1, . . . , C).
In the training phase,

Projection 

Nonlinear mapping 

PCAPCA

Input subspace

Input patterns

Projection 

class 1

class 2

class C

 Training phase  Recognition phase

MSM

       Multi-view images of object

KGDS

Class subspaces

Classification

Fig. 9. The flow of KCMSM in hand shape classification.

1) an Nϕ
d -dimensional KGDS Dϕ

c is generated from the
set of nonlinear class subspaces {Pk}Ck=1 in the way
described in Section 6,

2) the nonlinear mapped images {ϕ(xk
l )} of the images

{xk
l } are projected onto the Dϕ

c by using Eq. (17), and
3) an N -dimensional linear class subspace PDϕ

k of each
class k is generated by applying standard PCA to the
set of the projected images {τ(ϕ(xk

l ))}.

In the testing phase,

1) the nonlinear mapped images {ϕ(xin
l′ )} of a set of

input images {xin
i′ }L

′

l′=1 are projected onto the KGDS
Dϕ

c ,
2) an Nin-dimensional linear input subspace PDϕ

in is
generated by applying standard PCA to a set of the
projected images {τ(ϕ(xin

l′ ))},
3) the similarities {Sk}Ck=1 between the input subspace

PDϕ

in and all the class subspaces {PDϕ

k }Ck=1 are calcu-
lated by Eq. (2), and

4) the input subspace is classified into the class sub-
space with the highest similarity S if the similarity
exceeds a threshold.

8 EVALUATION EXPERIMENTS

We first validate that the various difference subspaces are
equivalent to the difference between multiple subspaces
through visualization of several difference subspaces for
multiple Lambertian objects with uniform albedo. The im-
ages used here are all real. In this validation we considered
the simplest situation, where the relative position between
camera and object was fixed. Next, we confirm the validity
of GDS/KGDS projection for the subspace-based methods.

8.1 Difference extraction with DS and GDS

To examine the characteristic of DS, we visualized the
orthogonal basis vectors of the DS between illumination
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(a) Sample images of cow relief-1 with a scoop.

(b) Sample images of cow relief-2.

(c) Orthonormal basis vectors spanning the PCS (upper) and the DS
(lower).

(d) Original images, projections onto the DS.

Fig. 10. PCS and DS of two real cow reliefs.

subspaces of two objects with similar overall shapes in the
two following cases.

In the first case, we considered two complicated cow
reliefs with a height of 20 cm and a width of 30 cm. The
cow reliefs are slightly different in that relief-1 has a small
scoop on its shoulder region, while relief-2 has no such
scoop. Figures 10(a) and (b) show examples of 420×640 pixel
images of both the reliefs, which were captured from a fixed
viewpoint with various illuminations. Their surfaces were
coated by white paper clay and had no shadows, so that the
surfaces can be almost regarded as Lambertian surfaces.

Figure 10(c) shows the orthonormal basis vectors of the
3-dimensional PCS and 3-dimensional DS between two 3-
dimensional illumination subspaces of the reliefs. We can
see that the scoop region is emphasized in the basis vectors
of the DS. Figure 10(d) shows the original images and the
corresponding projected images, which demonstrate that
the DS projection can selectively extract the region corre-
sponding to the shape difference.

In the second case, we considered three balls of the same
radius but with a different number of convex parts on their
surfaces, as shown in Figure 11(a). Ball-1, Ball-2, and Ball-3
have two, three, and four convex parts, respectively. Their
surfaces were coated by white paper clay. Thirty images of
each ball were captured from a fixed camera view under
various illumination conditions. A 6-dimensional GDS was
generated from the three 3-dimensional illumination sub-
spaces of the three balls. Figure 11(b) shows the orthonormal
basis of the 3-dimensional PCS and the 6-dimensional GDS.

(a) Three balls with different convex parts.

(b) PCS (first three frames) and the GDS (others).

Fig. 11. PCS and GDS of three real balls.

Only the two convex parts corresponding to the differences
among them are selectively emphasized in the basis vectors
of the GDS.

