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Abstract. We propose a new method for clustering 3D protein struc-
tures. In our method, the 3D structure of a protein is represented by a
linear subspace, which is generated using PCA from the set of synthesized
multi-view images of the protein. The similarity of two protein structures
is then defined by the canonical angles between the corresponding sub-
spaces. The merit of this approach is that we can avoid the difficulties
of protein structure alignments because this similarity measure does not
rely on the precise alignment and geometry of each alpha carbon atom.
In this approach, we tackle the protein structure clustering problem by
considering the set of subspaces corresponding to the various proteins.
The clustering of subspaces with the same dimension is equivalent to the
clustering of a corresponding set of points on a Grassmann manifold.
Therefore, we call our approach the Grassmannian Protein Clustering
Method (GPCM). We evaluate the effectiveness of our method through
experiments on the clustering of randomly selected proteins from the Pro-
tein Data Bank into four classes: alpha, beta, alpha/beta, alpha+beta
(with multi-domain protein). The results show that GPCM outperforms
the k-means clustering with Gauss Integrals Tuned, which is a state-of-
the-art descriptor of protein structure.
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1 Introduction

Since there are numerous proteins whose functions are yet to be understood,
accurately predicting protein structure and function is a main issue in structural
bioinformatics. One important task in such computations is the clustering of
3D protein structures. In the clustering process, a distance metric is required
to calculate the similarity between two proteins. The metric mostly used to
measure the similarity between two protein structures is based on the root mean
square deviation (RMSD) calculated from the coordinates of protein backbones.
However RMSD raises problems in finding the best alignment and requires the
superposition of two target proteins, which can be especially difficult when the
shapes of the proteins are substantially different.
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Fig. 1: The framework of the proposed method (GPCM).

There have been many attempts to establish an optimal alignment of protein
structures based on RMSD [1][2][3], but there are few effective protein structure
descriptors that overcome the limitations of RMSD. For example, when the 3D
structure of a protein is represented by an oriented open curve in 3D space, a
compact descriptor in the form of a 30-dimensional vector has been defined using
two geometric measures, writhe and average crossing number [4]. This idea has
been extended to a more robust descriptor called Gauss Integrals called Gauss
Integrals Tuned (GIT) [5].

We proposes a new method for clustering 3D protein structures in which
the 3D structure of a protein is represented by a linear subspace (see Figure
1). Each subspace is generated using PCA from the set of synthesized multiple
view images of the protein, as shown in Figure 2. The similarity of two protein
structures is defined by the canonical angles between the corresponding sub-
spaces. The advantage of this similarity measure [6] is that it does not rely on
the precise alignment and geometry of the protein structures, so we can avoid
the difficulties of the protein structure alignment. In this approach, we tackle the
clustering problem of protein structure by considering the set of subspaces cor-
responding to the protein. The clustering of subspaces with the same dimension
is equivalent to the clustering of a corresponding set of points on a Grassmann
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Fig. 2: Calculating the similarity of two protein structures based on canonical
angles.

manifold. Therefore, we call our approach the Grassmannian Protein Clustering
Method (GPCM).

The validity of the proposed method is demonstrated through experiments
on the clustering of randomly selected proteins from the Protein Data Bank
(PDB) into four protein fold classes: alpha (alpha-helices), beta (beta-sheets), al-
pha/beta (beta-alpha-beta motifs, mainly parallel beta-sheets), and alpha+beta
(segregated alpha and beta regions, mainly anti parallel beta-sheets with some
multi-domain proteins). The results show that our clustering method outper-
forms the conventional k-means clustering method with GIT [11], which is a
state-of-the-art protein descriptor.

The organization of this paper is as follows. In Section 2 we provide a short
description of the Gauss integrals descriptor. Then, in Section 3, we explain our
approach which uses canonical angles to define protein structure similarity. Next,
in Section 4 we outline the method of clustering subspaces using k-means on a
Grassmann manifold. The experimental results are described and discussed in
Section 5. Finally, in Section 6 we give some conclusions.
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2 Protein descriptor based on Gauss integrals

In the methodology of Gauss integrals as a protein descriptor, a protein backbone
which is a trace of Cα carbon atoms is considered as an oriented open curve
in space [4]. A series of 29 first, second, and third-order invariants, based on
the generalized Gauss integrals for the writhe and average crossing number, are
computed over the curve. This set is considered as a vector ∈ R29 for interpreting
the topology of 3-dimensional protein structure [5]. Including the number of
residues, the final descriptor is a compact 30-dimensional feature vector of Gauss
integrals. In order to make the Gauss integral based descriptor more robust to
perturbations of protein structure, it has been extended to the Gauss Integrals
Tuned (GIT) descriptor which uses a 31-dimensional vector [5]. In this paper,
we focus on the k-means clustering method using Euclidean distances in the
31-dimensional GIT vector space.