8.2 Difference extraction with KDS and KGDS

We visualized the orthonormal bases of KDS and KGDS in
two cases.

In the first case, we considered two sets of multi-view
images of two Venus sculptures, Venus-1 and Venus-2.
They are slightly different: Venus-1 wears two earrings, but
Venus-2 does not. Figures 12(a) and (b) show examples
of the multi-view images with size 63×48 pixels of the
Venus sculptures rotating on a turntable under a fixed
view and illumination condition. A 100-dimensional non-
linear subspace was generated from a set of the multi-view
images of each Venus sculpture. A 100-dimensional KDS
was generated from the two 100-dimensional subspaces. An
exponential kernel function with σ2 = 5 was used for the
nonlinear mapping.

Since it is impossible to visualize an image projected
onto a KDS/KGDS in the feature space due to its infinite
dimensionality, we searched for the preimage in the original
input space I , corresponding to the projected image, by
using the search method [37]. Figure 12(c) shows input
images, the preimages corresponding to the projected input
images, and the emphasized images of the input image
from the preimages. The visualization results show that only
the regions corresponding to the differing parts (the two
earrings) are clearly extracted in the preimages; this is what
was expected.

In the second case, we considered three kinds of Venus
sculptures with slight differences. Venus-1 has a necklace
and two earrings; Venus-2 wears two earrings; Venus-3 has
no decorations. Three 150-dimensional nonlinear subspaces
were generated from the set of multi-view images of each
Venus, and then a 300-dimensional KGDS was generated
from the three 150-dimensional nonlinear subspaces. Fig-
ure 13 shows input images, the preimages corresponding
to the projected input images, and emphasized images.
The results indicate clearly that the differences between the
three Venuses, that is, only the regions of the two earrings
and the necklace, were selectively extracted. These results
provide evidence that the KDS/KGDS projection works well
to extract the difference between multiple subspaces.

8.3 Validity of projecting onto GDS for SM

In order to confirm the validity of GDS projection for the
SM, we performed a facial recognition experiment with data
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(a) Multi-view images of a Venus with two earrings.

(b) Multi-view images of a Venus without earring.

(c) Input image, preimages corresponding to projected images onto
the KDS, emphasized images.

Fig. 12. Projecting images onto nonlinear KDS.

from the widely used public database, Yale face database
B+ [6].

In this experiment, we used the SM with a specific 9-
dimensional illumination subspace as a baseline. This spe-
cific illumination subspace is generated from a set of nine
front face images of a person under the nine specific lighting
conditions shown in Figure 14. As a result, the illumination
subspace can accurately approximate an illumination cone,
which consists of all the possible images of a face under
various lighting conditions [7].

We refer to this method as SM -9PL method in this paper,
to emphasize that it is based on SM (it is called the “nine
points of lights method” in [7]). The experimental results
in [7] give evidence that the SM-9PL significantly outper-
forms the conventional correlation, Eigenfaces [19], nearest
neighbor, cones-attached [6], harmonic images [8], harmonic
images-cast [8], and gradient angle [38] methods. The SM-
9PL achieved performance comparable to the state-of-the-
art cones-cast method [6]. The SM-9PL that incorporates the
GDS projection is referred to as CSM -9PL. We compared
the performances of SM-9PL with those of CSM-9PL.

8.3.1 Experimental settings

The Yale face database B+ consists of face images of 38
subjects. These images were acquired under 64 different
lighting conditions in 9 different poses [7]. The database
has 4 subsets, clustered according to the angle that the light
source direction forms with the camera’s axis. We selected
29 individuals from the database; these individuals’ images

(a) Venus-1 with a necklace and two earrings.

(b) Venus-2 with earrings.

(c) Venus-3 with no decoration.

(d) Input images, preimages of the projected images onto the KGDS,
emphasized images.

Fig. 13. Projecting images onto nonlinear KGDS.