3 Similarity based on canonical angles

Canonical angles are also used as the similarity measure for image sets in the
Mutual Subspace Method (MSM) [9][10]. The general procedure for using MSM
to determine 3D protein structure similarity is as follows.

Let xi(i=1,...,n) be an f -dimensional feature vector that belongs to protein
p, where n is the number of samples. The basis vectors of an N -dimensional
subspace P corresponding to protein p can be computed as the eigenvectors
[φ1, ...,φ]N of the correlation matrix A [12]:

A =
1

n

n∑

i=1

xix
T
i . (1)

M canonical angles (0 ≤ θ1 ≤ . . . ≤ θM ≤ π
2 ) between an M -dimensional

subspace Q and an N -dimensional subspace P (M ≤ N) are defined as follows
[7]:

cos θi = max
ui∈Q

max
vi∈P

uT
i vi , (2)

s.t. uT
i ui = v

T
i vi = 1,uT

i uj = v
T
i vj = 0, i 6= j.

In practice, we can obtain cos2θi from the singular value of PTQ, where
P = [φ1, ...,φN ], Q = [ψ1, ...,ψM ]. Here φi and ψi are the orthogonal basis
vectors of the subspace P and Q respectively. The final similarity between two
subspaces is given by

Sim =
1

M

M∑

i=1

cos2θi . (3)

4 Algorithm of clustering on a Grassmann manifold

The standard k-means algorithm [14] attempts to partition a set of observation
data (d1,d2, ...,dn) into k clusters Ci(i=1,...,k) such that the sum of the distances
among the data within each cluster is minimum:
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Fig. 3: Plot of 35-dimensional normalized HLAC feature vectors from various
kinds of protein multiple view images. We removed the first 6 HLAC elements
(the zeroth- and first-order correlations) which are close to zero.

argmin
C

k∑

i=1

∑

dj∈Ci

||dj − µi||
2 , (4)

where µi is the mean of the data within cluster Ci.

In our problem, since each protein is represented by a linear subspace, we
need to calculate the mean of multiple subspaces under the condition that the
similarity of canonical angles should be regarded as a geodesic distance. Assume
that an N -dimensional subspace P which lies in an a s-dimensional vector space
Rs corresponds to a point on the Grassmann manifold G(N, s), and the subspace
P is spanned by the columns of the s × N matrix U. The mean of the points
corresponding to subspaces on the Grassmann manifold can be obtained by using
Algorithm 1[13], where Glog (X,Y) can be calculated using Algorithm 2.

Algorithm 1 Computation of Karcher Mean on a Grassmann manifold [13]

1: Let Ui(i=1,...,n) ∈ G(N, s) be the points on Grassmann manifold, and choose an
error precision ǫ which is small enough (close to zero).

2: Initialize µ = U1.
3: repeat

4: δ = 1
N

∑N

i1
Glog (µ,Ui)

5: Update µ = µV cos (S) +U sin (S), where USVT = δ

6: until ||δ|| < ǫ

In summary, the flow of our proposed method is as follows:
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Algorithm 2 Glog (X,Y) [13]

1: USVT = (I−XXT )Y(XTY)−1

2: Θ = tan−1(S)
3: Glog (X,Y) = UΘVT

Table 1: List of proteins used in the experiment. The first four characters are
the PDB code and the last character indicates the chain ID of the protein.
Class Protein List

Alpha (α) 1bbha,1hbga,1i3ea,1me5a,1qc7a,1s56a,1sr2a,2ccya,256ba,1tlha,
1jr5a,1c75a,1b7va,1k3ha,1k3ga,1enha,1hdpa,1ocpa,1b72a,1pufa

Beta (β) 1bioa,1d1ia,1exha,1ifca,1k1ja,1lcla,1mdca,1nsba,1rsub,1bwwa,
1b0wa,1b4ra,1ncia,1ncga,1op4a,1eeqa,1qaca,1ap2a,1cd0a,1pw3a

Alpha/Beta (α/β) 1aaza,1abaa,1g4ta,1hfra,1kofa,1mxia,1p2va,1rnha,1tcaa,1zona,
2foxa,3adka,3chya,2tpsa,1spqa,1v7za,1j2ta,1btaa,1h4xa,1h4za

Alpha+Beta (α+β and
multi-domain proteins)

1apme,1atpe,8cata,1pfma,1r28a,1pu3a,178la,1hlea,1jtia,1as4a,
1qmna,1szqa,1qlpa,1opha,1hp7a,1bsca,1lxya,1ag2a,2baaa,3lzta

Step 1: For each protein synthesize multi-view backbone images of size 128×128
pixels by rotating the 3D model of the protein randomly around its viewing
axes, using 3D molecular graphics software, Jmol [8].

Step 2: Extract a position-invariant feature vector, HLAC [15], from each
multiple view image of the protein. Although the original HLAC is a 35-
dimensional feature vector, which consists of several orders of local corre-
lations, in this process we use a 29-dimensional HLAC starting from the
second-order correlation. This is because the zeroth- and first-order elements
of HLAC are almost zero, as shown in Figure 3. To deal with the diversity
in the appearance and size of proteins, we empirically change the range for
calculating local correlations from 1, 2, 3, 4, 5, 7, and 8 pixels, so that seven
29-dimensional HLACs are produced. Finally, we concatenate all the HLACs
into a 203-dimensional HLAC feature vector.

Step 3: For each protein apply PCA to the set of 203-dimensional HLAC feature
vectors to generate a subspace.

Step 4: Apply k-means clustering to the set of points on the Grassmann mani-
fold corresponding to the set of subspaces.

5 Experiment

In the experiment, we randomly collected 80 proteins from the PDB site [16].
The test data are listed in Table 1. We applied our proposed clustering method,
GPCM, and the conventional k-means clustering with GIT descriptor to this
dataset. First we explain the details of the experimental conditions in Section
5.1. Then, the results of the clustering are discussed in Section 5.2. In Section
5.3, we discuss the results of an additional experiment.
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1as4a             1atpe                  1bsca                  1hlea                 1hp7a       

1aaza             1mxia                 1p2va                  2foxa                  3chya

1ap2a             1bowa                1bwwa                1lcla                    1rsub 

1b7va             1bbha                1enha                  2ccya                  1k3ga
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Fig. 4: Examples of the synthesized protein images used in the experiment.

Table 2: Clustering results for the 80 proteins.
Method Measurement Average (%) Worst (%) Best (%)

k-means with GIT

Accuracy 80.29 65.63 85
Sensitivity 60.58 31.25 70
Specificity 86.86 77.08 90

GPCM

Accuracy 81.52 71.88 86.88

Sensitivity 63.04 43.75 73.75

Specificity 87.68 81.25 91.25

5.1 Experimental conditions

Since one protein may contain more than one chain, we first removed the un-
necessary chain from each protein. Then, by following the flow of our framework
from Step 1 to Step 3, as described in Section 4, we collected 3000 synthesized
protein images of size 128× 128 pixels from each protein backbone visualization
by using Jmol [8] which is included in the Matlab Bioinformatics Toolbox. Fig-
ure 4 shows some of the synthesized protein images. Next, we extracted HLAC
vectors from these images to obtain 203-dimensional feature vectors. Finally, we
constructed a subspace by applying PCA to each HLAC feature set. The dimen-
sion of the subspace was set to 4. Considering the randomness of the k-means
clustering result, we repeated the clustering experiment 5000 times for both the
proposed method and the k-means with GIT descriptor. The number of clusters
was set to 4 (k = 4).
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Fig. 5: Box plots of the 5000 experimental results using the proposed method
and k-means with GIT descriptor.

Table 3: The average true positive rate of each cluster from the 5000 repeated
experiments. The columns indicate the clustering result. The rows indicate the
ground truth label (α+ β* includes multi-domain proteins).

(a) GPCM

Class α (%) β (%) α/β (%) α+β* (%)

α 71.15 0.13 22.03 6.69

β 0.3 71.98 7.77 19.95

α/β 22.75 8.19 51.84 17.22

α+β* 16.35 8.48 17.96 57.21

(b) k-means with GIT

Class α (%) β (%) α/β (%) α+β* (%)