Fig. 14. Nine images of a person illuminated by nine specific lighting
points.

were completely acquired across the four subsets. Only the
front face images were used in this experiment, so that our
evaluation database contains 1,305 images of 29 subjects
under 45 different lighting conditions in the front pose. We
converted the cropped images of 640 × 480 pixels to images
of 32 × 24 pixels.

The class subspace of each subject was generated from
the nine specific images used in the SM-9PL. A GDS was
generated from the twenty-nine 9-dimensional class sub-
spaces. We set the dimension of the GDS to 231, at which
the orthogonal degree, ω, was maximal. The remaining 36
images, corresponding to 36 lighting conditions except for
the 9 specific lighting conditions, were used as input images
in the testing phase. The total number of trials was 1044.

8.3.2 Experimental results and discussions

Table 1 shows a comparison between the performances of
the SM-9PL and the CSM-9PL in terms of the EER. Note that
the recognition rates of both were 100% due to using 9PL
illumination subspaces, as discussed in [6], [7]. The GDS
projection improves significantly the EER of the SM-9PL,
from 2.73% to 0.07%. This advantage of the CSM-9PL can
be also clearly seen in the receiver operating characteristic
(ROC) curves as shown in Figure 15.

8.4 Validity of projecting onto GDS for MSM

To confirm the validity of GDS projection for MSM, we
compared the performance of CSM/CMSM (GDS projection
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TABLE 1
EER(%) of the CSM-9PL and the SM-9PL

Subset1 Subset2 Subset3 Subset4 Mean
SM-9PL 1.97 0.29 1.08 7.59 2.73

CSM-9PL 0 0 0.29 0.01 0.07

False Positive Rate
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
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Fig. 15. ROC curves of the CSM-9PL and the SM-9PL.

+ SM/MSM) with that of SM/MSM and several related
methods: OMSM (Orthogonalization + MSM) [29], [39],
discriminant analysis of canonical correlations (DCC) [13],
sparse representation classification (SRC) [40], and Grass-
mann discriminate analysis (GDA) [32]. GDA is the Fisher
discriminate analysis (FDA) on a Grassmann manifold,
Gr(r, f) with r = 20 and f = 256 in this case, with the
kernel of projection metric. We consider facial recognition
from the CMU Multi-PIE database [36] under the same
settings as in the evaluation in Section 5.

GDS projection and Fisher discriminative analysis (FDA)
share the same purpose of effective extraction of discrimina-
tive features, although their mechanisms are different from
each other. To extend our comparisons, we also evaluated
the performance by the combination of FDA + MSM, in
which the FDA was used as a pre-processing for the MSM.

8.4.1 Experimental settings
SM and SRC use a single input vector whereas MSM re-
quires multiple input images. To evaluate their performance
under the same condition as in MSM, we use the mean of the
similarity values of multiple input vectors as the similarity
for the images. The dimensions of the class subspace and
testing subspaces were fixed to 10 and 16, for DCC and the
other methods, respectively. We generated the GDS from
128 class subspaces with dimension 16. The dimension of
the GDS was set to 211, which corresponds to the maximal
orthogonal degree as shown in Section 5.

8.4.2 Experimental results and discussions
Table 2 shows the performance of all the considered meth-
ods in terms of ER (%) and EER (%). GDS projection signifi-
cantly improves the performance of MSM. CMSM improves
on CSM, which previously showed superior performance
to that of conventional methods in earlier experiments. As
expected, the rates achieved by CMSM are very similar
to those of OMSM, which reflects that GDS projection

TABLE 2
The performance of different methods on the CMU database

SM
[1]

GDS
+SM

DCC
[13]

SRC
[40]

GDA
[32]

MSM
[9]

FDA
+MSM

Orth+
MSM [29]

GDS
+MSM

ER 16.5 11.5 8.9 9.4 7.1 13.0 9.4 5.1 5.5
EER 13.3 5.7 6.5 2.5 1.4 7.8 4.1 2.4 2.4

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

(a) 30 classes of hand shapes.

(b) Seven-view images of hand #30.