α 93.67 0 5.11 1.21

β 1.95 73.31 1.17 23.58

α/β 39.84 0.12 56.12 3.93

α+β* 28.6 51.12 1.05 19.22

5.2 Clustering results

Figure 5 shows box plots which summarize the accuracy of the clustering re-
sults from the experiment. Here, the clustering accuracy was defined as (TP +
TN)/(TP+TN+FP+FN), where TP is true positive, TN is true negative, FP
is false positive, and FN is false negative. First, all possible combinations of the
class labels for the clustering result were listed. Next, we computed the accuracy
rate for each combination of class labels. Finally, the class label which produced
the best accuracy rate was considered to be the correct label. The average, worst,
and best clustering results of the GIT and the proposed method are shown in
Table 2. The sensitivity (true positive rate) is defined as TP/(TP + FN). The
specificity (true negative rate) is defined as TN/(FP + TN). We see that our
proposed method is able to cluster the proteins more accurately than the con-
ventional method. The proposed method could achieve up to 86.88% accuracy,
73.75% sensitivity, and 91.25% specificity. On the other hand, the conventional
method achieved up to 85% accuracy, 70% sensitivity, and 90% specificity.
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Table 4: Clustering results for 400 proteins.
Method Measurement Average (%) Worst (%) Best (%)

k-means with GIT

Accuracy 75 68 77
Sensitivity 50.06 36 54
Specificity 83.35 78.67 84.6

GPCM1

Accuracy 75.08 71.13 76.38
Sensitivity 50.16 42.25 52.75
Specificity 83.39 80.75 84.25

GPCM2

Accuracy 74.11 69 77.88

Sensitivity 48.22 38 55.75

Specificity 82.74 79.33 85.25

For further analysis, we examined the clustering results for each protein in
both methods. Table 3 shows the average sensitivity for each protein. These re-
sult show that the GIT descriptor is good at separating the alpha-helices and
beta-sheets; however, it has serious difficulty clustering the overlapped structures
of the fourth class which contains the alpha+beta proteins and the complicated
multi-domain proteins. On the other hand, our proposed method has a more
consistent performance across the categories. These results imply that there is
room to improve the performance of our method by considering more effective
features and tuning parameters, while the method with GIT may have some
fundamental problems when dealing with overlapped and complicated protein
structures. Moreover, the incapability of GIT to describe a protein which con-
tains more than three consecutive missing carbon atoms is also a drawback of
that method.

In terms of the computational speed, k-means with GIT is much faster than
the proposed method. When using an Intel Xeon E5506 2.13Ghz and the Matlab
statistical toolbox, the average execution time for the built-in k-means function
with GIT descriptor was 0.0066s. On the other hand, our proposed method had
an average execution time of 1.7s. However, it is worth noting that we have not
optimized our Matlab implementation code to benefit from parallel processing,
as we wrote our own implementation of k-means on the Grassmann manifold.

5.3 Additional experiment

We conducted an additional experiment using 400 proteins. As in the previous
experiment, we repeated the clustering 5000 times. However, in this experiment
the fourth class of the protein does not contain multi-domain proteins (only
alpha+beta proteins were used) to reduce the difficulty of classification. The
experimental results for the clustering of the 400 proteins are shown in Table 4.
GPCM1 used the same experimental parameters that were used in the experi-
ment with 80 proteins. In GPCM2, the HLAC parameters were set to 2, 4, 6,
and 8, and the subspace dimension was set to 5. Although the performance of
the proposed method is quite similar to that of the conventional method, this
experiment demonstrates that the performance of the proposed method can be
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improved by tuning the parameters of the subspace and having better feature
extraction for the protein visualization images.

6 Conclusion and future work

In this paper, we have proposed a novel framework, called Grassmannian Pro-
tein Clustering Method (GPCM), for solving the protein clustering problem. In
GPCM, a 3D protein structure is represented by a linear subspace generated by
applying PCA to the multiple-view of synthesized protein images. The similarity
of two protein structures is defined by the canonical angles between the corre-
sponding subspaces. The advantage of this approach is that it does not require
precise alignment of the proteins. Since the protein is represented by a subspace,
we regarded the protein clustering problem as a subspace clustering problem,
and we applied the k-means algorithm for subspace clustering on a Grassmann
manifold.

The experimental results demonstrated that the proposed method is superior
to the conventional k-means with GIT approach, especially in identifying the
overlapped structure of alpha+beta proteins which results a higher clustering
accuracy. The GIT descriptor has a compact protein representation so the k-
means computation is very fast. However, as shown by our experimental results,
it may have a problem separating overlapped and complicated structures in
which both alpha-helix and beta-sheet motifs exist.

Since this research is still in its early stages, we will conduct further exper-
iments using more of protein data available from the PDB site. We will also
consider different methods for extracting features from the protein visualization
images and different classifiers, such as the nonlinear constrained subspace[17],
with the aim of improving the performance of our method.
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