Fig. 16. Testing data set for hand shape recognition.

is equivalent to orthogonalization. FDA did not improve
significantly on MSM, possibly because FDA extracted a
feature optimal for methods based on Euclidean distance,
but not necessarily for subspace-based methods such as SM
and MSM.

The table shows that SRC and GDA also give good
results. In particular, the low EER by GDA supports that
FDA on the Grassmann manifold worked effectively. DCC
did not perform as well as CMSM and GDA, which could
be due to the comparatively few (twenty) training patterns
in this experiment.

8.5 Validity of projecting onto KGDS for KMSM

To verify the validity of KGDS projection for KMSM, we
compared the KCMSM (KGDS projection + KMSM) with
those of KMSM [11], [26] on the classification of 30 kinds
of hand shapes. To confirm that KGDS projection has the
same effect as the standard orthogonality method, we also
compared the performances of KCMSM to those of kernel
orthogonal MSM (KOMSM) [31]. As related subspace-based
methods 1, we evaluated the performance of GDA.

8.5.1 Experimental settings

We collected the multi-view images of 30 kinds of hand
shapes at 1 fps from 100 subjects for 4 seconds by using
a multi-camera system equipped with seven synchronized
cameras intervals of 10◦ [14]. During the collection, the
subjects were asked to rotate their hands at a constant speed
to increase the number of viewpoints. Figure 16(a) shows
the 30 kinds of hand shapes. Figure 16(b) shows the seven-
view images of hand #30.

1. For an option of applying Kernel FDA to KMSM as in the previous
experiment, appropriate evaluation was not available for KSM/KMSM
with KFDA because the dimension of the discriminate space generated
by KFDA (=29) was too low for them to be applied.



12

TABLE 3
Experimental results of hand shape classification

Raw image feature
MSM

[9]
GDS

+MSM
GDA
[32]

KMSM
[11], [26]

KOrth+
KMSM [31]

KGDS
+KMSM

Test 5 5 20 20 20 20
Class 30 30 20 200 200 200

ER (%) 22.55 17.12 10.50 12.52 9.43 9.28
EER (%) 18.49 13.77 3.66 15.95 5.59 5.15

FFT feature
MSM

[9]
GDS

+MSM
GDA
[32]

KMSM
[11], [26]

KOrth+
KMSM [31]

KGDS
+KMSM

Test 5 5 20 7 7 7
Class 30 30 20 100 100 100

ER (%) 11.99 8.78 4.45 7.13 5.66 5.84
EER (%) 17.69 13.00 1.67 13.17 4.00 3.29

A hand region was roughly cropped from an input
image, resized to 25×25 pixels and vectorized to a 625-
dimensional raw image vector. Stable segmentation of a
hand region is difficult due to the different shape of ev-
ery hand class and the difficulty in defining stable and
reproducible feature points. To deal with this, we also used
313-dimensional FFT features as position invariant features.
These were extracted by applying the fast Fourier transform
to the cropped images and then vectorizing half of the
obtained frequency images. All the feature vectors were
normalized in length.

To form training and testing datasets, we randomly
divided subjects into two groups. The images of one group
were used for training and those of the other were used for
testing. We evaluated each of the algorithms on the datasets
from ten random group divisions. The average of the ten
trials was used as the final algorithm evaluation index. A
nonlinear class subspace of each hand shape was generated
from the set of 1400 (7 cameras ×4 images ×50 subjects)
images.

The testing subspaces were generated from 28 images of
every combination of subject and shape. The total number
of generated testing subspaces was 1500 (=30 shapes ×50
subjects). The dimensions of the testing and class subspaces
were set as shown in Table 3. KGDS was generated from the
200-dimensional thirty nonlinear class subspaces for Raw
feature and its dimension was set to 4200, at which the value
of ω is maximal. For FFT feature, a 2200-dimensional KGDS
was generated from the 100-dimensional thirty nonlinear
class subspaces in the same way. The values of σ2 of kernel
function was set to 0.8 and 0.145 for Raw and FFT features,
respectively. For GDA Grassmann manifolds, Gr(20, 625)
and Gr(20, 313) were utilized for Raw and FFT features,
respectively. A 620-dimensional GDS for CMSM with Raw
feature was generated from the thirty 30-dimensional linear
class subspaces. A 311-dimensional GDS was also generated
for FFT feature in the same way.

8.5.2 Experimental results and discussions

Table 3 shows the performance of all the methods in terms
of ER and EER. The results clearly show that KGDS pro-
jection enhanced the performance of KMSM. The improve-
ment was further amplified by using FFT feature images
with position invariance. This suggests that we select ef-

fective position-invariant feature more carefully, although
the subspace-based methods could achieve comparative
practical performance using multiple images. The equality
between KCMSM and KOMSM in the performance levels
indicates that KGDS projection plays an equivalent role to
orthogonalization.

8.5.3 Discussions in relation to GDA

In terms of Grassmann manifold, MSM can be regarded
as a simple 1-NN method using the distance between two
points in the manifold where a DS is corresponding to a
tangent vector at the limit. These interpretations further
suggest that the projection on a GDS/KGDS may be well
related to concepts such as discriminant analysis and tan-
gent spaces on a Grassmann manifold. In our experiments
the performance of GDA turned out to be equivalent or
superior to that of our proposed method. This is likely
because GDA exploits information of the variance within
each class whereas KCMSM simply assumes homogeneity
of variance, and because each class is represented by a set
of multiple subspaces in GDA while it is represented by
a single subspace in our method. Thus, it could well be
the case that GDA outperforms our method for inputs such
as coming from hand shape class that involve complicated
distributions that are hard to capture by a single subspace.

On the other hand, unlike our methods, it is required in
GDA that the dimensions of input and reference subspaces
must be equal even in the case that the distributions of
testing and learning data sets are unbalanced, and this could
potentially pose a practical limitation. For example, let us
assume the number of available images to be limited in the
experiment of facial recognition (Section 8.4). In the case
that we have seven input frames for instance, it is observed
that the result of the GDS+MSM is better than GDA after
all. That is, the ER and EER of GDA with r = 7 are 12.96%
and 2.93%, respectively, while those of the GDS+MSM are
6.51% and 3.44% in the case of commonly using the same
dimension, Nin = N = 7, but further down to 5.86% and
2.86%, respectively, in the original setting with N = 16 for
the class subspace.

Further detailed analysis on the relationship to GDA is
beyond the scope of this paper, but we note that our meth-
ods are simple and therefore widely applicable, thanks to
the general mathematical concept of the difference subspace.

9 CONCLUSIONS

This paper proposed a framework for extracting differences
between multiple subspaces to fundamentally address the
object recognition problem by subspace-based methods. The
framework was built on a new concepts of DS and a general-
ization of this idea, GDS. First, DS was defined as a subspace
corresponding to the difference between two subspaces,
a natural extension of a difference vector between two
vectors. Then, DS was generalized to GDS to allow more
than two subspaces. DS and GDS were then extended to
nonlinear kernel versions, KDS and KGDS. By visualizing
the difference subspaces between illumination subspaces
of 3D objects, we confirmed that the various types of dif-
ference subspaces indicate the difference between multiple
subspaces.
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We discussed and demonstrated a close relationship be-
tween GDS/KGDS projection and Fukunaga and Koontz’s
orthogonalization method. This relationship led to the idea
that the optimal dimensions of a GDS/KGDS should be set
such that the orthogonal degree among projected class sub-
spaces is maximized. We incorporated GDS/KGDS projec-
tion into the family of subspace-based methods to enhance
their performances. The validity of the proposed framework
was extensively evaluated through 3D object recognition
experiments with data from the Yale face database B+,
the CMU Multi-PIE database, and a hand shape database
created for these experiments. GDS/KGDS projection are
also related to analysis on the Grassmann manifold. Thus,
we discussed their relation through evaluations of the per-
formance of Grassmann discriminate analysis.
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